История двоичной системы счисления кратко

Обновлено: 28.04.2024

В современном мире известно множество способов представления чисел. Число можно представить группой символов некоторого алфавита.
Система счисления – совокупность правил для обозначения и наименования чисел.
Самая простейшая система счисления – унарная, в которой используется всего 1 символ (палочка, узелок, зарубка, камушек и т.д.
Наиболее совершенным принципом представления чисел является позиционный ( поместный ) принцип, согласно которому один и тот же числовой знак ( цифра ) имеет различные значения в зависимости от места, где он расположен.
Несмотря на кажущуюся естественность такой системы, она явилась результатом длительного исторического развития. Возникновение десятичной системы счисления связывают со счетом на пальцах. Имелись системы счисления и с другим основанием: 5, 12 (счет дюжинами), 20 (следы такой системы сохранились во французком языке, например quatre – vingts, т. е. буквально четыре – двадцать, означает 80), 40, 60 и др. При вычислениях на ЭВМ часто применяется система счисления с основанием 2.

Римские цифры – традиционное название знаковой системы для обозначения чисел, основанной на употреблении особых символов для десятичных разрядов:
I V X L С D M
1 5 10 50 100 500 1000
Более совершенными системами счисления являются алфавитные: ионийская, славянская, еврейская, арабская, а также грузинская и армянская.
В алфавитных системах счисления, запись чисел гораздо короче, чем в предыдущих; кроме того, над числами, записанными в алфавитной нумерации, гораздо легче производить арифметические действия. Однако в алфавитных системах счисления нельзя записывать сколь угодно большие числа.
В системе счисления древних вавилонян, возникшей примерно за 2000 лет до н. э. все числа записывались с помощью двух знаков: ( для единицы) и ( для десяти). Числа до 60 записывались как комбинации этих двух знаков с применением принципа сложения. Число 60 снова обозначалось знаком , являясь единицей высшего разряда. Для записи чисел от 60 до 3600 вновь применялся принцип сложения, а число 36 000 обозначалась тем же знаком, что и единица, и т. д. Число 343=5*60+4*10+3 в этой системе записывалось так:
Однако в силу отсутствия знака для нуля, которым можно было бы отмечать недостающие разряды, запись чисел в этой системе счисления не была однозначной. Особенностью вавилонской системы счисления было то, что абсолютное значение чисел оставалось неопределенным.

Другая система счисления основанная на позиционном принципе, возникла у индейцев майя, обитателей полуострова Юкатан ( Центральная Америка) в середине 1 – го тыс. н. э. У майя существовали две системы счисления: одна, напоминающая египетскую, употреблялась в повседневной жизни, другая – позиционная, с основанием 20 и особым знаком для нуля, применялась при календарных расчетах. Запись в этой системе, как и в нашей современной, носила абсолютный характер.

Современная десятичная позиционная система счисления возникла на основе нумерации, зародившейся не позднее 5 в. в Индии. До этого в Индии имелись системы счисления, в которых применялся не только принцип сложения, но и принцип умножения ( единица какого – нибудь разряда умножается на стоящее слева число). Аналогично строились старокитайская система счисления и некоторые другие. Если, например, условно обозначить число 3 символом III, а число 10 символом X, то число 30 запишется как IIIX ( три десятка ). Такие системы счисления могли служить подходом к мозданию десятичной позиционной нумерации.

Десятичная позиционная система дает принципиальную возможность записывать сколь угодно большие числа. Запись чисел в ней компактна и удобна для производства арифметических операций. Поэтому вскоре после возникновения десятичная позиционная система счисления начинает распространяться из Индии на Запад и Восток. В 9 веке появляются рукописи на арабском языке, в которых излагается эта система счисления, в 10 веке десятичная позиционная нумерация доходит до Испании, в начале 12 века она появляется и в других странах Европы. Новая система счисления получила название арабской, потому что в Европе с ней познакомились впервые по латинским переводам с арабского. Только в 16 веке новая нумерация получила широкое распространение в науке и житейском обиходе. В России она начинает распространятся в 17 веке и в самом начале 18 в. вытесняет алфавитную. С введением десятичных дробей десятичная позиционная система счисления стала универсальным средством для записи всех действительных чисел.

I. Понятие двоичной системы счисления…………………………………………………………………..

1.1. История двоичной системы счисления

1.2. Перевод чисел из двоичной системы счисления в десятичную

1.3. Перевод десятичного числа в двоичное

II. Почему удобна двоичная система? ………………………………………………

2.1. Достоинства двоичной системы

2.2. Недостатки двоичной системы

Кто стоит у истоков двоичной системы счисления, как давно и где ее начали применять, почему двоичная система счисления сохранилась до наших дней.

Язык чисел, как и любой другой, имеет свой алфавит. В том языке чисел, которым мы обычно пользуемся, алфавитом служат десять цифр – от 0 до 9. Это десятичная система счисления.

Системой счисления мы будем называть способ представления числа символами некоторого алфавита, которые называют цифрами.

Причина, по которой десятичная система счисления стала общепринятой, вовсе не математическая. Десять пальцев рук – вот аппарат для счета, которым человек пользуется с доисторических времен. Древнее написание десятичных цифр:


Понятие двоичной системы счисления.

Двоичная система счисления - позиционная система счисления с основанием два. (Позиционная система счисления (позиционная нумерация) — система счисления, в которой значение каждого числового знака (цифры) в записи числа зависит от его позиции (разряда).

История двоичной системы счисления.

Мысль о двоичной системе принадлежит Лейбницу, который полагал, что при трудных исследованиях в теории чисел она может иметь большие преимущества перед десятичной системой. Кроме того, при всяких арифметических операциях действия над числами, написанными в бинарной системе, облегчаются в высшей степени. Иезуит Буве (Bouvet), миссионер в Китае, которому Лейбниц писал о своём изобретении, сообщил ему, что в Китае существует загадочная надпись, которую можно вполне объяснить бинарной системой. Надпись эта, которую приписывают императору Фо-ги, жившему в 25 веке до н. э., основателю Китайской империи, покровителю наук и искусств, не могла быть объяснена китайскими учёными, которые считали её не имеющей смысла. Она состоит из ряда длинных и коротких чёрточек. Если принять, что длинная черта означает 1, а короткая 0, то вся надпись оказывается просто рядом натуральных чисел, написанных по двоичной системе. Вот эта надпись:


Двоичная система счисления оказалась удобной для использования в ЭВМ. Использование двоичной системы оказалось наиболее эффективным в электронных схемах: цифры 0 и 1 удобно кодировать уровнями напряжения, соответствующим напряжению на шинах питания, „0“ и „+V“; использование большего количества уровней привело бы к усложнению схем. Хотя были прецеденты создания и троичных ЭВМ.

В двоичной системе счисления используются всего две цифры 0 и 1. Другими словами, двойка является основанием двоичной системы счисления. (Аналогично у десятичной системы основание 10.)

Чтобы научиться понимать числа в двоичной системе счисления, сначала рассмотрим, как формируются числа в привычной для нас десятичной системе счисления.

В десятичной системе счисления мы располагаем десятью знаками-цифрами (от 0 до 9). Когда счет достигает 9, то вводится новый разряд (десятки), а единицы обнуляются и счет начинается снова. После 19 разряд десятков увеличивается на 1, а единицы снова обнуляются. И так далее. Когда десятки доходят до 9, то потом появляется третий разряд – сотни.

Двоичная система счисления аналогична десятичной за исключением того, что в формировании числа участвуют всего лишь две знака-цифры: 0 и 1. Как только разряд достигает своего предела (т.е. единицы), появляется новый разряд, а старый обнуляется.

Попробуем считать в двоичной системе:

1 – это один (и это предел разряда)

11 – это три (и это снова предел)

100 – это четыре

1.3. Перевод чисел из двоичной системы счисления в десятичную:

1. 10001001 = 1*2^ + 0*2^ + 0*2^ + 0*2^ + 0*2^ + 0*2^ + 0* 2^ + 0*2^ = 128 + 0 + 0 + 0 + 8 + 0 + 0 + 1 = 137

Т.е. число 10001001 по основанию 2 равно числу 137 по основанию 10. Записать это можно так:

2. 1011_ = 1*2^3 + 0*2*2+1*2^1+1*2^0 =1*8 + 1*2+1=11_

3. 10101010_ = 1*2^ + 0*2^ + 1*2^ + 0*2^ + 1*2^ + 0*2^ + 1*2^ + 0*2^ = 128 + 32 +8 + 2 = 170_

4. 101101_ = 1*2^ + 0*2^ + 1*2^ + 1*2^ + 0*2^ + 1*2^ = 63_

5. 100,101_ = 1*2^ +0*2^ + 0*2^ + 1*2^ + 0*2^ + 1*2^ = 4 + 2 = 6Элементы оглавления не найдены._

6. 111101_ = 1*2^ + 1*2^ + 1*2^ + 1*2^ + 0*2^ + 1*2^ = 32 +16 + 13 = 61_




7. 1001_ = 1*2^ + 0*2^ + 0*2^ + 1*2^ = 9

8. 10011,1_ = 1*2^ + 0*2^ + 0*2^ + 1*2^ + 1*2^ + 1*2^ = 19,5

9. 11101,11_ = 1*2^ + 1*2^ + 1*2^ + 0*2^ +1*2^ + 1*2^ = 57,5

10. 100111 = 1*2^ + 0*2^ + 0*2^ +1*2^ + 1*2^ + 1*2^ = 39

1.4. Перевод десятичного числа в двоичное:

Может потребоваться перевести десятичное число в двоичное. Один из способов – это деление на два и формирование двоичного числа из остатков. Например, нужно получить из числа 77 его двоичную запись:

77 / 2 = 38 (1 остаток)

38 / 2 = 19 (0 остаток)

19 / 2 = 9 (1 остаток)

9 / 2 = 4 (1 остаток)

4 / 2 = 2 (0 остаток)

2 / 2 = 1 (0 остаток)

1 / 2 = 0 (1 остаток)

Собираем остатки вместе, начиная с конца: 1001101. Это и есть число 77 в двоичном представлении. Проверим:

1. 1001101_ = 1*2^ + 0*2^ + 0*2^ + 1*2^ + 1*2^ + 0*2^ + 1*2^ = 64 + 8 + 5 = 77_

2. 49_ = \dfrac < 49 > < 2 >= 110001_

3. 15_ = \dfrac < 49 > < 2 >= 1111_

4. 31_ = \dfrac < 31 > < 2 >= 11111_

5. 0,45_ = \dfrac < 0,45 > < 2 >= 0,11100_

6. 95_ = \dfrac < 95 > = 1011111_

7. 102_ = \dfrac < 2 >= 1100110_

8. 58_ = \dfrac < 58 > < 2 >= 110100_

9. 4956_ = \dfrac < 4956 > < 2 >= 101101011100_

10. 125_ = \dfrac < 125 > < 2 >= 10111101_

2. Почему удобна двоичная система?

Стоит отметить, что двоичная система издавна была предметом пристального внимания ученых. Официальное рождение двоичной системы счисления связано с именем Г.В.Лейбница, опубликовавшего в 1703 г. статью, в которой он рассмотрел правила выполнения арифметических действий над двоичными числами. Во время работы ЭВМ постоянно происходит преобразование чисел из десятичной системы счисления в двоичную, и наоборот. Да и человеку, имеющему дело с ЭВМ, часто приходится прибегать к преобразованиям чисел.

Главное достоинство двоичной системы – простота алгоритмов сложения, вычитания, умножения и деления. Таблица умножения в ней совсем не требуется ничего запоминать, ведь любое число, умноженное на ноль, равно нулю, а умноженное на единицу равно самому себе. И при этом никаких переносов в следующие разряды, а они есть даже в троичной системе счисления.

Если отвлечься от технических деталей, то именно с помощью этих операций и выполняются все операции в компьютере, так как удалось создать надежно работающие технические устройства, которые могут со 100 процентной надежностью сохранять и распознавать не более двух различных состояний (цифр):

- электромагнитные реле (замкнуто/разомкнуто), широко использовались в конструкциях первых ЭВМ;

- участок поверхности магнитного носителя информации (намагничен/ размагничен);

- участок поверхности лазерного диска (отражает/не отражает);

- триггер, может устойчиво находиться в одном из двух состояний, широко используется в оперативной памяти компьютера.

Утверждение двоичной арифметики в качестве общепринятой при конструкции ЭВМ с программным управлением состоялось под влиянием работы Дж. фон Неймана о проекте первой ЭВМ с хранимой в памяти программой. Работа написана в 1946 году.

2.1. Достоинства двоичной системы счисления:

1. Достоинства двоичной системы счисления заключаются в простоте реализации процессов хранения, передачи и обработки информации на компьютере.

2. Для ее реализации нужны элементы с двумя возможными состояниями, а не с десятью.

3. Представление информации посредством только двух состояний надежно и помехоустойчиво.

4. Возможность применения алгебры логики для выполнения логических преобразований.

5. Двоичная арифметика проще десятичной.

2.2. Недостатки двоичной системы счисления:

1. Итак, код числа, записанного в двоичной системе счисления представляет собой последовательность из 0 и 1. Большие числа занимают достаточно большое число разрядов.

2. Быстрый рост числа разрядов - самый существенный недостаток двоичной системы счисления.

3.1. Заключение:

Двоичная система счисления наиболее проста и удобна для автоматизации.

Наличие в системе всего лишь двух символов упрощает их преобразование в электрические сигналы.

Из любой системы счисления можно перейти к двоичному коду.

Почти все ЭВМ используют либо непосредственно двоичную систему счисления, либо двоичное кодирование какой-либо другой системы счисления.

Но двоичная система имеет и недостатки:

- ею пользуются только для ЭВМ для внутренней и внешней работы;

- быстрый рост числа разрядов, необходимых для записи чисел.

Библиографический список

1. Нестеренко А.В. ЭВМ и профессия программиста. М.: Просвещение, 1990.

2. Решетников В.Н., Сотников А.Н. Информатика – что это? М.: Радио и связь, 1989.

Двоичная система — это один из видов позиционных систем счисления. Основание данной системы равно двум, то есть используется только два символа для записи чисел.

Немного истории

Впервые о данной системе чисел заговорил основоположник математического анализа Г.В. Лейбниц еще в XVII веке. Он доказал, что для данного множества действуют все арифметические операции: сложение, вычитание, умножение и даже деление. Однако вплоть до 30-х годов XX века данную систему не рассматривали всерьез. Но с развитием электронных устройств и ЭВМ, ученые вновь принялись к изучению данной темы, так как двоичная система отлично подходила для программирования и организации хранения данных в памяти компьютеров.

Таблица и алфавит

Алфавит двоичной системы счисления состоит всего из двух знаков: 0 и 1 . Однако это нисколько не усложняет выполнение арифметических действий.

Кроме того, двоичная система является самой удобной для быстрого перевода в другие системы счисления.

Так, чтобы перевести двоичное число в десятичное, необходимо найти значение его развернутой формы . Например:

1001102 = 1 ∙ 2 5 + 0 ∙ 2 4 + 0 ∙ 2 3 + 1 ∙ 2 2 + 1 ∙ 2 2 + 0 ∙ 2 0 = 32 + 0 + 0 + 4 + 2 + 0 = 3810

Чтобы наоборот перевести число в двоичную из десятичной, необходимо выполнить его деление на 2 с остатком, а затем записать все остатки в обратном порядке, начиная с частного:

Делимое 38 19 9 4 2
Делитель 2 2 2 2 2
Частное 19 9 4 2 1
Остаток 0 1 1 0 0

Для перевода в другие системы необходимо:

  • Перевести двоичный код в десятичный.
  • Выполнить деление десятичного числа на основание той системы, в которую требуется перевести.

Однако можно воспользоваться и более быстрым и удобным способом: разделить знаки двоичного числа на условные группы слева на право (для восьмеричной — по 3 знака; для шестнадцатеричной — по 4 знака), а затем воспользоваться таблицей перевода:

Двоичная Восьмеричная Шестнадцатеричная
0 0 0
001 1 1
010 2 2
011 3 3
100 4 4
101 5 5
110 6 6
111 7 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

110010012 = 11 001 001 = 011 001 001 = 3118

110010012 = 1100 1001 = С916

Представление двоичных чисел

Чтобы найти дополнительный код отрицательного числа, необходимо воспользоваться его прямым и дополнительным кодами.

Прямой код предполагает приписывание единицы в начале без изменений записи:

A > 0 Aпр = 0A 1010112; Aпр = 01010112
A ≤ 0 Aпр = 1|A| -1010112; Aпр = 11010112

Для записи обратного кода цифры заменяют на противоположное значение, первую единицу от прямого кода оставляют без изменений:

A > 0 Aобр = 0A 1010112; Aобр = 01010112
A ≤ 0 Aобр = 1 A -1010112; Aобр = 10101002

Дополнительный код предполагает использование обратного кода, с той лишь разницей, что к отрицательному числу прибавляют единицу:

A > 0 Aдоп = 0A 1010112; Aдоп = 01010112
A ≤ 0 Aдоп = 1 A + 1 -1010112; Aдоп = 10101012

Применение двоичной системы в информатике

Двоичная система получила особое распространение в программировании цифровых устройств, так как она соответствует требованиям многих технических устройств, поддерживающих два состояния (есть ток, нет тока). Кроме того, является более простой и надежной для кодирования информации. Именно поэтому программный код большей части ЭВМ основан именно на двоичной системе счисления.

Здравствуйте, в этой статье мы поговорим про такую важную тему, как двоичная система исчисления, называемую также бинарным кодом. Всем, кто хочет идти работать в ай-ти сферу должны обязательно разобраться в этом разделе, а для всех остальных будет полезно ознакомиться для общего развития, с представленной ниже информацией.

Я попытаюсь дать все необходимые понятия, и попытаюсь подробно разжевать их, чтобы у вас не осталось никаких вопросов. Попробую дополнить всё примерами, а самые сложные моменты попытаюсь объяснить на пальцах. После прочтения вы узнаете о представлении чисел в двоичном коде, некоторые особенности и полезные свойства этой системы счисления, отрасли, где она применяется и краткую теорию её становления в информатике.

двоичная система счисления

Экскурс в прошлое

Минимально необходимый теоретический базис

Для того чтобы полностью разобраться с двоичным исчислением нужно разобрать, или повторить основные определения. Это будет фундаментом для того, чтобы вы смогли понять то, что дальше написано. К ним относятся такие понятия как:

  1. Цифры – знаки с помощью которых мы записываем числа (0-9);
  2. Алфавит – набор знаков, которые мы используем для отображения числового значения. В арабском алфавите, который используется во всем мире, знаки состоят из цифр от 0 до 9.
  3. Разряд — место (позиция) цифры, которое она занимает. Далее я наглядно покажу, что он из себя представляет.
  4. Основание – количество символов, которое используется, чтобы представить информацию в нужной системе счисления. Например, в шестнадцатеричном исчислении используются – 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F, 16 символов.
  5. Позиционные система счисления – системы, где значение цифры зависит от её разряда (места в числе). Например, в 1000 единица обозначает “тысячу” а в 10 “десяток”. Количество, которое обозначает знак “1” меняется.

Понимая все то, что написано выше, можно перейти к сути вопроса. Итак:

Двоичная система счисления – позиционная система с основанием 2. Для отображения чисел применяется два знака – 0 и 1.

В математике обозначается с помощью нижнего индекса, где указано основание. Выглядит это вот так . Натуральные числа представляются по следующей формуле:

формула 2ной системы счисления

Немного про то, что значат буквы в формуле:

  • а – цифры (нуль или единица)
  • n – номер последней позиции в числе. Отсчет начинаем от 0 и считаем справа налево
  • k – индекс позиции

Практика

Без практики объяснить, как этим пользоваться – трудно. Поэтому рассмотрим пару примеров. Однако для начала вам необходимо скачать таблицу, где значения бинарного кода представляются в десятичной форме. Я взял первую попавшуюся таблицу с интернета. Выглядеть она будет примерно так:

таблица двоичной системы счисления

Задача 1: Представить 7 в двоичном коде, а потом расписать его с помощью формулы выше.

Для того чтобы это сделать надо:

Как видно из примера здесь нет ничего сложного. Давайте разберем что-нибудь посложнее, да и найдем таблицу посерьезнее. Я взял вот такую:

крутая таблица

Задача 2: отобразить 13 в двоичной системе счисления.

Все шаги останутся точно такими же, однако я покажу другой способ для выполнения первого пункта. Принцип тот же, но он кажется мне более удобным.

второй метод представления в двоичной системе исчисления

Получаем что

Смотрим что в таблице:


ответ в виде степенного ряда

Далее я приведу несколько свойств, которые вы сможете применить при работе с двоичной системой.

Полезные свойства

  1. Добавляя справа нулик, вы увеличиваете числовое значение в два раза. Выглядит это как-то так:

Области применения

Заключение

На этом всё, вот вы и познакомились с двоичной системой исчисления. Здесь мы рассмотрели общие положения и научились пользоваться таблицей для проверки результатов. Также вы знаете отрасли применения. Прочитав другие материалы нашего сайта, вы сможете научиться выполнять арифметические операции, и переводить счисление с основанием два в другие нумерации. Например шестнадцатеричную и восьмеричную (основание шестнадцать и восемь). При возникновении вопросов оставляйте их в комментариях.




ОБЩИЕ ПОНЯТИЯ

Системой счисления называется совокупность приёмов обозначения чисел, алфавитом которого являются символы (цифры), а синтаксисом - правило, позволяющее сформулировать запись чисел однозначно. Запись числа в некоторой системе счисления называется кодом числа.

Отдельную позицию в изображении числа принято называть разрядом, а номер позиции - номером разряда. Число разрядов в записи числа называется разрядностью и совпадает с его длиной.

Порядковому номеру разряда соответствует его вес — множитель, на который надо умножить значение разряда в данной системе счисления.

число 111 в десятичной системе:

число 101110 в двоичной системе:

равно 46 в десятичной системе


Основанием системы счисления называется количество различных символов (цифр), используемых в каждом из разрядов числа для его изображения в данной системе счисления.

Двоичная: 0,1 (основание = 2)
Десятичная: 0,1,2,3,4,5,6,7,8,9 (основание = 10)
Шестнадцатеричная: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F (основании = 16)

Различают позиционные и непозиционные системы счисления.

Непозиционные - которые содержат неограниченное количество символов, причём количественный эквивалент любой цифры постоянен, и зависит только от её начертания. Позиция цифр в числе значения не имеет.

Позиционными называются системы счисления, алфавит которых содержит ограниченное количество символов, причём значение каждой цифры в числе определяется не только ее начертанием, но и находится в строгой зависимости от позиции в числе.

Под двоичной системой исчисления понимают систему счисления, в которой для изображения чисел используется 2 символа - 0 и 1. Двоичная система счисления является позиционной системой счисления с основанием 2. Таким образом, многоразразрядные числа в двоичной системе представляются как суммы различных степеней двойки. Если какой–либо разряд двоичного числа равен 1, то он называется значащим разрядом.


Чтобы перевести целое число из 10-ой в 2-ую систему нужно выполнить последовательное деление десятичного числа на 2 с округлением до целого числа в сторону уменьшения, записывая в столбик все результаты деления; затем возле каждого нечётного результата деления поставить 1, а возле чётного - 0. Полученное двоичное число записываем в строчку, начиная с нижней строчки правого столбца.

Например, необходимо перевести деятичное число 46 в двоичный вид:

получаем число 101110

Результат последнего действия означает перенос единицы в высший разряд. То есть для увеличения или уменьшения двоичного числа на порядок применяются операция сдвига вправо или влево (SRR и SRL).

Читайте также: