Хлоропласты строение и функции таблица кратко

Обновлено: 05.07.2024

Пластиды — специализированные органоиды, встречающиеся в живых эукариотических клетках растений. Для животных и грибов не характерны.

Виды пластидов

Виды пластидов

Совокупность пластид в клетке называют пластидомом, хотя в зрелой клетке содержатся пластиды только одного вида. В зависимости от окраски выделяют следующие пластиды:

  • Хлоропласты (зеленые).
  • Хромопласты (оранжевые).
  • Лейкопласты (бесцветные).

Виды пластидов

Происхождение и трансформация пластид

Пластиды происходят одинаково – из пропластид. Эволюционными предками ученые считают бактерии, которые были поглощены другой бактерией эндоцитозом. Первая бактерия, скорее всего, могла преобразовывать энергию света.

Могут превращаться друг в друга по ситуации. В условиях слабой освещенности хлоропласты могут преобразовываться в лейкопласты. Хромопласты же могут образовываться из зеленых и бесцветных пластид в случае накопления каротиноидов.

Строение хлоропласта

Размер и число хлоропластов зависит от вида растения и клетки, где они расположены. На величину и очертания влияют условия среды и таксономичекая принадлежность растений. Например, у высших растений хлоропласты линзовидные. Крупные и богатые хлорофиллом, магнийсодержащим пигментом, органоиды у растений теневой зоны. У водорослей хлорофилл назван хроматофором и может принимать следующие формы: шаровидная, спиральная, чашевидная и другие.

Положение органоидов в клетке может меняться, так как они не закреплены, однако, чаще всего хлоропласты расположены близ клеточной стенки. Это нужно для того, чтобы улавливать свет.

Хлоропласты имеют двумембранную оболочку, которая отграничивает содержимое органоида от цитоплазмы. Мембраны не несут другие органоиды. У высших растений сильно развита внутренняя мембранная поверхность, которая образует плоские мешки – тилакоиды или более вытянутые – ламеллы. Несколько плотно собранных в стопки тилакоидов образуют граны. Важно: все тилакоиды расположены параллельно друг другу. На их стенках расположены молекулы хлорофилла. Граны связаны между собой тилакоидами стромы.

Строма – жидкая часть пластидов, где располагаются все части органоида.

Строение хлоропласта

Рис. 1. Ультраструктура хлоропласта:
1. внешняя мембрана
2. межмембранное пространство
3. внутренняя мембрана (1 + 2 + 3: оболочка)
4. строма (жидкость)
5. тилакоид с просветом (люменом) внутри
6. мембрана тилакоида
7. грана (стопка тилакоидов)
8. тилакоид (ламелла)
9. зерно крахмала
10. рибосома
11. пластидная ДНК
12. пластоглобула (капля жира)

Строение хромопласта

Встречаются в клетках лепестков, плодов, корнеплодах. Хромопласты разнообразны по форме и меньше хлоропластов. Система выростов внутренней мембраны не развита. Внутри пластида содержится пигменты желтого, оранжевого и красного цвета.

Строение хромопласта

Рис. 2.

Строение лейкопласта

Лейкопласты – бесцветные пластиды. Встречаются в частях растениях, спрятанных от света, например в корнях, клубнях, семенах. Эти пластиды имеют шаровидную, чашевидную форму, но она может свободно меняться. Система выростов внутренней мембраны развита слабо. Тилакоиды одиночные, располагаются без особой ориентации в пространстве. Во всем остальной лейкопласты схожи с хлоропластами.

Строение лейкопласта

Рис. 3.

Выделяется несколько видов лейкопластов по запасаемым веществам

  • Амилопласты, накапливают крахмал.
  • Протеропласты, накапливают белки.
  • Олеопласты, накапливают жирные масла.

Функции пластидов

Пластиды

Функции

Фотосинтез – образование органических веществ из неорганических с использованием энергии света

Связаны с синтезом и накоплением запасных веществ

Окрашивают различные части растений, что важно для привлечения насекомых-опылителей

Пластиды — органоиды, специфичные для клеток растений (они имеются в клетках всех растений, за исключением большинства бактерий, грибов и некоторых водорослей).

В клетках высших растений находится обычно от 10 до 200 пластид размером 3-10мкм, чаще всего имеющих форму двояковыпуклой линзы. У водорослей зеленые пластиды, называемые хроматофорами, очень разнообразны по форме и величине. Они могут иметь звездчатую, лентовидную, сетчатую и другие формы.

Различают 3 вида пластид:

  • Бесцветные пластиды — лейкопласты;
  • окрашенные — хлоропласты (зеленого цвета);
  • окрашенные — хромопласты (желтого, красного и других цветов).

Эти виды пластид до известной степени способны превращаться друг в друга — лейкопласты при накоплении хлорофилла переходят в хлоропласты, а последние при появлении красных, бурых и других пигментов — в хромопласты.

Виды пластид: хлоропласты, хромопласты, лейкопласты

Строение и функции хлоропластов

Хлоропласты — зеленые пластиды, содержащие зеленый пигмент — хлорофилл.

Основная функция хлоропласт — фотосинтез.

В хлоропластах есть свои рибосомы, ДНК, РНК, включения жира, зерна крахмала. Снаружи хлоропласта покрыты двумя белково-липидными мембранами, а в их полужидкую строму (основное вещество) погружены мелкие тельца — граны и мембранные каналы.

Строение хлоропласта

Строение хлоропласта

Граны (размером около 1мкм) — пакеты круглых плоских мешочков (тилакоидов), сложенных подобно столбику монет. Располагаются они перпендикулярно поверхности хлоропласта. Тилакоиды соседних гран соединены между собой мембранными каналами, образуя единую систему. Число гран в хлоропластах различно. Например, в клетках шпината каждый хлоропласт содержит 40-60 гран.

Хлоропласты внутри клетки могут двигаться пассивно, увлекаемые током цитоплазмы, либо активно перемещаться с места на место.

  • Если свет очень интенсивен, они поворачиваются ребром к ярким лучам солнца и выстраиваются вдоль стенок, параллельных свету.
  • При слабом освещении, хлоропласты перемещаются на стенки клетки, обращенные к свету, и поворачиваются к нему своей большой поверхностью.
  • При средней освещенности они занимают среднее положение.

Этим достигаются наиболее благоприятные для процесса фотосинтеза условия освещения.

Хлорофилл

В гранах пластид растительной клетки содержится хлорофилл, упакованный с белковыми и фосфолипидными молекулами так, чтобы обеспечить способность улавливать световую энергию.

Молекула хлорофилла очень сходна с молекулой гемоглобина и отличается главным образом тем, что расположенный в центре молекулы гемоглобина атом железа заменен в хлорофилле на атом магния.

Сходство молекулы хлорофилла и молекулы гемоглобина

Сходство молекулы хлорофилла и молекулы гемоглобина

В природе встречается четыре типа хлорофилла: a, b, c, d.

Хлорофиллы a и b содержат высшие растения и зеленые водоросли, диатомовые водоросли содержат a и c, красные — a и d.

Лучше других изучены хлорофиллы a и b (их впервые разделил русский ученый М.С.Цвет в начале XXв.). Кроме них существуют четыре вида бактериохлорофиллов — зеленых пигментов пурпурных и зеленых бактерий: a, b, c, d.

Большинство фотосинтезирующих бактерий содержат бактериохлорофилл a, некоторые — бактериохлорофилл b, зеленые бактерии — c и d.

Хлорофилл обладает способностью очень эффективно поглощать солнечную энергию и передавать ее другим молекулам, что является его главной функцией. Благодаря этой способности хлорофилл — единственная структура на Земле, которая обеспечивает процесс фотосинтеза.

Главная функция хлорофилла в растениях — поглощение энергии света и передача ее другим клеткам.

Пластидам, так же, как и митохондриям, свойственна до некоторой степени автономность внутри клетки. Они размножаются путем деления.

Наряду с фотосинтезом, в пластидах происходит процесс биосинтеза белка. Благодаря содержанию ДНК пластиды играют определенную роль в передаче признаков по наследству (цитоплазматическая наследственность).

Строение и функции хромопластов

Хромопласты относятся к одному из трех видов пластид высших растений. Это небольших размеров, внутриклеточные органеллы.

Хромопласты имеют различный окрас: желтый, красный, коричневый. Они придают характерный цвет созревшим плодам, цветкам, осенней листве. Это необходимо для привлечения насекомых-опылителей и животных, которые питаются плодами и разносят семена на дальние расстояния.

Строение хромопласта

Строение хромопласта

Структура хромопласта похожа на другие пластиды. Их двух оболочек внутренняя развита слабо, иногда вовсе отсутствует. В ограниченном пространстве расположена белковая строма, ДНК и пигментные вещества (каротиноиды).

Каротиноиды – это жирорастворимые пигменты, которые накапливаются в виде кристаллов.

Форма хромопластов очень разнообразна: овальная, многоугольная, игольчатая, серповидная.

Роль хромопластов в жизни растительной клетки до конца не выяснена. Исследователи предполагают, что пигментные вещества играют важную роль в окислительно-восстановительных процессах, необходимы для размножения и физиологичного развития клетки.

Строение и функции лейкопластов

Лейкопласты — это органоиды клетки, в которых накапливаются питательные вещества. Органеллы имеют две оболочки: гладкую наружную и внутреннюю с несколькими выступами.

Лейкопласты на свету превращаются в хлоропласты (к примеру зеленые клубни картофеля), в обычном состоянии они бесцветны.

Форма лейкопластов шаровидная, правильная. Они находятся в запасающей ткани растений, которая заполняет мягкие части: сердцевину стебля, корня, луковиц, листьев.

Строение лейкопласта

Строение лейкопласта

Функции лейкопластов зависят от их вида (в зависимости от накапливаемого питательного вещества).

  1. Амилопласты накапливают крахмал, встречаются во всех растениях, так как углеводы основной продукт питания растительной клетки. Некоторые лейкопласты полностью наполнены крахмалом, их называют крахмальными зернами.
  2. Элайопласты продуцируют и запасают жиры.
  3. Протеинопласты содержат белковые вещества.

Лейкопласты также служат ферментной субстанцией. Под действием ферментов быстрее протекают химические реакции. А в неблагоприятный жизненный период, когда процессы фотосинтеза не осуществляются, они расщепляют полисахариды до простых углеводов, которые необходимы растениям для выживания.

В лейкопластах не может происходить фотосинтез, потому что они не содержат гран и пигментов.

Луковицы растений, в которых содержится много лейкопластов, могут переносить длительные периоды засухи, низкую температуру, жару. Это связано с большими запасами воды и питательных веществ в органеллах.

Предшественниками всех пластид является пропластиды, небольшие органоиды. Допускают, что лейко — и хлоропласты способны трансформироваться в другие виды. В конечном итоге после выполнения своих функций хлоропласты и лейкопласты становятся хромопластами — это последняя стадия развития пластид.

Важно знать! Одновременно в клетке растения может находиться только один вид пластид.


Пластиды в растительных клетках — органеллы, расположенные в цитоплазме. Небольшие тельца лучше рассматривать при большом увеличении светового микроскопа. Внутреннее строение пластид, а также что делают эти органеллы в клетке, изучают с помощью электронной микроскопии. Основные сведения о структуре, местоположении и функциях основных видов пластид рассмотрим в статье.

Виды пластид

В клетках высших растений находится от 10 до 200 пластид, имеющих собственные мембраны. Наличие таких органелл отличает растительную клетку от животной. Размеры каждой пластиды составляют от 3 до 10 микрометров. Как выглядят пластиды в растительных клетках, какие функции выполняют, зависит от входящих в их состав красящих веществ (пигментов) и других особенностей.

Основные виды пластид:

Строение и функции пластид можно представить в виде таблицы, которая пригодится при подготовке к уроку биологии в 5 классе.

Часто встречаются в молодых органах растений, корнях и семенах

Обычно выполняет в клетках функцию хранения запасных веществ (углеводов, белков, жиров)

Вегетативные органы растений (зелёные листья, молодые стебли)

Чаще всего имеют форму дискообразных зёрнышек. Покрыты плотной мембраной и содержат вязкую плазму, поэтому хорошо видны в микроскоп. Внутри стопкой расположены маленькие тельца, напоминающие по форме монеты

Выполняют функцию питания растения

Цветки, спелые плоды, зрелые корнеплоды моркови, осенние листья

В них содержатся два пигмента: каротин (оранжевого цвета) и ксантофилл (золотисто-жёлтого цвета). Имеют форму треугольных пластинок или палочек

Придают яркую окраску цветкам, делая их более заметными для насекомых-опылителей. Красные и оранжевые плоды привлекают птиц, распространяющих семена

Зелёные пластиды у водорослей (хроматофоры) имеют разнообразные формы и размеры, могут быть в виде лент, пластинок, чаш, сеточек.

Клетки водорослей под микроскопом

Рис. 2. Клетки водорослей под микроскопом.

Велика роль хлоропластов для растительного организма и всего живого на нашей планете. Благодаря хлорофиллу растения сами себя обеспечивают питанием. Органические вещества, созданные зелёными клетками, используют в пищу животные и человек.

Взаимопревращения пластид

Часто можно наблюдать у растений переход одного вида пластид в другие. Плоды помидоров, яблонь, облепихи, рябины сначала зелёные. По мере созревания они окрашиваются в красный, оранжевый или жёлтый цвета из-за появления хромопластов. При наличии света лейкопласты накапливают хлорофилл и превращаются в хлоропласты. Осенью зелёные листья теряют хлорофилл, в них больше становится хромопластов.

Пластиды способны менять цвет за счет протекания химических реакций.

Позеленение клубней картофеля на свету

Рис. 3. Позеленение клубней картофеля на свету.

Лейкопласты содержатся в клубнях картофеля. На свету клубни зеленеют, потому что лейкопласты превращаются в хлоропласты (зелёные пластиды). Позеленевшие клубни нельзя употреблять в пищу, они накапливают ядовитое вещество соланин.

Что мы узнали?

В биологии различают три основных вида пластид, отличающихся по окраске и функциям (хлоропласты, хромопласты и лейкопласты). Хлоропласты, содержащие пигмент хлорофилл, характерны для всех зелёных растений. С участием хлорофилла в растениях происходит важный процесс фотосинтеза.

Двухмембранные органоиды со сложным строением — это хлоропласты. В их состав входит хлорофилл, который обеспечивает фотосинтез. За счет уникальной формы (двояковыпуклая линза) на листья поступает много света. Клетки покрыты внешней мембраной и содержат в себе тилокоиды, способствующие образованию гран и стромы. Количество первых компонентов достигает 60 единиц. Они объединяются между собой при помощи специальных тяжей.

Хлоропласты в биологии

Функциональные особенности

Строение хлоропласта изучается школьниками в 6 классе на уроках биологии. К особенностям клеток относится наличие в строме рибосомы, ДНК, РНК. В мембране присутствует вещество, способное придать растениям соответствующий цвет. Для хлорофилла характерен зеленый оттенок, а для каротиноида:

Строение хлоропласта

Значение хлорофилла для растений заключается в возможности осуществления процесса фотосинтеза. С учётом строения биологи выделяют 4 типа хлорофилла: a, b, c, d. Первые два содержатся в растениях на суше и зеленых водорослях. Типы a и c считаются растительными компонентами диатомовых, d и a — красных водорослей.

Для хлорофилла характерно поглощение солнечной энергии с последующей передачей иным молекулам. Разрушение зеленого вещества наблюдается в конце жизненного цикла органоида в результате резкого изменения светового дня и значения температуры. Часть хлоропластов превращается в хромопласты. Это приводит к изменению внутренней информации, пожелтению и опадению листьев.

Принципы классификации

Пластиды делятся на три вида: лейкопласты (бесцветные), хлоропласты (окрашенные в зеленый цвет), хромопласты (имеют разные оттенки). На протяжении жизни клетки способны превращаться друг в друга. Лейкопластам свойственно переходить в хлоропласты, а последние за счёт появления бурых и прочих пигментов — в хромопласты, пластоглобулы.

Внешне зеленые вещества покрыты липидной и белковой мембранами. Полужидкая строма с тилакоидами (компартменты, ограниченные мембраной) считается основным веществом, в состав которого входят граны с каналами. Первые компоненты представлены в виде плоских круглых мешочков, расположенных перпендикулярно поверхности двухмембранных органоидов (ДО).

Зеленые вещества в растениях

Уникальность их структуры заключается в хранении зеленого пигмента (хлорофилл). Главная функция хлоропластов связана с участием в фотосинтетическом явлении. В их состав входят жиры, зерна (митохондрия, пропластида), крахмал.

На долю липидов приходится до 30%. Они представлены тремя группами:

  1. Структурная. В состав входят амфипатические вещества.
  2. Гидрофобная. В группу входят каротиноиды, которые защищают зеленые вещества от фотоокисления. Одновременно они транспортируют водород.
  3. Жирорастворимая. Группа состоит из витаминов К и Е.

К другим компонентам, входящим в состав хлоропласта, относятся углеводы. Они представлены в виде продуктов фотосинтеза. До 25% приходится на долю минералов. Ферменты могут выполнять двойную функцию: катализацию различных реакций, обеспечение биосинтеза белков.

Внутренняя структурированность хлоропластов зависит от функциональных нагрузок, физиологического состояния. Молодые клетки размножаются за счет деления, а зрелые обладают выраженной системой гран. Если они стареют, происходит разрыв тилакоидов, распадается хлорофилл. Осенью деградация приводит к появлению хромопластов.

Главная роль хлоропластов в фотосинтезе обеспечена их способностью пассивно двигаться в клетках, увлекаемых током цитоплазмы. Веществу свойственно собирать свет и активно перемещаться с одного места на другое. При интенсивном свете оно поворачивается ребром к яркому солнцу, выстраиваясь вдоль стенок, которые параллельны лучам.

Движения хлоропластов

Если освещение слабое, схема движения хлоропластов следующая: они перемещаются на стенки, обращённые к солнцу, поворачиваясь наибольшей поверхностью. Когда освещение среднее, клетки занимают соответствующее положение. От условий освещения зависит то, какие пигменты хлоропластов появятся.

Для пластид и митохондрий свойственна полуавтономная степень. Кроме фотосинтеза, в первых компонентах происходит биосинтез белка. Так как они содержат в себе ДНК, поэтому принимают активное участие в наследственном комплексе: передача признаков, цитоплазматические свойства.

Описание хромопластов

К пластидам высших растений относятся хромопласты. Они имеют незначительные размеры. Для внутриклеточных органелл характерен разный окрас: красный, желтый, коричневый. Он придает соответствующий цвет осенью, плодам и цветкам, что необходимо для привлечения опылителей и животных, разносящих семена продолжительные расстояния.

Структура ткани похожа на иные пластиды. Внутренняя оболочка развита слабее внешней. У некоторых представителей она может отсутствовать. В каротиноидах (жирорастворимые пигменты) происходит накапливание кристаллов. Для определения точных функций вещества изучается таблица с формами хромопластов:

  • многоугольная;
  • овальная;
  • серповидная;
  • игольчатая.

Структура хромопластов

Их роль в жизни растений до конца не выяснена. Ученые предполагают, что пигменты участвуют в окислительных и восстановительных процессах, необходимых для размножения и физиологического развития клеток.

Строение лейкопластов

В органоидах этого типа накапливаются питательные компоненты. Лейкопласты имеют 2 оболочки: внутреннюю и внешнюю. На свету им свойственно превращаться в хлоропласты, но в привычном состоянии органоиды бесцветны. Основная их форма — шаровидная. Размещены они в мягких частях растений:

  • стебель;
  • корень;
  • луковица;
  • листья.

 Лейкопласты в клетках

С учетом накапливаемого вещества лейкопласты классифицируются на следующие виды: амилопласты, элайопласты, протеинопласты. В первую группу входят органоиды с крахмалом, находящиеся в каждом растении. Если лейкопласт полностью заполнен крахмалом, он называется крахмальным зерном. Для элайопластов характерно продуцирование и запас жиров, а для протеинопластов — скопление белковых веществ.

Лейкопласты обладают ферментной субстанцией, что способствует ускоренному протеканию химических реакций. В отрицательном жизненном периоде, когда не происходит фотосинтез, они расщепляют полисахариды на простые углеводы. Так как в луковицах содержится много органоидов, поэтому им свойственно переносить длительную засуху, жару, низкую температуру. После выполнения своих функций они становятся хромопластами.

Симбиотическая теория

Чтобы выяснить механизм появления пластид, митохондрий и других органоидов, рассматривается теория эндосимбиоза. Ее суть заключается в совместной и взаимовыгодной жизни органеллы с клеткой. Впервые теорию предложил Шимпер в 1883 году. В 1867 ученые работали над двойственной природой лишайников.

Биолог Фамицын, учитывая теорию Шимпера, предположил, что хлоропласты, как лишайники и водоросли, относятся к симбионтам. Ученые доказали, что митохондрии — аэробные бактерии, которые не размножаются за пределами клеток. Общие свойства, характерные для митохондрий и пластид:

  • наличие двух замкнутых мембран;
  • размножение бинарным делением;
  • ДНК не связана с гистонами;
  • наличие своего аппарата синтеза белка.

Свойства митохондрий

В ДНК пластид и митохондрий, в отличие от аналогичных структур прокариот, нет интронов. А в ДНК хлоропластов закодирована информация о некоторых белках, остальные данные находятся в ядре клетки. В результате эволюции часть генетического материала из генома перешло в ядро, поэтому хлоропласты и митохондрии не размножаются независимо.

Археи и бактерии не склонны к фагоцитозу. Они питаются только осмотрофно. Множественные биологические и химические исследования указывают на химерную сущность бактерий. Ученые не выяснили, как сливаются организмы из нескольких доменов. В условиях современности выявлены организмы, которые содержат в себе другие клетки в качестве эндосимбионтов. Они отличаются от первичных эукариотов тем, что не интегрируются в одно целое, не имеют своей индивидуальности.

Интересным организмом считается Mixotricha paradoxa. Чтобы двигаться, она использует 250 000 бактерий, которые фиксируются на ее поверхности. Митохондрии у этого организма вторично потеряны. Внутри находятся сферические аэробные микроорганизмы, которые заменяют органеллы.

Читайте также: