Химизм процесса брожения кратко

Обновлено: 28.06.2024

Микробиология ( от греч. Micros - малый, bios - жизнь, logos - учение) - это наука, изучающая строение, функции, химическую деятельность, распространение, условия развития, роль и значение в жизни человека весьма малых организмов, большинство которых невидимо невооруженным глазом.
Мир микроорганизмов многочислен и разнообразен. Они повсеместно распространены в природе: в почве, водоемах, воздухе, на продуктах питания и на всех предметах, окружающих человека. Они находятся и в нем самом, а также на животных и растениях.

Содержание

ВВЕДЕНИЕ
ГЛАВА 1
ИСТОРИЯ ОТКРЫТИЯ БРОЖЕНИЯ
. ХИМИЗМ БРОЖЕНИ
ГЛАВА 2 ТИПЫ БРОЖЕНИЯ
2.1. Типы брожения
2.2. Спиртовое брожение
2.3. Молочнокислое брожение
2.4. Пропионовокислое брожение
2.5. Муравьинокислое брожение
2.6. Маслянокислое брожение
2.7. Ацетонобутиловое брожение
2.8. Ацетоноэтиловое брожение
2.9 Сбраживание других мономерных и полимерных соединений
Заключение
Summary
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

Работа содержит 1 файл

Брожение 1.doc

Дыхание дрожжевых грибков представляет особый интерес и особенно важно для виноделия.

Дрожжевые грибки нуждаются в теплоте для своей жизнедеятельности, и тепло это добывают тем, что сжигают углеводы (сахар и т. п. вещества), при этом и выделяется теплота. Но в отличие от более совершенных организмов — человека и животных — дрожжевые грибки сжигают эти углеводы не до конца, а прерывают сгорание как бы на середине, довольствуясь для своей жизни лишь этим неполным сгоранием. При этом этот углевод — сахар дрожжевые грибки превращают в спирт и углекислый газ.

Дрожжевых грибков, бактерий и других организмов имеется очень много разных видов и между ними есть такие, которые, подхватывая недоконченную работу дрожжей спиртового брожения, ведут ее дальше. Таковы, например, бактерии и грибки уксусного брожения, которые сжигают (опять таки частично) образовавшийся спирт и превращают его в уксусную кислоту, выделяя при этом некоторое количество калорий тепла и продолжая, следовательно, процесс дыхания (сжигания сахара) дальше. Имеются организмы, которые дальше разлагают уксусную кислоту и т. д. до тех пор, пока в конце концов все не превратится в углекислый газ и воду, т. е. пока процесс сжигания сахара не будет доведен до конца.

Другие дрожжевые грибки, бактерии и прочие низшие организмы, сжигая сахар, превращают его в молочную, масляную кислоты, но и тут не происходит сжигания до конца и оно продолжается, в свою очередь, другими новыми организмами. При этом некоторые из дрожжевых грибков именно той группы, которая продолжает работу спиртовых дрожжей, не могут жить без доступа воздуха, и для них необходим кислород. Как мы увидим, это — чрезвычайно важное обстоятельство очень полезное для винодела.

Таким образом, рассматривая брожение, т. е. жизнедеятельность грибков, бактерий и др. низших организмов, как одну из стадий (частей) одного общего процесса дыхания (сгорания углеводов), в настоящее время ученые считают, что обратно — и дыхание человека состоит из целого ряда отдельных брожений, идущих вслед одно за другим.

Большое значение имеет сжигание сахара при работе дрожжевых грибков. Замечено, что внутри каждого тельца дрожжевого грибка содержится жидкость, которая и названа дрожжевым соком. В этом соке содержатся особые вещества, прежде называвшиеся ферментами, а теперь называемые энзимами. Эти энзимы, действуя на сахар и другие углеводы, и производят то частичное сжигание их, о котором говорилось выше, выделяют тепло, необходимое для жизни дрожжей, и те вещества, которые нам желательны.

Таких энзимов уже в настоящее время изучено много видов, ибо у каждого вида грибков, бактерий и других организмов имеется свой собственный энзим. Так, у дрожжевых грибков, вызывающих спиртовое брожение, в соке содержится энзим, названный алкоголязой, который, действуя на сахар, содержащийся в фруктовом соке, превращает его в спирт и углекислый газ. Это превращение сахара в спирт и называется спиртовым брожением.

Кроме спиртового брожения, в фруктовом соке может возникнуть и брожение иного характера. Так, если в сок попадут бактерии и грибки, превращающие сахар в уксусную кислоту, то и происходит брожение уксуснокислое. Это брожение важно при производстве уксуса.

Молочнокислое брожение, при котором образуется молочная кислота, необходимо при заквашивании кормов, капусты, для квасоварения и др. Масляно-кислое брожение, при котором образуется масляная кислота, вызывает прогорклость коровьего масла, и др.

Для виноделия самым главным является брожение спиртовое. Все же прочие виды брожении при виноделии совершенно нежелательны, ибо вызывают болезни и порчу вина.

Как уже говорилось выше, одним из трех принципиально возможных способов регенерации АТФ является брожение. Брожение – это наиболее примитивный способ получения энергии, присущее определенным группам бактерий и грибов.

глюкоза спиртовое этиловый

Примитивность процесса брожения заключается в том, что из субстрата извлекается лишь незначительная часть той химической энергии, которая в нем содержится. В результате образуется и запасается энергия в форме АТФ.

При брожении характер образовавшихся продуктов определяется природой конечных акцепторов электронов. Например, если конечным акцептором электронов является ацетальдегид, то образуется этиловый спирт; если пируват – молочная кислота. В результате получения электронов вещества восстанавливаются, и они выделяют из клеток микроорганизмов в окружающую среду, накапливаясь в значительных количествах. В зависимости от того, какой продукт накапливается в среде, различают несколько типов брожения. Каждый тип брожения вызывается особой группой микроорганизмов и дает специфические конечные продукты. Многие микроорганизмы, осуществляющие брожение – облигатные анаэробы, а некоторые – факультативные анаэробы, способные расти как в присутствии кислорода, так и без него. Все типы брожения схематично могут быть рассмотрены как процессы, проходящие в две стадии. Первая стадия включает разрыв углеродной цепи глюкозы и отнятие двух пар атомов водорода. Например, превращение глюкозы в пировиноградную кислоту:

Это окислительная часть брожения. Во второй стадии атомы водорода используются для восстановления пировиноградной кислоты. При молочнокислом брожении последняя превращается в молочную кислоту:

пировиноградная молочная кислота

При других бродильных процессах вторая стадия протекает иначе и образуется другой продукт вместо молочной кислоты.

Брожение-это такой метаболический процесс, при котором регенерируется АТР, а продукты расщепления органического субстрата могут служить одновременно и донорами, и акцепторами водорода. Реакции, приводящие к фосфорилированию ADP, являются реакциями окисления. От окисленного углерода клетка избавляется, выделяя С02. Отдельные этапы окисления представляют собой дегидрирование, при котором водород переносится на NAD. Акцепторами водорода, находящегося в составе NADH2, служат промежуточные продукты расщепления субстрата. При регенерации NAD последние восстанавливаются, а продукты восстановления выводятся из клетки.

Чаще всего в процессах брожения микроорганизмы используют углеводы.

Образование молекул АТФ при брожении происходит путем субстратного фосфорилирования.

Первый этап окисления углеводов в процессе брожения (рис. 1) включает гидролиз углеводов до простых сахаров и изомеризацию их до глюкозы.

Пути расщепления гексоз

Последовательные ферментативные реакции от глюкозы до пировиноградной кислоты называют гликолизом. У микроорганизмов известны три различных пути, ведущие к образованию пировиноградной кислоты из глюкозы. Глюкоза сначала превращается в глюкозо- 6- фосфат.Последний превращается в пировиноградную кислоту тремя путями: фруктозо-1,6-дифосфатный путь, пентозофосфатный путь и путь Энтнера- Дудорова.

Фруктозо-1,6-дифосфатный путь расщепления глюкозы (схема Эмбдена-Мейергофа-Парнаса). В этом процессе глюкозо-6-фосфат превращается во фруктозо-6-фосфат под влиянием глюкозофосфатизомеразы, а далее во фруктозо-1,6-дифосфат под действием фосфофруктокиназы. Затем под действием фруктозодифосфатальдолазы из последнего образуется два трехуглеродных сахара. Все эти реакции характерны именно для этого пути гликолиза. Далее образуется 3-фосфоглицериновый альдегид, который через ряд этапов превращается в пировиноградную кислоту (пируват). Данный путь окисления глюкозы хорошо изучен у бактерий Escherichia coli, Bacillus subtilis, Streptomyces griseus и грибов Candida utilis, Penicillium chrysogenum.

Пентозофосфатный (или гексозомонофосфатный) путь расщепления глюкозы. Этот путь расщепления глюкозы встречается у многих микроорганизмов. Глюкозо-6-фосфат превращается в 6-фосфоглюконолактон под влиянием глюкозо-6-фосфатдегид- рогеназы, а затем глюконолактоназой гидролизуется до 6-фосфоглюконовую кислоту. Последний дегидрируется дегидрогеназой до 3-кето-6-фосфоглюконовой кислоты, которая претерпевает окислительное декарбоксилирование и превращается в рибулозо-5-фосфат. Рибулозо-5-фосфат через ряд этапов превращается в пировиноградную кислоту. Характерным для этого пути является образование рибулозо-5-фосфата и других монофосфатов. Данный путь окисления глюкозы достаточно изучен у бактерий Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Gluconobacter oxydans и грибов Candida utilis, Penicillium chrysogenum.

2-Kето-3-дезокси-6- фосфоглюконатный путь расщепления глюкозы ( путь Энтнера-Дудорова). Этот путь найден как у анаэробных, так и аэробных бактерий. Глюкозо-6-фосфат сначала, как это было описано выше для пентозофосфатного пути, дегидрируется до 6-фосфоглюконата. Под действием фсофоглюконатдегидрогеназы от него отщепляется вода и образуется 2-кето-3-дезокси-6- фосфоглюконат. Кетодезоксифосфоглюконат расщепляется специфической альдолазой до пировиноградной кислоты и глицеральдегид-3-фосфат.

Последний окисляется до пировиноградной кислоты, так же как и в фруктозо-фосфатном пути. Этот путь окисления глюкозы характерен для бактерий Pseudo monas aeruginosa, P.saccharophila и Alcaligenes eutrophus.

На втором этапе глюкоза через ряд последовательных реакций окисляется в пировиноградную кислоту. Этот процесс называется гликолизом. Основными стадиями гликолиза являются присоединение фосфатных групп от молекулы АТФ и превращение во фруктозо-1,6-дифосфат. Далее фруктозо-1,6-дифосфат превращается в фосфоглицериновый альдегид, который через ряд последовательных реакций превращается в пировиноградную кислоту. При этом образуется свободная энергия, достаточная для образования 4 молекул АТФ. Но так как 2 АТФ затрачиваются на активацию глюкозы, то энергетическая ценность любого брожения – образование из одной молекулы глюкозы двух молекул АТФ (энергетическая ценность брожения). Следует отметить также, что при гликолизе восстанавливается дегидрогеназа (2 НАДН2).

Брожение (биологическая сущность, процесс, вид и типы, особенности реакции)


Брожение – процесс, который представляет собой совокупность окислительно-восстановительных реакций анаэробного расщепления органических субстанций (главным образом углеводов), с помощью которых микроскопические организмы получают необходимую им энергию.

Конечным акцептором отнятых от субстрата в процессе брожения электронов является легковосстановительные органические вещества.

Энергия, которая высвобождается при различных видах брожения, аккумулируется преимущественно в макроэргических фосфатных связях (в основном в виде АТФ).

Кроме энергообразующей функции, реакции брожения выполняют роль поставщика различных метаболитов для анаболических и катаболических синтетических процессов, происходящих внутри клетки.

Получение энергии путем различных видов брожения (так называемый бродильный тип метаболизма) довольно часто встречается у грибов, бактерий, особенно дрожжей, а также простейших. Конечные продукты и пути ферментации и широко варьируют и обусловлены видом микроскопического организма, а также веществом (питательным субстратом) и условиями ферментации.

В зависимости от превалирующих или особо типичных продуктов выделяют:

  • спиртовой бродильный процесс, которое осуществляется мукоровыми грибами и дрожжами;
  • молочнокислый тип брожения — молочнокислыми бактериями;
  • маслянокислый тип бродильного процесса — клостридиями;
  • муравьинокислый тип брожения — энтеробактериями;
  • лимоннокислый тип брожения — грибами;
  • пропионовокислая реакция брожения — пропионовокислые бактериями
  • бутанол-ацетоновый вид брожения — клостридиями;
  • метановый вид брожения – особыми метановыми бактериями.

Биологическая суть реакции брожения была открыта в середине XIX в.

Реакции на основе бродильного процесса используют в промышленной микробиологии для получения самых разнообразных, часто ценных продуктов, необходимых народному хозяйству, ветеринарии и медицине: лимонной, уксусной, глюконовой кислот, этилового и других спиртов и других активных фармацевтических ингредиентов и аддитивных лекарственных веществ.

Виды брожения

В основе процессов распада безазотистых органических веществ лежат различные формы брожения, которые постоянно происходят в природе. Брожение – анаэробное дыхание, при котором микроорганизмы используют выделяющуюся энергию для своей жизнедеятельности.

Впервые биологическую природу брожения открыл в 60-х годах 19 в.гениальный французский ученый Луи Пастер. Пастеру удалось на примере молочнокислого, спиртового и маслянокислого брожения доказать, что эти процессы вызываются жизнедеятельностью микроорганизмов.

Спиртовое брожение углеводов вызывают дрожжи (Saccharomyces cerevisiae), некоторые виды бактерий (Sarcina ventriculi) и отдельные представители мукоровых грибов рода Mucor. При спиртовом брожении молекула гексозы распадается на этанол и углекислый газ.

В ходе брожения образуется много промежуточных продуктов — гексозомонофосфат, фруктозодифосфат, фосфотриозы, фосфоглицериновая кислота, фосфопировиноградная кислота, пировиноградная кислота, уксусный альдегид и, наконец, этиловый спирт.

При содержании в сбраживаемом растворе более чем 30% сахара часть его остается неиспользованной, так как при этих условиях образуется до 15% спирта, а при такой концентрации спирт подавляет жизнедеятельность дрожжей.

В течение первого года во многих красных винах происходит второе, спонтанное брожение — яблочно-молочнокислое, которое вызывается рядом молочнокислых бактерий (Prdiococcus, Leuconostoc). В результате этого яблочная кислота винограда превращается в молочную кислоту и СО2, т. е. дикарбоновая кислота превращается в монокарбоновую, и кислотность вина уменьшается, оно становится высококачественным.

Уксуснокислое брожение — биологический окислительный процесс, при котором с помощью уксуснокислых бактерий спирт окисляется в уксусную кислоту.

Если какую-либо жидкость, содержащую небольшое количество спирта (вино, пиво), оставить открытой, то в ней постепенно появляется уксусная кислота и кожистая пленка (уксусная матка) на поверхности. Уксуснокислые бактерии объединены в род Acetobacter, содержащий ряд видов и подвидов. Этиловый спирт под влиянием уксуснокислых бактерий подвергается окислению, в результате которого вначале образуется уксусный альдегид, а затем — уксусная кислота.

При использовании специальных рас уксуснокислых бактерий максимальный выход уксуса достигает 14,5%. Уксуснокислые бактерии превращают ряд многоатомных спиртов в сахар. Одна из таких реакций используется для получения сорбозы из сорбитола. Сорбоза — промежуточный продукт синтеза аскорбиновой кислоты. Она применяется в качестве суспендирующего агента при изготовлении многих лекарственных препаратов. Уксуснокислые бактерии могут наносить вред в виноделии и пивоваренной промышленности, вызывая прокисание вина и пива.

Молочнокислое брожение — широко распространенное биохимическое явление, давно известное на примере скисания молока.

Под влиянием молочнокислых бактерий (семейство Lactobacillaceae)лактоза расщепляется на составляющие ее гексозы — глюкозу и галактозу, которые затем специфическими ферментами превращаются в молочную кислоту. Свертывание молока происходит вследствие того, что молочная кислота отщепляет кальций от казеина, белок превращается в параказеин и выпадает в осадок. Молочнокислые бактерии широко распространены в природе. Они обнаруживаются в молоке, воздухе, на коже, шерсти, в тонком и толстом кишечнике и представлены большим количеством видов палочковидных и кокковидных бактерий, различающихся не только по морфологии, но и физиологическим свойствам (по использованию различных источников углерода и азота).

Маслянокислое брожение также широко встречается в природе.

Возбудитель маслянокислого брожения был открыт Л. Пастером. На примере маслянокислого брожения Л. Пастер разработал учение об анаэробах. Типичный представитель бактерий маслянокислого брожения — азотфиксирующий Clostridium pasteurianum. Маслянокислые бактерии в больших количествах встречаются в почве, навозе, на растениях, в молоке, сыре.

Многие из них являются анаэробами и относятся к роду Clostridium.

Маслянокислое брожение — сложный биохимический процесс расщепления углеводов, в ряде случаев жиров и белков, на масляную кислоту, углекислоту и воду, при этом образуется много побочных продуктов — уксусная, молочная, пропионовая и другие кислоты.

Из числа других форм брожения чрезвычайно важным является брожение целлюлозы (клетчатки), в которой заложены огромные запасы углерода.

Разложение целлюлозы, которая в количественном отношении представляет один из основных компонентов растительных тканей, осуществляется главным образом высоко специализированными в отношении питания аэробными и анаэробными микроорганизмами.

Среди аэробных бактерий, расщепляющих целлюлозу, наиболее важны скользящие бактерии рода Cytjphaga. Целлюлоза — единственное вещество, которое они могут использовать в качестве источника углерода. Цитофаги быстро растворяют и окисляют целлюлозу.

Брожение вина — это сложный процесс, совмещающий точную науку и истинное волшебство, превращение виноградного сока в вино. Конечно, брожение связано не только с вином.

Квашеные овощи, сыр, пышный хлеб, кисломолочные продукты — все это результат жизнедеятельности бактерий для брожения, которые одни органические соединения преобразуют в другие. Давайте разберемся, что же такое брожение и какие его виды применяются в виноделии.

Только в 60-х годах XIX столетия французский ученый Луи Пастер доказал, что брожение жидкости, содержащей сахаристые вещества, происходит оттого, что в ней поселяются, размножаются и живут особые организмы, которые были названы дрожжами или дрожжевыми грибками.

Они размножаются, питаются сахаром и другими веществами, создавая новый продукт, в нашем случае — вино.

При производстве сухих вин сахар должен выбродить практически полностью.

В винах Лефкадии, например, содержится менее 3 граммов сахара, а вот процент алкоголя составляет от 12,5% до 14,8%.

Научное название винных дрожжей — Saccharomyces ellipsoideus (или Saccharomyces cerevisiae). Но каждый вид дрожжей состоит из множества рас.

Каждая раса по-разному реагирует на присутствующие в виноградном сусле вещества и влияет на вино по-своему, как почва или расположение виноградника.

Поскольку дрожжи встречаются почти везде, где растет виноград, то почти в каждой местности, а иногда и в каждом винограднике, есть свои естественные культуры дрожжей. Более стабильные и предсказуемые дрожжевые культуры можно создать в лаборатории.

Спиртовое брожение

Попавшие в сок при благоприятных условиях, дрожжевые грибки начинают очень быстро размножаться. При этом сахар дрожжевые грибки превращают в спирт и углекислый газ, а когда питательная сахарная среда заканчивается, дрожжи умирают и оседают на дне.

Спиртовое брожение можно разделить на три этапа: забраживание (дрожжи приспосабливаются к условиям среды), бурное брожение (заняли весь объем сусла и перешли на анаэробный способ питания), тихое брожение (основной сахар переработан в спирт, дрожжи начинают умирать).

Это стационарный способ брожения, есть и доливной способ, когда вино добавляется постепенно.

Как проходит брожение на винодельне Лефкадии? Например, при ферментации для белого вина важен более тщательный контроль за температурой, чем при производстве красных вин, и требуется периодическое охлаждение сусла.

Для успешной работы винных дрожжей в белом вине необходимо поддерживать температуру в 20 градусов Цельсия.

Брожение на мезге

Отдельной категорией выделяют брожение на мезге. При нем нужно получить не только спирт, но и вывести из ягод красящие, ароматические и прочие вещества. В отличие от брожения виноградного сусла брожение на мезге заключается в сбраживании сусла красных, а в отдельных случаях белых сортов винограда вместе с мезгой с целью обогащения виноматериала ценными веществами, содержащимися в кожице, семенах и гребнях.

Классическую технологию производства красных вин с брожением на мезге на винодельне Лефкадии используют для производства всех красных вин.

Вино обладает бактерицидными свойствами, которые увеличиваются с увеличением концентрации спирта. Тем не менее, в вине могут развиваться бактерии, вызывающие яблочно-молочнокислое, лимонно-яблочнокислое, молочнокислое, маннитное, уксусное и другие виды брожения.

Почти все они приводят к заболеванию вин, за исключением яблочно-молочнокислого брожения, которое сопровождается понижением кислотности и сказывается благоприятно на некоторых винах.

Яблочно-молочнокислое брожение

У производителя всегда есть выбор: проводить яблочно-молочнокислое брожение или нет.

Решение зависит от сорта винограда, региона, желаемого результата, качества урожая и мировоззрения производителя. Это совершенно естественный процесс, в ходе которого молочнокислые бактерии перерабатывают содержащуюся в вине агрессивную яблочную кислоту в более мягкую молочную. Такой метод подходит для снижения общей кислотности красного вина, потому что танины плохо сочетаются с кислотами.

Различают три этапа процесса брожения. На первом — подготовительном этапе молекула глюкозы, получив энергию от АТФ, превращается в глюкопиранозо-6-фосфат, который затем преобразуется во фруктофуранозо-6-фосфат под действием фермента ипокозофосфатизомеразы. Далее фруктофуранозо-6-фосфат за счет энергии АТФ и при действии фермента фосфо-фруктокиназы превращается во фруктофуранозо-1,6-бисфосфат.

Затем из фруктофуранозо-1,6-бисфосфата при участии фермента альдолазы образуются 3-фосфоглицериновый альдегид (3-ФГА) и фосфодиоксиацетон; фосфодиоксиацетон изомеризуется в 3-ФГА. Далее две молекулы 3-фосфоглицеринового альдегида окисляются до двух молекул 1,3-бисфосфоглицериновой кислоты, здесь начинается второй — энергетический

В результате дальнейших реакций две молекулы 1,3-бисфосфоглицериновой кислоты превращаются в две молекулы 3-фосфоглицериновой кислоты, при этом запасается энергия виде двух молекул АТФ. Далее 3-фосфоглицериновая кислота изомеризуется в 2-фосфоглицериновую кислоту, которая через ряд превращений преобразуется в пировиноградную кислоту; в ходе реакций образуются еще две молекулы АТФ.

Третий — заключительный этап брожения связан с превращениями пировиноградной кислоты.

В аэробных условиях возможно полное окисление пировиноградной кислоты до С02 и Н20. Это происходит в процессе дыхания.

Биологическое значение процесса брожения заключается в следующем:

1) брожение обеспечивает клетку энергией — в ходе гликолиза затрачиваются две, а синтезируются четыре молекулы АТФ;

2) в результате брожения образуются промежуточные продукты, которые в дальнейшем клетка использует в биологических процессах ассимиляции.

Так, обмен углеводов в живом организме тесным образом связан с обменом жиров и белков.


Брожение – одна из основных форм катаболизма, представляющая собой окислительно-восстановительный процесс, приводящий к образованию аденазинтрифосфорной кислоты (АТФ). При этом окислителями и восстановителями служат органические соединения, образующиеся в ходе самого процесса брожения [1] .

Содержание:

Брожения вызывают анаэробные бактерии, как облигатные, так и факультативные. Установлено, что брожение осуществляется только в строго анаэробных условиях. Иными словами, брожение – это жизнь без кислорода. По современным представлениям, живые организмы возникли в то время, когда кислорода в атмосфере Земли не было. В этой связи брожение рассматривается, как простейшая форма биологического окисления, обеспечивающая получение необходимой для жизни энергии в анаэробных условиях [1] .

Признаки брожения

Брожение характеризуются следующими параметрами:

  • субстрат разлагается до конечных продуктов, при этом суммарная степень окисления продуктов та же, что и у сбраживаемых веществ;
  • круг соединений, подверженных брожению, органичен окислительно-восстановительным равновесием. Такие соединения не являются ни слишком восстановленными, ни слишком окисленными;
  • при брожении обычно используются углеводы, некоторые органические кислоты, аминокислоты, пурины и пирамидины;
  • образование аденозинтрифосфата (АТФ) идет путем фосфорилирования на уровне субстрата;
  • процесс брожения с энергетической точки зрения малоэкономичен, при сбраживании грамм-молекулы глюкозы синтезируется только 2 моля АТФ [1][3] .

Стадии брожения

Схематично брожение представляется в двух стадиях.

Первая стадия – это превращение глюкозы в пируват (пировиноградную кислоту). Эта стадия включает разрыв углеродной цепи глюкозы с одновременным отщеплением двух пар атомов водорода. Она составляет окислительную часть брожения и может быть схематично изображена следующим образом:

[4H] – водород, принимаемый акцептором.

Вторая стадия брожения – восстановительная. В процессе данной стадии атомы водорода используются для восстановления пировиноградной кислоты или образованных из нее соединений. При различных типах брожений вторая стадия протекает специфическим для данного типа образом [1] .

Пути образования пирувата из углеводорода

Образование пирувата из углеводородов происходит как серия последовательных реакций. Это катаболические реакции. Они являются общими, как для брожения, так и для аэробного дыхания [1] .

У микробов известно три пути образования пирувата из углеводородов:

  1. Путь Эмбдена – Мейергофа – Парнаса, фруктозо-фосфатный или гликолиз. Сначала был обнаружен у дрожжей, в мышцах животных, впоследствии – у бактерий. Он характерен для облигатных и факультативных анаэробов[1] .
  2. Окислительный пентозофосфатный, гексозофосфаиные или схема Варбурга – Диккенса – Хореккера. Он осуществляется у многих организмов, как у прокариот, так и у эукариот [1] .
  3. Путь Энтнера – Дудорова или КДФГ-путь (2-кето-З-дезокси-б-фосфоглюконат-путь). Он найдет только у отдельных групп микроорганизмов, в основном принадлежащих к анаэробным бактериям[1] .

Типы брожения

При сбраживании углеводородов и других веществ образуются по отдельности или в смеси: этанол, молочная кислота, муравьиная кислота, янтарная кислота, ацетон, углекислый газ, водород и прочее. В зависимости от того, какие продукты преобладают или являются характерными, различают типы брожения [2] .

Читайте также: