Химическая эволюция кратко этапы

Обновлено: 04.07.2024

По мнению большинства ученых (в первую очередь астрономов и геологов), Земля сформировалась как небесное тело около 5 млрд лет т.н. путем конденсации частиц вращавшегося вокруг Солнца газопылевого облака.

Восстановительный характер первичной атмосферы Земли чрезвычайно важен для зарождения жизни, поскольку вещества в восстановленном состоянии в определенных условиях способны взаимодействовать друг с другом, образуя органические молекулы. Отсутствие в атмосфере первичной Земли свободного кислорода (практически весь кислород Земли был связан в виде окислов) также является важной предпосылкой возникновения жизни, поскольку кислород легко окисляет и тем самым разрушает органические соединения. Поэтому при наличии в атмосфере свободного кислорода накопление на древней Земле значительного количества органических веществ было бы невозможно.

Основные этапы химической эволюции.

Когда температура первичной атмосферы достигает 1000°С, в ней начинается синтез простых органических молекул, таких, как аминокислоты, нуклеотиды, жирные кислоты, простые сахара, многоатомные спирты, органические кислоты и др. Энергию для синтеза поставляют грозовые разряды, вулканическая деятельность, жесткое космическое излучение и, наконец, ультрафиолетовое излучение Солнца, от которого Земля еще не защищена озоновым экраном.

Образование биополимеров (в частности, белков из аминокислот) могло происходить и в атмосфере при температуре около 180°С. Кроме того, возможно, на древней Земле аминокислоты концентрировались в пересыхающих водоемах и полимеризовались в сухом виде под действием ультрафиолетового света и тепла лавовых потоков.

Полимеризация нуклеотидов проходит легче, чем полимеризация аминокислот. Показано, что в растворах с высокой концентрацией солей отдельные нуклеотиды самопроизвольно полимеризуются, превращаясь в нуклеиновые кислоты.

Жизнь всех современных живых существ — это процесс непрерывного взаимодействия важнейших биополимеров живой клетки — белков и нуклеиновых кислот.

Таким образом, тайна зарождения жизни — это тайна возникновения механизма взаимодействия белков и нуклеиновых кислот.

Где же происходило развитие сложного процесса взаимодействия белков и нуклеиновых кислот? По теории А.И. Опарина, местом зарождения жизни стали так называемые коацерватные капли.

Гипотеза возникновения взаимодействия белков и нуклеиновых кислот:

Явление коацервации состоит в том, что в некоторых условиях (например, в присутствии электролитов) высокомолекулярные вещества отделяются от раствора, но не в форме осадка, а в виде более концентрированного раствора — коацервата. При встряхивании коацерват распадается на отдельные мелкие капельки. В воде такие капли покрываются стабилизирующей их гидратной оболочкой (оболочкой из молекул воды) — рис. 2.4.1.4.

Возникшие в результате концентрирования белковых растворов коацерватные капли в процессе перемешивания под действием волн и ветра могут покрываться оболочкой из липидов: одинарной, напоминающей мицеллы мыла (при однократном отрыве капли от поверхности воды, покрытой липидным слоем), либо двойной, напоминающей клеточную мембрану (при повторном падении капли, покрытой однослойной липидной мембраной, на липидную пленку, покрывающую поверхность водоема ).

  • Химическая эволюция или пребиотическая эволюция — этап, предшествовавший появлению жизни, в ходе которого органические, пребиотические вещества возникли из неорганических молекул под влиянием внешних энергетических и селекционных факторов и в силу развертывания процессов самоорганизации, свойственных всем относительно сложным системам, которыми, бесспорно, являются все углеродосодержащие молекулы.

Также этими терминами обозначается теория возникновения и развития тех молекул, которые имеют принципиальное значение для возникновения и развития живого вещества.

Связанные понятия

Эксперимент Ми́ллера — Ю́ри — известный классический эксперимент, в котором моделировались гипотетические условия раннего периода развития Земли для проверки возможности химической эволюции. Фактически это был экспериментальный тест гипотезы, высказанной ранее Александром Опариным и Джоном Холдейном, о том, что условия, существовавшие на примитивной Земле, способствовали химическим реакциям, которые могли привести к синтезу органических молекул из неорганических. Был проведён в 1953 году Стэнли Миллером.

Альтернативная биохимия изучает возможность существования форм жизни, которым свойственны биохимические процессы, полностью отличающиеся от возникших на Земле. Обсуждаемые отличия включают замену углерода в молекулах органических веществ на другие атомы, либо воды в качестве растворителя на другие жидкости. Подобные явления нередко описываются в фантастической литературе.

Первичный бульон — термин, введённый советским биологом Александром Ивановичем Опариным. В 1924 году он выдвинул теорию о возникновении жизни на Земле через превращение, в ходе постепенной химической эволюции, молекул, содержащих углерод, в первичный бульон.

Анаэробное окисление метана — процесс окисления метана до углекислого газа, производимый некультивируемыми (англ. VBNC) археями групп ANME-1, ANME-2 и ANME-3, близкими к Methanosarcinales при отсутствии в среде молекулярного кислорода. Биохимия и распространённость процесса в природе изучены пока недостаточно.

Мир полиароматических углеводородов — гипотетический этап химической эволюции, когда полициклические ароматические углеводороды (ПАУ), которые, возможно, были в изобилии в первичном бульоне ранней Земли, привели к синтезу молекул РНК, что создало предпосылки для мира РНК и возникновению жизни.

Упоминания в литературе

Учеными было доказано, что после испарения воды из реакционного объема в амфифильных липидоподобных и липидных молекулах формируются жидкокристаллические агрегаты, в которых молекулы расположены периодическими слоями, как в смектических кристаллах. Такие липотропные жидкокристаллические фазы, дающие в поляризованном свете характерную оптическую картину, при последующем разбавлении легко превращаются в мембраноподобные структуры за счет полиморфных переходов (Чистяков, Селезнев, 1977, с. 38–45). Эти и другие исследования подтвердили тот факт, что на самых ранних стадиях химической эволюции могли возникнуть достаточно простые липидоподобные и липидные молекулы, спонтанно образующие мембранные структуры. Следовательно, и формирование систем, подобных протоклеткам, могло предшествовать синтезу более сложных полимерных молекул. Имеются все основания считать, что в период биопоэза (его первого этапа) на Земле за счет высоких температур в присутствии руд различных металлов и при воздействии на смеси газов ультрафиолетового и у-излучения синтезировались не только аминокислоты, но и некоторые сахара, жирные кислоты и азотистые основания. Жирные кислоты в последующем, соединившись со спиртами, могли образовывать липидные пленки на поверхности водоемов, в которых были растворены азотистые основания, сахара и аминокислоты. Растворенные в водоемах белковые молекулы могли адсорбироваться на поверхности липидной пленки благодаря электрическому притяжению к заряженным обращенным в воду липидным головкам. По-видимому, эти условия и предопределили возникновение мембран и встроенных в них белков.

Связанные понятия (продолжение)

Мир РНК — гипотетический этап возникновения жизни на Земле, когда как функцию хранения генетической информации, так и катализ химических реакций выполняли ансамбли молекул рибонуклеиновых кислот. Впоследствии из их ассоциаций возникла современная ДНК-РНК-белковая жизнь, обособленная мембраной от внешней среды. Идея мира РНК была впервые высказана Карлом Вёзе в 1968 году, позже развита Лесли Орджелом и окончательно сформулирована Уолтером Гильбертом в 1986 году.

Возникновение жизни, или абиогенез, — процесс превращения неживой природы в живую; в узком смысле слова под абиогенезом понимают образование органических соединений, распространённых в живой природе, вне организма без участия ферментов. Альтернативой абиогенеза в этом смысле является панспермия.

Автокатализ — катализ химической реакции одним из её продуктов или исходных веществ. Одним из наиболее широко известных примеров автокатализа является окисление щавелевой кислоты перманганатом.

Гипотеза мира сульфидов железа — гипотетический этап возникновения жизни на Земле и ранней эволюции, предложенный Гюнтером Вэхтерсхойзером, юристом из Мюнхена, имеющим также научную степень по химии. Опубликовал свои идеи при поддержке философа Карла Р. Поппера. Как следует из названия теории, она предполагает, что жизнь могла зародиться на поверхности кристаллов сульфидов железа.

Обра́тный цикл Кре́бса, также известный как обра́тный цикл трикарбо́новых кисло́т, или цикл А́рнона — последовательность химических реакций, которую некоторые бактерии используют для синтеза органических соединений из диоксида углерода и воды.

Анаммо́кс (сокр. от англ. anaerobic ammonium oxidation — анаэробное окисление аммония) — один из ключевых микробных процессов в круговороте азота. Бактерии, осуществляющие этот процесс, были открыты в 1999 году, и в своё время описание этого процесса стало большим сюрпризом для научного сообщества. Уравнение процесса.

Нитрификация — микробиологический процесс окисления аммиака до азотистой кислоты или её самой далее до азотной кислоты, что связано либо с получением энергии (хемосинтез, автотрофная нитрификация), либо с защитой от активных форм кислорода, образующихся при разложении пероксида водорода (гетеротрофная нитрификация).

Биомолекулы — это органические вещества, которые синтезируются живыми организмами. В состав биомолекул включают белки, полисахариды, нуклеиновые кислоты, а также более мелкие компоненты обмена веществ. Биомолекулы состоят из атомов углерода, водорода, азота, кислорода, а также фосфора и серы. Другие атомы входят в состав биологически значимых веществ значительно реже.

Нитрогеназа (КФ 1.18.6.1) — комплекс ферментов (мультифермент), осуществляющий процесс фиксации атмосферного азота. Широко распространён у бактерий и архей, в то время как все эукариоты его лишены.

После́дний универса́льный о́бщий пре́док (англ. Last universal common ancestor, LUCA, или Last universal ancestor, LUA) — наиболее недавняя популяция организмов, от которой произошли все организмы, ныне живущие на Земле. Таким образом, LUCA является последним общим предком всей жизни на Земле. Последнего универсального общего предка не следует путать с первым живым организмом на Земле. Считается, что LUCA жил 3,5—3,8 миллиарда лет назад (в палеоархейскую эру) или 4,5 млрд лет назад. Окаменелых останков.

Изото́пы углеро́да — разновидности атомов (и ядер) химического элемента углерода, имеющие разное содержание нейтронов в ядре. Углерод имеет два стабильных изотопа — 12C и 13C. Содержание этих изотопов в природном углероде равно соответственно 98,93 % и 1,07 %. Известны также 13 радиоактивных изотопов углерода (от 8C до 22C), из которых один — 14C — встречается в природе (его содержание в атмосферном углероде около 10−12). Углерод — лёгкий элемент, и его изотопы значительно различаются по массе, а.

Связывание углерода — общее название совокупности процессов, при которых углекислый газ CO2 преобразуется в органические вещества. Такие процессы используют автотрофы, то есть организмы, которые сами вырабатывают необходимые для себя органические вещества. В частности, процесс связывания углерода является составной частью фотосинтеза.

Денитрификация (восстановление нитрата) — сумма микробиологических процессов восстановления нитратов до нитритов и далее до газообразных оксидов и молекулярного азота. В результате их азот возвращается в атмосферу и становится недоступным большинству организмов. Осуществляется только прокариотами (причём как бактериями, так и археями) в анаэробных условиях и связана с получением ими энергии.

Жизнь во Вселенной — под этим термином следует понимать комплекс проблем и задач, направленных на поиск жизни. В самом общем случае жизнь трактуется максимально широко — как активная форма существования материи, в некотором смысле высшая по сравнению с её физической и химической формами существования. Таким образом, в общей постановке задачи нет требования, чтобы жизнь была похожа на земную, и есть целый ряд теорий, доказывающий, что жизнь может принимать и другие формы. Однако, основной подход.

Хемосинтез — способ автотрофного питания, при котором источником энергии для синтеза органических веществ из CO2 служат реакции окисления неорганических соединений. Подобный вариант получения энергии используется только бактериями или археями. Это явление было открыто в 1889 году русским учёным С. Н. Виноградским. Микроорганизмы, способные к хемосинтезу, Виноградский называл аноргоксиданты. Название хемосинтез ввёл немецкий химик и ботаник Вильгельм Пфеффер в 1897 году.

Фотодиссоциация (или фотолиз) — химическая реакция, при которой химические соединения разлагаются под действием фотонов электромагнитного излучения.

Меченые атомы (изотопные индикаторы) — изотопы, по своим свойствам (радиоактивности, атомной массе) отличающиеся от других изотопов данного элемента, которые добавляют к химическому соединению или смеси, где находится исследуемый элемент. Поведение меченых атомов характеризует поведение элемента в исследуемом процессе. В качестве меченых атомов используют как стабильные (устойчивые) изотопы, так и радиоактивные (неустойчивые) изотопы. Для регистрации радиоактивных меченых атомов применяют счетчики.

Круговорот азота — биогеохимический цикл азота. Большая его часть обусловлена действием живых существ. Очень большую роль в круговороте играют почвенные микроорганизмы, обеспечивающие азотистый обмен почвы — круговорот в почве азота, который присутствует там в виде простого вещества (газа — N2) и ионов: нитритов (NO2-), нитратов (NO3-) и аммония (NH4+). Концентрации этих ионов отражают состояние почвенных сообществ, поскольку на эти показатели влияет состояние биоты (растений, микрофлоры), состояние.

Восстановительный пентозофосфатный цикл, или цикл Кальвина, — серия биохимических реакций, осуществляемая при фотосинтезе растениями (в строме хлоропластов), цианобактериями, прохлорофитами и пурпурными бактериями, а также многими бактериями-хемосинтетиками, является наиболее распространённым из механизмов автотрофной фиксации CO2. Цикл Кальвина назван в честь американского биохимика Мелвина Кальвина (1911—1997). Часто используются альтернативные названия, указывающие на роль коллег Кальвина в открытии.

Бактериохлорофи́ллы — гетерогенная группа фотосинтетических тетрапиррольных пигментов, которые синтезируются различными аноксигенными фототрофными бактериями, осуществляющими фотосинтез без выделения кислорода.

Биоремедиация — комплекс методов очистки вод, грунтов и атмосферы с использованием метаболического потенциала биологических объектов — растений, грибов, насекомых, червей и других организмов.

Фотодыхание (гликолатный путь, С2-фотосинтез) — стимулируемое светом выделение углекислого газа и поглощение кислорода у растений преимущественно с С3-типом фотосинтеза. Также под фотодыханием понимают биохимический путь, связанный с регенерацией одной молекулы 3-фосфоглицериновой кислоты (С3) из двух молекул гликолевой кислоты (С2) и лежащий в основе вышеописанного газообмена. Наличие биохимического механизма фотодыхания обусловлено значительной оксигеназной активностью РуБисКО, ключевого фермента.

История молекулярной биологии начинается в 1930-х годах с объединения ранее отдельных биологических дисциплин: биохимии, генетики, микробиологии и вирусологии. Кроме того, в надежде, что новая дисциплина откроет возможности понимания фундаментальных основ жизни, в неё пришли многие химики и физики.

Механизм реакции — это детальное описание процесса превращения реагентов в продукты, включающее в себя как можно более полное описание состава, строения, геометрии, энергии и других свойств интермедиатов, переходных состояний и продуктов. Часто в описание механизма включают обозначения, касающиеся движения электронов в частицах, которыми сопровождается переход от продуктов к реагентам. Приемлемый механизм реакции должен согласоваться с экспериментальными данными, например, стереохимией реакции, её.

Ацетогенез – процесс, в результате которого ацетат получается из CO2 и донора электронов (например, H2, CO, формиат, и т. д.), осуществляемая анаэробными бактериями в последовательности биохимических реакций восстановительного ацетил-КoA пути (Путь Вуда — Льюнгдаля). Группа различные видов бактерий, способных к ацетогенезу, называются ацетогенами. Некоторые ацетогены способны синтезировать ацетат автотрофно, из диоксида углерода и водорода. Суммарная реакция автотрофного синтеза ацетата.

Хемиосмос — биохимический механизм, с помощью которого осуществляется превращение энергии цепи переноса электронов в энергию АТФ. Включает изменение электрохимического потенциала клеточной мембраны.

Метаногенез, биосинтез метана — процесс образования метана анаэробными археями, сопряжённый с получением ими энергии. Существует три типа метаногенеза.

Криохимия — раздел химии, который изучает превращения в жидкой и твёрдой фазах при низких (вплоть до 70 К) и сверхнизких (ниже 70 К) температурах. По изучаемым явлениям имеет пересечения с физикой конденсированных сред и астрохимией.

Кооперативность — это явление в биохимии, характерное для ферментов или рецепторов, которые имеют множественные сайты связывания. Также явление кооперативности отмечено для больших молекул, имеющих многие идентичные субъединицы (ДНК, белки, фосфолипиды), в момент, когда происходят фазовые переходы — плавление, разворачивание, расплетание.

Седиментацио́нный ана́лиз — совокупность методов определения размеров частиц в дисперсных системах и молекулярной массы макромолекул в растворах полимеров по скорости седиментации в условиях седиментационно-диффузного равновесия.

Фотофосфорили́рование — процесс синтеза АТФ из АДФ за счёт энергии света. Как и в случае окислительного фосфорилирования, энергия света расходуется на создание протонного градиента на мембране тилакоидов или клеточной мембране бактерии, который затем используется АТФ-синтазой. Фотофосфорилирование — очень древняя форма фотосинтеза, которая есть у всех фототрофных эукариот, бактерий и архей. Различают два типа фосфорилирования — циклическое, сопряжённое с циклическим потоком электронов в электрон-транспортной.

Сингле́тный кислоро́д — общее название для двух метастабильных состояний молекулярного кислорода (O2) с более высокой энергией, чем в основном, триплетном состоянии. Энергетическая разница между самой низкой энергией O2 в синглетном состоянии и наименьшей энергией триплетного состояния составляет около 11400 кельвин (Te (a1Δg ← X3Σg−) = 7918,1 см−1), или 0,98 эВ. Открыт Х. Каутским.

Субстратное фосфорилирование — характерная для всех живых организмов реакция синтеза АТФ или ГТФ путём прямого переноса фосфата (PO3) на АДФ или ГДФ с высокоэнергетического промежуточного продукта. В ходе катаболического окисления органических соединений в живых клетках неорганический фосфат переносится на органическое вещество с образованием богатых энергией молекул, с которых он переносится на АДФ или ГДФ. При этом перенос может происходить только с молекул с достаточно высоким потенциалом переноса.

Карбоксисо́мы (полиэдральные тела) — микрокомпартменты в клетках бактерий, содержащие фиксирующие углерод ферменты. Они представляют собой многогранные однослойные белковые тела полиэдрической формы от 80 до 140 нанометров в диаметре. Они являются основной частью механизма концентрирования CO2, что помогает преодолеть неэффективность рибулозодифосфаткарбоксилазы (Рубиско) — главного фермента, лимитирующего скорость фиксации углерода в цикле Кальвина. Эти органеллы обнаружены во всех цианобактериях.

Анаэробное дыхание — биохимический процесс окисления органических субстратов или молекулярного водорода с использованием в дыхательной ЭТЦ в качестве конечного акцептора электронов вместо O2 других окислителей неорганической или органической природы. Как и в случае аэробного дыхания, выделяющаяся в ходе реакции свободная энергия запасается в виде трансмембранного протонного потенциала, использующегося АТФ-синтазой для синтеза АТФ.

Фототрофы (др.-греч. φῶς, φωτός = свет, τροϕή = питание) — это организмы, которые используют свет для получения энергии. Они используют энергию света для поддержания различных метаболических процессов. Существует распространенное заблуждение, что фототрофы должны обязательно фотосинтезировать. Многие, хотя далеко не все, действительно фотосинтезируют: они используют энергию света, чтобы преобразовывать углекислый газ в органический материал, который служит для построения их тела, или в качестве источника.

Индукти́вный эффе́кт (полярный эффект) — смещение электронной плотности химической связи по σ-связям. Является разновидностью эффекта поля.

Карбкатион (карбокатион) — частица, в которой на атоме углерода сосредоточен положительный заряд, атом углерода имеет вакантную p-орбиталь. Карбкатион — сильная кислота Льюиса, обладает электрофильной активностью.

Под эволюцией фотосинтеза понимают исторический путь происхождения и последующего развития фотосинтеза или последовательное становление и изменение процесса преобразования солнечной энергии в химическую для синтеза сахаров из углекислого газа, с выделением кислорода в качестве побочного продукта.

Серобактерии (Тиобактерии) — весьма разнородная группа прокариотов, окисляющих восстановленные соединения серы.

Водородная связь — форма ассоциации между электроотрицательным атомом и атомом водорода H, связанным ковалентно с другим электроотрицательным атомом. В качестве электроотрицательных атомов могут выступать N, O или F. Водородные связи могут быть межмолекулярными или внутримолекулярными.

Кислородная катастрофа (кислородная революция) — глобальное изменение состава атмосферы Земли, произошедшее в самом начале протерозоя, в период сидерий, около 2,45 млрд лет назад. Результатом кислородной катастрофы стало появление в составе атмосферы свободного кислорода и изменение общего характера атмосферы с восстановительного на окислительный. Предположение о кислородной катастрофе было сделано на основе изучения резкого изменения характера осадконакопления.

Миксотро́фы (от др.-греч. μῖξις — смешение и τροφή — пища, питание) — организмы, способные использовать различные источники углерода и доноры электронов. Миксотрофы могут быть одновременно фототрофами и хемотрофами, литотрофами и органотрофами. Миксотрофами являются представители как прокариот, так и эукариот.Примером организма с миксотрофным получением углерода и энергии является бактерия Paracoccus pantotrophus из семейства Rhodobacteraceae — хемооргано-гетеротроф, также способная существовать.

Теория абиогенной молекулярной эволюции жизни из неоргани­ческих веществ была создана русским учёным А. И. Опариным (1924) и английским учёным Дж. Холдейном (1929). По мнению естествоведов, Земля появилась примерно 4,5—7 млрд лет назад. Вначале Земля представляла собой пылевидное облако, температура которого колебалась в пределах 4000—8000°С. Постепенно в процессе охлаждения тяжёлые элементы начали располагаться в центре нашей планеты, а более лёгкие — по периферии.

Предполагается, что самые простые живые организмы на Земле появились 3,5 млрд лет назад. Жизнь есть результат сначала химической, а затем биологической эволюции.

Рис. 56. Возникновение жизни на Земле: 1 — первичная атмосфера; 2 — образование органических веществ; 3 — образование коацерватов; 4 — простое брожени.

Условия возникновения жизни

По утверждению Дарвина, жизнь может зародиться только в условиях её отсутствия. Вновь образовавшиеся органические ве­щества немедленно уничтожаются гетеротрофными микроорганиз­мами. Именно поэтому в настоящее время невозможно самозарож­дение жизни.

Вторым необходимым условием зарождения жизни на Земле является отсутствие кислорода в первичной атмосфере, так как наличие кислорода привело бы к расщеплению вновь образующихся органических веществ.

Этапы возникновения жизни

Основными этапами биохимической эволюции жизни считаются следующие.

  • Образование простых органических веществ в результате химических реакций.
  • Образование полимеров типа полипептидов и полинуклео­тидов из мономеров.
  • Образование коацерватов путём концентрации высокомолеку­лярных соединений.
  • Образование элементарных мембран, окружающих коацерваты.
  • Возникновение процесса обмена веществ.
  • Возникновение процессов самовоспроизведения на основе матричного синтеза (рис. 59).

Химическая эволюция

Первые органические вещества

Водород, азот, углерод, кислород, которые содержались в первичной атмосфере Земли, вступали в реакции взаимодействия и при этом образовывали такие простые органические соединения, как аммиак, метан, оксиды углерода, сероводород и водяные пары (рис. 56). Свободный кислород, бывший вначале в очень малых количествах, полностью вошёл в состав соединений. Биологические мономеры синтезировались абиогенным путём. В результате охлаждения Земли возникли первичные океаны. За счёт кислорода, который содержался в молекулах воды, про­исходило окисление простых органических веществ и образовались спирты, альдегиды, аминокислоты, и первичный океан все более и более насыщался сложными органическими веществами.

Генетическая гипотеза (РНК мир)

Однако было неизвестно, что в ходе биохимической эволюции жизни возникло прежде: белки или нуклеиновые кислоты. Согласно теории А. И. Опарина, первыми появились молекулы белка. Сторонники генетической гипотезы, наоборот, считали, что сначала возникли нуклеиновые кислоты. Такое предположение было выдвинуто в 1929 г. Г. Миллером. Лабораторные исследования доказали возможность репликации нуклеиновых кислот и без воздействия ферментов. По мнению учёных, первичные рибосомы состояли только из РНК, и свойство синтезировать белок у них могло появиться впоследствии. Позже были получены новые данные, подтверждающие это предположение. Репликация рибонуклеиновой кислоты без участия ферментов, обратная транскрипция, т. е. возможность синтеза ДНК на основе РНК — все это является доказательством генетической гипотезы.

NASAJenny_Mottar (700x525, 57Kb)

Химическая эволюция — это совокупность процессов, протекавших в Космосе и на ранних этапах существования Земли, приведших к возникновению жизни. На первом этапе образовались литосфера, гидросфера, атмосфера. Литосфера возникла вследствие вулканизма. Ежегодно вулканы выбрасывают на поверхность Земли около 1 км. За время существования Земли, при нынешней активности вулканов, было выброшено такое количество лавы, которой достаточно для образования коры Земли.

Гидросфера также создана вулканами: 3 % массы лавы составляет водяной пар. Пар конденсировался. Это привело к появлению осадков и Первичного океана. Атмосфера образовалась при дегазации лав. Вначале Земля имела первичную атмосферу. Но масса юной Земли оказалась недостаточной для удержания газов, и они улетучивались. Земля увеличила свою массу за счет космической пыли и метеоритов: на Землю ежегодно выпадает 107 кг пыли. К тому же Земля, проходя через пылевое облако, могла получать с космической пылью 10\" т органического материала. Вторичная атмосфера возникла тоже за счет дегазации лав и состояла из СО, СОз, Нз, НзО, N, МНз. Кислород появился в атмосфере благодаря фотолизу — разложению паров воды в верхних слоях атмосферы солнечными лучами. Позже обогащение атмосферы кислородом шло за счет фотосинтеза. Два с половиной миллиарда лет назад исчезли золотоураносные конгломераты, которые формируются только в отсутствии кислорода. В тот же период появляются красноцветы, образующиеся только при наличии кислорода.

Второй этап химической эволюции на Земле

На этом этапе происходило образование низкомолекулярных органических соединений (аминокислот, спиртов, углеводов, органических кислот). Жизнь на Земле основана на углеродистых соединениях. Почему именно углерод стал основой жизни? Во-первых, потому, что углерод образует соединения в виде крупных молекулярных цепочек. Во-вторых, углеродистые соединения взаимодействуют медленно. В-третьих, углерод образует сложные соединения с особой структурой, существенной для протекания важнейших жизненных процессов.

Химическая эволюция началась задолго до возникновения Земли — она началась в Космосе. В межзвездном пространстве обнаружено более 50 органических соединений. В Космосе обычен формальдегид, окись углерода, вода, аммиак, цианистый водород. Эти вещества, как показали эксперименты, могут быть предшественниками аминокислот и других органических соединений. Во внеземном пространстве обнаружены углеводороды, альдегиды, эфиры, аминокислоты, нуклеотиды, ароматические соединения. Обнаружено вещество, имеющее в своем составе 18 атомов углерода. Синтез примитивных углеводородов, начавшийся в Космосе, продолжался во время формирования Солнечной системы и Земли.

Предположения о процессах второго этапа химической эволюции имеют экспериментальное подтверждение. В 1850 г. немецкий химик А. Штеккер осуществил химический синтез аминокислот из аммиака, альдегидов, синиль ной кислоты. В 1861 г. А. М. Бутлеров, нагревая формальдегид в крепком щелочном растворе, получил смесь Сахаров. Д. И. Менделеев получал углеводы, подвергая карбиды действию водяного пара. Студент Чикагского университета С. Л. Миллер в 1953 г. для дипломной работы, выполненной под руководством С. Фокса, собрал специальный аппарат для проверки возможности абиогенетического синтеза органических соединений. В этом герметическом приборе в течение недели по замкнутой схеме циркулировала смесь газов, которые, по общему мнению, наиболее вероятно содержались в ранней атмосфере Земли: СН4, Н, NH?. Кипящая вода - источник водяного пара — и холодильник поддерживали циркуляцию газовой смеси. В приборе непрерывно пропускали искры при напряжении 60 тыс. вольт. После этого воду подвергли хроматографическому и химическому анализу Было обнаружено 6 аминокислот (глицин, аланин, аспаргиновая и глутаминовая кислоты и др.), мочевину, молочную, янтарную, уксусную кислоты. Всего было обнаружено 11 органических кислот.

В том, что абиогенетический синтез органики возможен, убеждает такой факт: одно извержение вулкана в настоящее время сопровождается выбросом до 15 т органического вещества. К тому же Земля, проходя через пылевое облако, могла получать с космической пылью 108 т органического материала. Все это, предположительно, могло создать тот \"бульон\", о котором писали А. Опарин и Дж. Холдейн.

Читайте также: