Характеристики физических каналов кратко

Обновлено: 02.07.2024

При построении сетей применяются линии связи, в которых используются различные физические среды: подвешенные в воздухе телефонные и телеграфные провода, проложенные под землей и по дну океана медные коаксиальные и волоконно-оптические кабели, опутывающие все современные офисы медные витые пары, всепроникающие радиоволны.

В этой главе рассматриваются общие характеристики линий связи, не зависящие от их физической природы, такие как полоса пропускания, пропускная способность, помехоустойчивость и достовер­ность передачи. Ширина полосы пропускания является фундаментальной характеристикой канала связи, так как определяет максимально возможную информационную скорость канала, которая называется пропускной способностью канала. Формула Найквиста выражает эту зависимость для идеального канала, а формула Шеннона учитывает наличие в реальном канале шума. Завершает главу рассмотрение конструкций и стандартов современных кабелей, которые составляют основу проводных линий связи.

Классификация линий связи

Линии связи отличаются также физической средой, используемой для передачи инфор­мации.

Физическая среда передачи данныхможет представлять собой набор проводников, по которым передаются сигналы. На основе таких проводников строятся проводные (воздуш­ные) или кабельные линии связи (рис. 8.2). В качестве среды также используется земная атмосфера или космическое пространство, через которое распространяются информацион­ные сигналы. В первом случае говорят о проводной среде, а во втором — о беспроводной.

Безымянный1

Рис. 8.2. Типы сред передачи данных

В современных телекоммуникационных системах информация передается с помощью электрического тока или напряжения, радиосигналов или световых сигналов — все эти физические процессы представляют собой колебания электромагнитного поля различной частоты.

Проводные (воздушные) линиисвязи представляют собой провода без каких-либо изоли­рующих или экранирующих оплеток, проложенные между столбами и висящие в воздухе. Еще в недалеком прошлом такие линии связи были основными для передачи телефонных или телеграфных сигналов. Сегодня проводные линии связи быстро вытесняются кабель­ными. Но кое-где они все еще сохранились и при отсутствии других возможностей про­должают использоваться, в частности, и для передачи компьютерных данных. Скоростные качества и помехозащищенность этих линий оставляют желать много лучшего.

Кабельные линииимеют достаточно сложную конструкцию. Кабель состоит из провод­ников, заключенных в несколько слоев изоляции: электрической, электромагнитной, механической и, возможно, климатической. Кроме того, кабель может быть оснащен разъемами, позволяющими быстро выполнять присоединение к нему различного обору­дования. В компьютерных (и телекоммуникационных) сетях применяются три основных типа кабеля: кабели на основе скрученных пар медных проводов — неэкранированнаявитая пара(Unshielded Twisted Pair, UTP) и экранированная витая пара(Shielded Twisted Pair, STP), коаксиальные кабелис медной жилой, волоконно-оптические кабели.Первые два типа кабелей называют также медными кабелями.

Радиоканалыназемной и спутниковой связи образуются с помощью передатчика и при­емника радиоволн. Существует большое разнообразие типов радиоканалов, отличаю­щихся как используемым частотным диапазоном, так и дальностью канала. Диапазоны широковещательного радио(длинных, средних и коротких волн), называемые также АМ-диапазонами,или диапазонами амплитудной модуляции (Amplitude Modulation, AM), обеспечивают дальнюю связь, но при невысокой скорости передачи данных. Более ско­ростными являются каналы, использующие диапазоны очень высоких частот(Very High Frequency, VHF), для которых применяется частотная модуляция (Frequency Modulation, FM). Для передачи данных также используются диапазоны ультравысоких частот(Ultra High Frequency, UHF), называемые еще диапазонами микроволн(свыше 300 МГц). При частоте свыше 30 МГц сигналы уже не отражаются ионосферой Земли, и для устойчивой связи требуется наличие прямой видимости между передатчиком и приемником. Поэтому указанные частоты используются в спутниковых или радиорелейных каналах либо в таких локальных или мобильных сетях, в которых это условие выполняется.

В компьютерных сетях сегодня применяются практически все описанные типы физических сред передачи данных. Хорошие возможности предоставляют волоконно-оптические кабе­ли, обладающие широкой полосой пропускания и низкой чувствительностью к помехам. На них сегодня строятся как магистрали крупных территориальных и городских сетей, так и высокоскоростные локальные сети. Популярной средой является также витая пара, которая характеризуется отличным отношением качества к стоимости, а также простотой монтажа. Беспроводные каналы используются чаще всего в тех случаях, когда кабельные линии связи применить нельзя, например при прохождении канала через малонаселенную местность или же для связи с мобильными пользователями сети. Обеспечение мобильно­сти затронуло в первую очередь телефонные сети, компьютерные сети в этом отношении пока отстают. Тем не менее построение компьютерных сетей на основе беспроводных технологий, например Radio Ethernet, считаются сегодня одним из самых перспективных направлений телекоммуникаций. Линии связи на основе беспроводной среды изучаются в главе 10.

Аппаратура передачи данных

Как показано на рис. 8.1, линии связи состоят не только из среды передачи, но и аппара­туры. Даже в том случае, когда линия связи не проходит через первичную сеть, а основана на кабеле, в ее состав входит аппаратура передачи данных.

Аппаратура передачи данных(Data Circuit Equipment, DCE) в компьютерных сетях не­посредственно присоединяет компьютеры или коммутаторы к линиям связи и является, таким образом, пограничным оборудованием. Традиционно аппаратуру передачи данных включают в состав линии связи. Примерами DCE являются модемы(для телефонных линий), терминальные адаптеры сетей ISDN, устройства для подключения к цифровым каналампервичных сетей DSU/CSU (Data Service Unit/Circuit Service Unit).

DCE работает на физическом уровне модели OSI, отвечая за передачу информации в фи­зическую среду (в линию) и прием из нее сигналов нужной формы, мощности и частоты. Аппаратура пользователя линии связи, вырабатывающая данные для передачи по линии связи и подключаемая непосредственно к аппаратуре передачи данных, носит обобщенное название оконечное оборудование данных(Data Terminal Equipment, DTE). Примером DTE могут служить компьютеры, коммутаторы и маршрутизаторы. Эту аппаратуру не включают в состав линии связи.

Разделение оборудования на DCE и DTE в локальных сетях является достаточно условным. Напри­мер, адаптер локальной сети можно считать как принадлежностью компьютера, то есть оборудованием DTE, так и составной частью канала связи, то есть аппаратурой DCE. Точнее, одна часть сетевого адаптера выполняет функции DTE, а его другая, оконечная его часть, непосредственно принимающая и передающая сигналы, относится к DCE.

Для подключения DCE-устройств к DTE-устройствам (то есть к компьютерам или комму­таторам/маршрутизаторам) существует несколько стандартных интерфейсов[32]. Работают эти устройства на коротких расстояниях друг от друга, как правило, несколько метров.

Промежуточная аппаратураобычно используется на линиях связи большой протяжен­ности. Она решает две основные задачи:

  • улучшение качества сигнала;
  • создание постоянного составного канала связи между двумя абонентами сети.

В локальных сетях промежуточная аппаратура может совсем не использоваться, если про­тяженность физической среды — кабелей или радиоэфира — позволяет одному сетевому адаптеру принимать сигналы непосредственно от другого сетевого адаптера без дополни­тельного усиления. В противном случае применяется промежуточная аппаратура, роль которой здесь играют устройства типа повторителейи концентраторов.

В глобальных сетях необходимо обеспечить качественную передачу сигналов на расстояния в сотни и тысячи километров. Поэтому без усилителей(повышающих мощность сигналов) и регенераторов(наряду с повышением мощности восстанавливающих форму импульсных сигналов, исказившихся при передаче на большое расстояние), установленных через определенные расстояния, построить территориальную линию связи невозможно.

В первичных сетях помимо упомянутого оборудования, обеспечивающего качественную передачу сигналов, необходима промежуточная коммутационная аппаратура — мульти­плексоры(MUX), демультиплексорыи коммутаторы.Эта аппаратура создает между двумя абонентами сети постоянный составной канал из отрезков физической среды — кабелей с усилителями.

В зависимости от типа промежуточной аппаратуры все линии связи делятся на аналого­вые и цифровые. В аналоговых линияхпромежуточная аппаратура предназначена для усиления аналоговых сигналов, то есть сигналов, которые имеют непрерывный диапазон значений. Такие линии связи традиционно применялись в телефонных сетях с целью связи телефонных коммутаторов между собой. Для создания высокоскоростных каналов, которые мультиплексируют несколько низкоскоростных аналоговых абонентских каналов, при аналоговом подходе обычно используется техника частотного мультиплексирования (Frequency Division Multiplexing, FDM).

В цифровых линияхсвязи передаваемые сигналы имеют конечное число состояний. Как правило, элементарный сигнал, то есть сигнал, передаваемый за один такт работы пере­дающей аппаратуры, имеет 2,3 или 4 состояния, которые в линиях связи воспроизводятся импульсами или потенциалами прямоугольной формы. С помощью таких сигналов пере­даются как компьютерные данные, так и оцифрованные речь и изображение (именно благо­даря одинаковому способу представления информации современными компьютерными, телефонными и телевизионными сетями стало возможным появление общих для всех первичных сетей). В цифровых линиях связи используется специальная промежуточная аппаратура — регенераторы, которые улучшают форму импульсов и восстанавливают период их следования. Промежуточная аппаратура мультиплексирования и коммутации первичных сетей работает по принципу временного мультиплексирования каналов (Time Division Multiplexing, TDM).

Даже при рассмотрении простейшей сети, состоящей всего из пары компьютеров, можно выявить большое количество проблем, связанных с передачей информации по сети (линиям связи) Как все мы понимаем, данные при передаче кодируются. Кодированием называется представление данных в виде оптических или электрических сигналов.

Кодирование информации

В вычислительной технике для представления данных используют двоичный (бинарный код). Внутри компьютера 1 и 0 соответствуют дискретные электрические сигналы. Существуют различные способы кодирования, например, потенциальный способ, при котором единице соответствует один уровень напряжения, а нулю другой, или импульсный способ, когда для представления цифр используются импульсы различных полярностей.

Абсолютная аналогия наблюдается и при передаче данных по линиям связи. Однако они отличаются от линий в компьютере по своим характеристикам. Главное отличие состоит в их огромной протяженности, а также в том, что они проходят вне экранированного корпуса по пространству, часто подверженную действию ЭМ (электромагнитных помех). Все это приводит к значительному искажению прямоугольных импульсов. Поэтому для качественного и хорошего распознавания импульса на другом конце линии при передачи внутри и вне компьютера можно использовать одни и те же скорости и способы кодирования информации.

В вычислительных сетях применяют как потенциальное, так и импульсное кодирование данных, а также особый метод, который никогда не используется просто в компьютерах — модуляция. При модуляции информация представляется синусоидальным сигналом такой частоты, которую хорошо передает имеющаяся линия связи. Потенциальное, или импульсное, кодирование применяется на линиях высокого качества, а модуляция на основе синусоидальных сигналов предпочтительнее в случаях, когда канал вносит сильные искажения в передаваемый сигнал. Так же стоит отметить что на способ передачи информации влияет и количество проводов в линиях связи между компьютерами. Для снижения стоимости линий связи в сетях стремятся сократить количество проводов и из-за этого используют не параллельную передачу всех битов одного байта, а как это делается в компьютере, а последовательную побитную передачу, что требует всего одной пары проводов.

Ещё одна проблема, с которой можно столкнуться при передачи данных это синхронизация передатчика с приемником на компьютерах. При организации взаимодействия модулей компьютера эта проблема решается очень легко, так как все модули синхронизируются от тактового генератора. Проблема синхронизации при связи может решаться различными способами, как обменом специальными тактовыми уже синхронизированными импульсами по отдельной линии, так и путём периодической синхронизации заранее обусловленными кодами или импульсами характерной формы, отличающихся от формы данных. Несмотря на различные способы предотвращения искажения, все же существует вероятность искажения некоторых битов передаваемых данных. Для повышения надежности передачи данных между компьютерами часто используют простой прием — подсчёт контрольной суммы и её передачи после каждого блока байтов. Эта информация (сигнал-квитанция) включается в протокол обмена данными как обязательная информация, которая подтверждает правильность передачи информации.


LS.JPG

Характеристики физических каналов

Существует большое количество характеристик, связанных с передачей трафика через физический каналы. Итак, для начала парочка определений :

Основные понятия

— Предложенная нагрузка — поток, данных, поступающий от пользователя на вход сети. Её можно характеризовать скоростью подачи данных в сеть — в бит/с, кбит/с, мбит/с.

— Скорость передачи данных — фактическая скорость потока данных, прошедшего через сеть. Эта скорость может быть меньше скорости предложенной нагрузки, так как данные в сети могут искажаться и теряться

— Емкость канала, или пропускная способность представляет собой максимально возможную скорость передачи информации по каналу. Спецификой этой характеристики является то, что она отражает не только параметры физической среды передачи, но и особенности выбранного способа передачи дискретной информации по этой среде. Например, емкость канала связи в Ethernet на оптоволокне равна около 10 мбит/с. Эта скорость является предельно возможной для сочетания возможностей компании и самого волокна. Но, как ни странно, для одного и того же волокна моно разработать и другую технологию передачи данных, отличающуюся способом кодирования, тактовой частотой и т.д.,которое будет иметь др. Емкость. Самое главное то, что передатчик должен работать со скоростью, равной пропускной способности канала или иначе с битовой скоростью передатчика.

— Полоса пропускания. У термина есть 2 значения. Во-первых, с его помощью могут характеризовать среду передачи. В этом случае он определяет ширину полосы частот, которую линия передает без существенных искажений. Во-вторых, может использоваться как синоним термина 'емкость канала связи'.В первом случае полоса пропускания измеряется в Герцах (Гц), во втором — в бит/с.

Характеристика передачи в 1 или в обе стороны

Ещё одна группа характеристик канала связи связана с возможностями передачи информации в одну или обе стороны. При коммуникации 2х компьютеров обычно требуется передавать информацию в обоих направлениях. Даже в случае, когда пользователю кажется, что он только получает информацию (например скачает какой-нибудь файл с интернета или отправляет письмо), обмен информации идет в обоих направлениях. Просто существует основной поток данных, который интересует пользователя и вспомогательный поток противоположенного направления, который образует квитанции о получении этих данных. Физические каналы связи делятся на несколько типов, в зависимости от того могут они передавать в информацию в обоих направлениях или нет.

Физический уровень — это нижний уровень OSI модели взаимодействия открытых систем. Его задача — передача потока бит по среде передачи данных. Физический уровень не вникает в смысл информации которую передает и никак ее не анализирует. Единица передачи данных на физическом уровне называется бит. Основная задача физического уровня представить биты информации в виде сигналов, которые передаются по среде передачи данных.

p, blockquote 1,0,0,0,0 -->


p, blockquote 2,0,0,0,0 -->

У нас есть некий цифровой сигнал, мы передаем его в среду. Но из-за того, что в среде передачи данных происходят искажения, сигнала, то получатель принимает не такой хороший сигнал, как мы отправили, а примерно как тот, что изображен на картинке ниже. И получатель по этому сигналу должен определить, что же ему передал отправитель.

p, blockquote 3,0,0,0,0 -->

Ошибки в канале связи

p, blockquote 4,0,0,0,0 -->

Модель канала связи

p, blockquote 5,0,0,0,0 -->

Простой канал связи

p, blockquote 6,0,1,0,0 -->

У канала связи есть важные для нас характеристики:

В зависимости от направления по которому можно передавать данные, КС бывают 3 типов:

  • Симплексный КС по которому можно передавать данные только в одну сторону;
  • Дуплексный, можно передавать данные в обе стороны одновременно;
  • Полудуплексный, можно передавать данные в обе стороны, но по очереди.

Среды передачи данных

В сетях раньше использовалось и используется сейчас большое количество разных сред передачи данных. Используются кабели разных типов. Исторически первыми появились телефонные кабели и они же использовались для передачи данных на раннем этапе развития компьютерных сетей.

p, blockquote 9,0,0,0,0 -->

В технологии классический Ethernet использовался коаксиальный, медный кабель, такие кабели еще недавно широко использовались для подключения антенн к телевизорам.

p, blockquote 10,0,0,0,0 -->

Сейчас для построения компьютерных сетей, используются скрученные между собой медные кабели, которые называются витая пара.

p, blockquote 11,0,0,0,0 -->

А также оптические кабели для передачи данных по которым используется свет. Есть технологии, которые позволяют передавать данные прямо по проводам электропитания, которые подходят к розеткам ваших домов. Для этого можно использовать специальные методы модуляции, но они применяются очень редко.

p, blockquote 12,0,0,0,0 -->

Сейчас все большей и большей популярностью пользуются беспроводные технологии. В сетях сотовой связи и вай фай сетях для передачи данных используют радиоволны, а также используется инфракрасное излучение.

p, blockquote 13,1,0,0,0 -->

Возможны использование для передачи данных спутниковые каналы связи (КС), однако такие КС дорогие и скорость таких каналов значительно уступают скорости передачи данных по оптическим кабелям.

p, blockquote 14,0,0,0,0 -->

Также существуют технологии, которые позволяют использовать лазеры, для передачи данных без кабелей. Но сейчас они применяются редко из-за низкой скорости и большого количества помех. Таким образом, сейчас для построения сетей чаще всего используют витую пару, оптические кабели и радиоволны.

p, blockquote 15,0,0,0,0 -->

Витая пара

Витая пара представляет из себя набор медных кабелей в одной оболочке. Кабели попарно скручены между собой, для того, чтобы меньше создавалось помех. В одном кабеле, как правило, находится 4 витые пары. Раньше разные витые пары использовались для передачи данных в разные стороны, но теперь передача данных по все четырем парам проводов выполняется в двух направлениях одновременно.

p, blockquote 16,0,0,0,0 -->

Витая пара

p, blockquote 17,0,0,0,0 -->

Оптический кабель

В оптических кабелях для передачи данных используются тонкие световоды. Каждый световод покрывается защитной оболочкой и несколько световодов объединяются в один кабель.

p, blockquote 18,0,0,0,0 -->

Оптический кабель

p, blockquote 19,0,0,0,0 -->

Радиоволны

Сейчас всё больше и больше для передачи данных используются беспроводные технологии на основе радиоволн. В отличии от кабелей, сигнал в беспроводной среде распространяется по разным направлениям. Один и тот же сигнал могут принимать несколько приемников.

p, blockquote 20,0,0,1,0 -->

Если несколько источников радиоволн рядом друг с другом, то эти сигналы искажаются, поэтому использование радиоволн, регулируется законодательством. И разные раздел спектра выделены для использования различными технологиями.

p, blockquote 21,0,0,0,0 -->

Например, для сотовой связи стандарта GSM, который популярен сейчас в России используется диапазон 900 МГц. Однако этот диапазон не может использовать кто угодно, для этого необходимо сначала купить лицензию у государства.

p, blockquote 22,0,0,0,0 -->

Для работы сетей вайфай используется два диапазона 2.4 ГГц и 5 ГГц. Это специальные диапазоны, частоты в которых можно использовать без получения лицензии, поэтому вы можете спокойно устанавливать у себя wi-fi роутер не спрашивая ни у кого разрешение.

p, blockquote 23,0,0,0,0 -->

Ошибки в каналах связи

Количество ошибок в трех популярных средах передачи данных отличаются друг от друга значительно. Меньше всего ошибок возникает в оптическом кабеле. Как то повлиять на свет, который идет внутри темной оболочки очень сложно. В медных кабелях ошибки тоже возникают, но достаточно редко. А в беспроводной среде, ошибки напротив возникают очень часто. Частота возникновения ошибок в среде передачи данных, учитывалась при создании сетевых технологий, которые используют эту среду.

p, blockquote 24,0,0,0,0 -->

Представление информации

Для представления информации в виде сигналов которые будут передаваться по каналам связи, есть два подхода. Первый подход это прямоугольные импульсы или цифровые, а второй синусоидальные волны или аналоговый.

p, blockquote 25,0,0,0,0 -->

Цифровые сигналы используются при передаче данных по медным проводам. Самый простой способ цифрового представления использовать 0 отсутствием напряжения, а 1 повышенным уровнем напряжения, однако, на практике применяются более сложные схемы. Для представления информации в аналоговом виде используется модуляция. Можно менять частоту сигнала, фазу и амплитуду.

p, blockquote 26,0,0,0,0 -->

Заключение

Задача физического уровня передавать поток бит по среде передачи данных. Сейчас для построения компьютерных сетей используют медные, оптические кабели и радиоволны.

Физический уровень (Physical layer) имеет дело с передачей битов по физическим каналам связи, таким, например, как коаксиальный кабель, витая пара, оптоволоконный кабель или радио-канал. К этому уровню имеют отношение характеристики физических сред передачи данных, такие как полоса пропускания, помехозащищенность, волновое сопротивление и другие.

На этом же уровне определяются характеристики электрических сигналов, передающих дискретную информацию, например, крутизна фронтов импульсов, уровни напряжения или тока передаваемого сигнала, тип кодирования, скорость передачи сигналов. Кроме этого, здесь стандартизуются типы разъемов и назначение каждого контакта.

Функции физического уровня реализуются во всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом. Сетевой адаптер работает на физическом и канальном уровнях. К физическому уровню относится та часть функций сетевого адаптера, которая связана с приемом и передачей сигналов по линии связи, а получение доступа к разделяемой среде передачи, распознавание МАС-адреса компьютера — это уже функция канального уровня.

Осуществляют передачу электрических или оптических сигналов в кабель или в радиоэфир и, соответственно, их приём и преобразование в биты данных в соответствии с методами кодирования цифровых сигналов.

На этом уровне также работают концентраторы, повторители сигнала и медиаконвертеры.

физическому уровню относятся физические, электрические и механические интерфейсы между двумя системами. Физический уровень определяет такие виды сред передачи данных как оптоволокно, витая пара, коаксиальный кабель, спутниковый канал передач данных и т. п. Стандартными типами сетевых интерфейсов, относящимися к физическому уровню, являются: V.35, RS-232, RS-485, RJ-11, RJ-45, разъемы AUI и BNC.

Протоколы физического уровня: IEEE 802.15 (Bluetooth), IRDA, EIA RS-232, EIA-422, EIA-423, RS-449, RS-485, DSL, ISDN, SONET/SDH, 802.11 Wi-Fi, Etherloop, GSM Um radio interface, ITU и ITU-T, TransferJet, ARINC 818, G.hn/G.9960, модификации стандарта Ethernet: 10BASE-T, 10BASE2, 10BASE5, 100BASE-T (включает 100BASE-TX, 100BASE-T4, 100BASE-FX), 1000BASE-T, 1000BASE-TX, 1000BASE-SX

Для построения простейшей односегментной сети достаточно иметь сетевые адаптеры и кабель подходящего типа. Но даже в этом простом случае часто используются дополнительные устройства — повторители сигналов, позволяющие преодолеть ограничения на максимальную длину кабельного сегмента.

При организации сети по каналу 100 Мбит/сек используются 2 пары витой пары и используются жилы 1, 2 , 3 и 6. При организации гигабитной сети используются 4 пары, т.е. все 8 жил витой пары.

Для прокладки новых сетей лучше всего использовать кабель CAT 5e. И хотя CAT 5 и CAT 5e оба пропускают частоту 100 МГц, кабель CAT5e производится с учетом дополнительных параметров, важных для лучшей передачи высокочастотных сигналов.

Гигабитный Ethernet может работать на существующей кабельной структуре 5 категории. Согласитесь, подобная возможность очень удобна. Как правило, все современные сети используют кабель пятой категории, если только ваша сеть не была установлена в 1996 году или раньше (стандарт был утвержден в 1995 году). Однако здесь существует несколько подводных камней:

В сети Ethernet существует два типа разводки кабелей. Первый тип используется для прямых соединений (коммутатор-коммутатор, компьютер-коммутатор) и кроссовер, который используется в локальных компьютерных сетях для прямого соединения двух компьютеров.

Распиновка кабеля в RJ-45:

Прямое соединение 10/100/1000

С одной стороны С другой стороны
1: Бело-оранжевый 1: Бело-оранжевый
2: Оранжевый 2: Оранжевый
3: Бело-зелёный 3: Бело-зелёный
4: Синий 4: Синий
5: Бело-синий 5: Бело-синий
6: Зелёный 6: Зелёный
7: Бело-коричневый 7: Бело-коричневый
8: Коричневый 8: Коричневый

Кросовер 10/100

С одной стороны С другой стороны
1: Бело-оранжевый 1: Бело-зеленый
2: Оранжевый 2: Зеленый
3: Бело-зелёный 3: Бело-оранжевый
4: Синий 4: Синий
5: Бело-синий 5: Бело-синий
6: Зелёный 6: Оранжевый
7: Бело-коричневый 7: Бело-коричневый
8: Коричневый 8: Коричневый

Кросовер 1000BASE-SX

С одной стороны С другой стороны
1: Бело-оранжевый 1: Бело-зелёный
2: Оранжевый 2: Зелёный
3: Бело-зелёный 3: Бело-оранжевый
4: Синий 4: Бело-коричневый
5: Бело-синий 5: Коричневый
6: Зелёный 6: Оранжевый
7: Бело-коричневый 7: Синий
8: Коричневый 8: Бело-синий

Основная функция повторителя (repeater), как это следует из его названия — повторение сигналов, поступающих на один из его портов, на всех остальных портах (Ethernet). Повторитель улучшает электрические характеристики сигналов и их синхронность, и за счет этого появляется возможность увеличивать общую длину кабеля между самыми удаленными в сети станциями.

Концентратор работает на физическом уровне сетевой модели OSI, ретранслируя входящий сигнал с одного из портов в сигнал на все остальные (подключённые) порты, реализуя, таким образом, свойственную Ethernet топологию общая шина, c разделением пропускной способности сети между всеми устройствами и работой в режиме полудуплекса. Коллизии (то есть попытка двух и более устройств начать передачу одновременно) обрабатываются аналогично сети Ethernet на других носителях — устройства самостоятельно прекращают передачу и возобновляют попытку через случайный промежуток времени, говоря современным языком, концентратор объединяет устройства в одном домене коллизий.

Концентраторы образуют из отдельных физических отрезков кабеля общую среду передачи данных — логический сегмент. Логический сегмент также называют доменом коллизий, поскольку при попытке одновременной передачи данных любых двух компьютеров этого сегмента, хотя бы и принадлежащих разным физическим сегментам, возникает блокировка передающей среды. Следует особо подчеркнуть, что какую бы сложную структуру не образовывали концентраторы, например, путем иерархического соединения, все компьютеры, подключенные к ним, образуют единый логический сегмент, в котором любая пара взаимодействующих компьютеров полностью блокирует возможность обмена данными для других компьютеров.

Основными характеристиками сетевых концентраторов являются:

  • Количество портов — разъёмов для подключения сетевых линий, обычно выпускаются концентраторы с 4, 5, 6, 8, 12, 16, 24 и 48 портами.
  • Скорость передачи данных — измеряется в Мбит/с, выпускаются концентраторы со скоростью 10, 100 и/или 1000 Мбит/c. Скорость может переключаться как автоматически (на наименьшую из используемых), так и с помощью перемычек или переключателей.
  • Наличие портов для подключения кабелей Ethernet других типов — коаксиальных или оптических.

Оборудования физического уровня модели OSI достаточно для построения простейшей локальной сети.

Читайте также: