Гипотеза лапласа о происхождении солнечной системы кратко

Обновлено: 05.07.2024

Не одно тысячелетие человечество изучает вопрос о происхождении Солнечной системы. Первые теории происхождения солнечной системы носят божественный характер, рассказывая о сотворении мира неким высшим существом. Далее учёные начали представлять Землю как шар, который является центром вселенной. Наиболее правдоподобные взгляды на структуру Солнечной системы появились в XVI веке в работах Н. Коперника: он описал гелиоцентрическую модель Солнечной системы, в центре которой находится Солнце, а Земля и остальные планеты вращаются вокруг него. Работы Коперника были первым шагом, способствующим развитию различных теорий о происхождении Земли и Солнечной системы в целом. Далее в хронологическом порядке будут описаны теории происхождения солнечной системы, которые по-своему дают представление.

Теория Канта-Лапласа о происхождении солнечной системы

Одной и первых попыток понять причины возникновения Солнечной системы была гипотеза, сформулированная Пьером Лапласом и Иммануилом Кантом (конец XVIII века). Они считали, что предком Солнечной системы была раскалённая газопылевая туманность, которая вращалась вокруг плотного ядра. Под действием гравитации эта туманность сплющивалась у полюсов, после чего превратилась в большой диск. Из-за неоднородной плотности диск расслоился на отдельные кольца из газа. Со временем данные кольца сгущались и превращались в газовые сгустки, вращающиеся вокруг своей оси. После остывания эти сгустки стали планетами, а окружающие их кольца – спутниками. Большая часть туманности, оставшаяся в центре и имеющая достаточную плотность для образования звезды, стала Солнцем. В XIX веке были получены некоторые новые результаты в астрономии, которые противоречили данной гипотезе. Несмотря на то, что гипотеза Канта-Лапласа была признана недостаточной, её ценность до сих пор велика.

Теория О. Ю. Шмидта о происхождении солнечной системы

Теория О. Ю. Шмидта о происхождении солнечной системы

Советский геофизик и астроном Отто Юльевич Шмидт, работающий в первой половине XX века, по-другому представлял себе процесс образования Солнечной системы. Согласно его теории, Солнце, блуждая по галактике, прошло сквозь газопылевое облако, захватив с собой его часть. Далее твёрдые частицы облака стали слипаться и образовывать холодные планеты. Повышение температуры на этих планетах произошло позже из-за сжатия и поступления солнечной энергии. В процессе нагревания Земли происходили массовые извержения вулканов на её поверхности, что поспособствовало формированию первых земных покровов. Газы, выделяющиеся при этом из лавы, образовали первую атмосферу, которая пока была лишена кислорода. Атмосфера того времени содержала более 50 % водяного пара, разогретого более чем на 100 °C. В процессе дальнейшего остывания водяной пар конденсировался, образовав тем самым первичные океаны. Считается, что это произошло примерно 4,5-5 млрд лет назад. Позже началось образование суши – литосферных плит, возвышающихся над уровнем океана.

Теория Ж. Бюффона о происхождении солнечной системы

Теория Ж. Бюффона о происхождении солнечной системы

Не все учёные поддерживали эволюционные концепции происхождения планет. В XVIII веке Жорж Бюффон, французский естествоиспытатель, поддержал и развил гипотезу, представленную американскими физиками Мультоном и Чемберленом. Заключалась она в следующем: в определённый момент в окрестности Солнца пронеслась некая другая звезда. Сила гравитации от той звезды вызвала выплеск материи с поверхности Солнца; эта волна вытянулась на десятки и сотни миллионов километров. После этого оторвавшаяся солнечная материя охладилась и образовала сгустки вещества, вращающегося вокруг Солнца. Каждый сгусток впоследствии сформировал свою планету.

Теория Ф. Хойла о происхождении солнечной системы

Несмотря на существенные различия этих теории происхождения солнечной системы, все они основаны на том, что планеты произошли из цельного сгустка материи. Также большинство гипотез утверждают, что Солнце и Земля сформировались приблизительно одновременно. Современные гипотезы формирования Земли и Солнечной системы не идеальны и имеют ряд недостатков и нестыковок, поэтому данную проблему не стоит считать полностью решённой.

3 Comments

Здравствуйте.
Очень полезная и интересная статья!
Спасибо Вам за эту информацию.

Пожалуйста, всегда рады Вам помочь…

Интересная статья. Спасибо.

Оставить комментарий Отменить ответ

06477a83b8ff175626fba1fdaac52006

Обзор Volkswagen Polo Classic (1994-2000) плюсы и минусы

a45bb3d99de9d2790889ad860750638d

Вернись к Sorento

1877175687e510d7a0253404bada5c16

Как стать женщиной на миллион


Боюсь сказать то, что обидит

7a27df8e3fe1b0cf97be8bf2ee29d8ad

Как избежать конфликтов на работе

04c0810f0c807570cd601a81a391cb37

Как бороться с паническими атаками

280532b1bfb6eda8a19b7b790a964e90

Гороскоп на сентябрь: не робейте перед трудностями

Все права защищены "Интересные статьи" 2015

Интересные статьи обо всем

ЖЕНСКИЕ ИНТЕРЕСЫ

СТАТЬИ ДЛЯ МУЖЧИН

СТАТЬИ ДЛЯ ОБЩЕЙ АУДИТОРИИ

800px-Kant_gemaelde_3.jpg

Иммануил Кант высказал гипотезу о происхождении планет и Солнца из гигантского холодного пылевого облака . Частицы этого облака образовывали сгустки. Со временем эти сгустки становились всё больше и больше и превратились в объекты Солнечной системы.


planetarty_system_formation.jpg

Pierre-Simon_de_Laplace_by_Johann_Ernst_Heinsius_(1775).jpg

Пьер Симон Лаплас (\(1749\)–\(1827\)) — французский математик, механик, физик и астроном. Один из создателей теории вероятностей. Дал научное объяснение движению Луны, Юпитера, Сатурна.

Пьер Лаплас высказал теорию о том, что все объекты Солнечной системы сформировались из раскалённого газового облака , которое постоянно вращалось. Сжатие этого облака произошло в результате постепенного остывания. Затем образовались кольца разного радиуса. Кольца уплотнялись и образовывали планеты, а центральный сгусток превратился в Солнце.


planet_formation.jpg

James_Hopwood_Jeans.jpg

Джеймс Хопвуд Джинс (\(1877\)–\(1946\)) — английский физик-теоретик, астроном, математик. С середины \(1910\)-х годов интересы Джинса сосредоточились на астрофизике. В \(1914\)–\(1916\) годах он занимался задачей о равновесии жидких вращающихся масс и проанализировал пути эволюции быстро вращающегося жидкого тела. Один из выводов, к которому пришёл Джинс, состоял в том, что планетная система может образоваться из вращающейся массы газа.

В \(1919\) году Джеймс Джинс выдвинул теорию, согласно которой все объекты солнечной системы образовались из вещества Солнца, которое было вырвано из него в результате близкого прохождения рядом c ним какой-то звезды. Сгустки этого вещества дали начало планетам Солнечной системы.

Не пытаясь объять необъятное, Лаплас начинает рассказ о рождении Солнечной системы с уже существующей вращающейся газовой туманности, имеющей центральное сгущение – Солнце. Не имея знаний и доказательных наблюдений, Лаплас не стал измышлять способы образования таких туманностей. Важно то, что в согласии с наблюдениями англичанина Вильяма Гершеля, можно было с уверенностью сказать, что подобные туманности существуют. Гершель обнаружил много различных туманностей, в том числе и те в которые были погружены отдельные звёзды (пример его наблюдений - Плеяды).

Туманность представляла собою, по мнению Лапласа, как бы разогретую атмосферу центрального тела. Эта атмосфера вращалась с единой угловой скоростью, то есть каждая частица атмосферы совершала оборот вокруг Солнца за один и тот же промежуток времени. Это не согласуется с законами Кеплера, однако, мы имеем место с целостным объектом – атмосферой, скорости молекул в которой выравниваются благодаря взаимному действию друг на друга. Также Лаплас совершенно верно указывает на то, что такая туманность должна со временем сжиматься к экваториальной плоскости, где орбиты частиц устойчивы. Чем больше скорость вращения, тем больше сжатие.

Далее Лаплас рисует картину остывания туманности. В соответствие законам физики, остывание ведёт к ее уменьшению, а уменьшение вращающегося тела непременно ведёт к увеличению угловой скорости его вращения (для дотошных: закон сохранения момента импульса, см. здесь ). Лаплас полагал, что в один момент времени скорость вращения возрастает настолько, что центробежная сила на экваторе туманности становится равной силе тяготения. Частицы, попадающие под это равенство, теряют связь с туманностью и отслаиваются от неё, образуя газовое кольцо, вращающееся с постоянной угловой скоростью независимо от первоначальной туманности. Туманность при этом сжимается дальше, увеличивая скорость вращения. Явление отделение колец происходит несколько раз. Кольца имеют тем большую скорость, чем ближе они расположены к Солнцу. Наконец, скорость вращения Солнца должна быть ещё больше, чем скорость вращения ближайшего к нему кольца. Как Вы понимаете, из колец, по уразумению Лапласа, образовались планеты, из схожих колец вокруг планет – спутники и, собственно, наблюдаемые кольца (в те времена известны были лишь кольца Сатурна). Лаплас видел подтверждения своей гипотезе в том, что периоды обращения планет уменьшаются с приближением к Солнцу, а Солнце имеет ещё меньший период обращения вокруг своей оси (Меркурий – 88 суток, Солнце – 25 суток).
Неоднородности колец Лапласа позволили образоваться сгущениям, а затем – планетам или спутникам. Если кольцо очень однородно, то, как считал Лаплас, оно остаётся кольцом. Как доказательство он приводил кольца Сатурна, каждое из которых считал газовым и сплошным.

Вращение планет Лаплас объясняет тем, что каждое кольцо, породившее планету, имело одну скорость вращения вокруг Солнца, то есть, вращалось как одно целое. При этом частицы, внешней части кольца должны были двигаться с большей скоростью, чем частицы внутренних областей. Они-то и подгоняли внешний край образующейся планеты, подкручивая её в направлении своего движения.

Строгий и холодный ум Лапласа всегда стремился математически анализировать еще не исследованные явления природы, выявить их подчинение определенным законам. Ему были чужды полеты фантазии или поспешные умозрительные выводы, не основанные на достаточном фактическом материале и математических расчетах.

Только раз, именно в космогонической гипотезе, Лаплас дал волю своему воображению, хотя и сдерживаемому всей его эрудицией в области механики. Апаго говорит, что ни один геометр не остерегался так решительно духа гипотез, как Лаплас. Если Лапласу удавалось избегать гипотез, то лишь потому, что он не являлся творцом совершенно новой отрасли науки и почти не изучал таких явлений, которые, повидимому, не могли быть уложены в рамки закона всемирного тяготения. Гениально углубляя теорию Ньютона, находя для нее новые применения и сопоставляя ее с накопляющимися данными наблюдений, Лаплас, как уже говорилось, не чувствовал пользы, которую гипотезы приносили многим из его собратьев. Между тем, не создавая гипотез, дающих направление научному исследованию, астро-физика – наука о физической природе небесных светил – до сих пор влачила бы жалкое существование.

С точки зрения чистой механики математический анализ подтвердил во всех основных пунктах правильность выводов, сделанных Лапласом для об'яснения известных в его время фактов.

Кант пытался нарисовать картину происхождения вселенной в целом и отдельных ее частей, Лаплас ставит себе более узкую задачу. Он ограничивается рассмотрением происхождения солнечной системы. Причина заключается опять-таки в том, что во времена Лапласа о звездной вселенной, лежащей далеко за пределами солнечной системы, почти ничего еще не было известно, а Лаплас был очень строг к данным. Лишь его современник – бывший музыкант Вильям Гершель, дезертировавший из ганноверской армии в Англию, научился там строить гигантские телескопы и заглянул в бездны звездного пространства. Как увидим, уже первые открытия Гершеля оказали влияние на Лапласа: он использовал их для обоснования отправной точки своей гипотезы.

До Гершеля, а тем более во времена Коперника, Кеплера, Галилея и даже Ньютона, знания о мире почти исчерпывались знанием солнечной системы, и потому до сих пор так часто ставят знак равенства между происхождением вселенной и происхождением солнечной системы. Между тем говорить о происхождении вселенной – мира вообще – просто нелепо. Это значит заранее и произвольно приписывать ему конечность и во времени и в пространстве. Как можно говорить о происхождении бесконечного пространства в бесконечности времени? Можно говорить только о происхождении тех или иных конкретных форм материи в определенном, известном нам, но очень малом уголке вселенной. Выяснить, как происходит развитие материи, переход ее из одной формы в другую – вот подлинная задача космогониста-диалектика и материалиста.

Что было вместо солнечной системы.

При помощи своих гигантских телескопов с зеркалами, отшлифованными его собственными руками, Гершель смог впервые изучить сотни и даже тысячи туманностей и подметить в них большое разнообразие. 4 В одних местах он видел огромные, клочковатые и неправильные массы светящегося вещества, заливающие своим слабым светом огромные пространства неба. В других туманностях он замечал некоторую правильность очертания и увеличение яркости к центру светящегося пятна. В третьих туманностях – еще более правильной формы, он видел яркие звездообразные ядра, окруженные блестящей туманной массой, блеск которой планомерно ослабевает с удалением от этого ядра.

Некоторые звезды, например, главные звезды в скоплении Плеяд, оказались окруженными слабо, едва заметно светящимся веществом.

Таким образом, у Гершеля, а за ним и у Лапласа, создалось впечатление о существующем медленном сгущении туманного вещества в компактные звездообразные тела, в раскаленные солнечные шары, окруженные сначала обширной, но разреженной атмосферой. Эта первобытная туманность была, таким образом, доподлинно обнаружена в мировом пространстве и представляла нечто весьма отличное от метеоритной туманности Канта, состоящей то ли из твердых, то ли из жидких частиц. Это не был неопределенный по физическому строению Хаос древних греков.

Со времен Гершеля и Лапласа идея сгущения звезд из разреженных туманных масс сохранилась до настоящего времени, и в том или ином виде небулярные (от слова nebula – туманность) гипотезы происхождения тех или иных форм небесных тел не сходят со сцены.

Туманную атмосферу, окружающую первобытное Солнце, Лаплас представляет себе аналогичной современной раскаленной атмосфере Солнца, т. е. чисто газовой, сильно нагретой, но простирающейся далеко за орбиту самой далекой планеты солнечной системы. Такой планетой во времена Лапласа был Уран, открытый тем же Гершелем в 1781 году.

Лаплас уже сразу полагает, что первичное туманное Солнце обладало медленным вращением вокруг своей оси, увлекая в него и окружающую его атмосферу. Нет автора, который, излагая этот пункт гипотезы Лапласа, не бросил бы ему явного или скрытого упрека за его отказ об'яснить происхождение этого вращения. Вот мол, Кант, хоть и неверно, а пытался об'яснить происхождение вращения своих туманностей. Между тем такие упреки могут делать лишь те, кто не хочет понять, что всякое движение, неизменно свойственное извечной материи, состоит из комбинации поступательного и вращательного движения и так же не нуждается в об'яснении, как существование самой материи и движения вообще. Мало того, открытия последних лет ясно обнаружили вращение всех туманностей, которые только удалось достаточно исследовать при помощи спектрального анализа.

Очевидно, Лаплас был более последовательным материалистом, чем все его биографы и компиляторы.

Вначале туманность Лапласа вращается как твердое тело, с одинаковой угловой скоростью, и чем дальше ее частицы от центра, тем больше их линейная скорость при таком вращении.

Чтобы об'яснить происхождение тех или иных форм материи и происходящих в них процессов, надо прежде всего знать эти формы и эти процессы. К системе Коперника уже нельзя было применить об'яснении, дававшихся в поэтических легендах индусов или египтян. Нельзя было уже потому, что об'яснять надо было что-то иное. Слишком непохож был мир, известный Копернику, на мир, известный индусам или египтянам.

Основными характерными особенностями солнечной системы, с которыми пришлось считаться гипотезе Лапласа, были следующие.

1. Подавляющая часть массы солнечной системы заключена в Солнце, и на долю всех планет, вместе взятых, приходится только 1/700.

2. Плоскости орбит всех планет и всех спутников почти совпадают друг с другом и с плоскостью солнечного экватора.

3. Все планеты обращаются вокруг Солнца в одном и том же направлении, в том же, в каком сам солнечный шар вращается вокруг своей оси. Это направление вращения в астрономии называется прямым.

4. Спутники обращаются вокруг своих планет в том же самом прямом направлении.

5. Сами планеты вращаются вокруг своей оси тоже в прямом направлении. (О вращении спутников вокруг своей оси в то время еще ничего не было известно, да и сейчас мы знаем об этом очень мало).

6. Эллиптические орбиты планет и спутников очень близки к кругам.

7. Вокруг одной из планет – Сатурна – наблюдается очень тонкое, но широкое кольцо, состоящее, собственно говоря, из ряда концентрических колец.

8. Туманного вида светила, быстро проносящиеся по солнечной системе и носящие название комет, двигаются либо по очень вытянутым эллипсам, либо даже по разомкнутым кривым – параболам.

Рождение планет.

Чем быстрее вращается тело, тем больше в нем центробежная сила, которая сильнее всего действует на частицы, лежащие на границах экватора туманности. Поэтому туманность сплющивалась у своих полюсов все больше и больше, вытягиваясь в плоскости экватора и напоминая своим видом линзу, чечевицу или две глубокие тарелки, сложенные своими краями.

На некотором расстоянии от оси вращения в плоскости экватора частички приобрели скорость, достаточную для того, чтобы действующая на них центробежная сила уравнялась с силой тяготения. Заметим, что если первоначально эта туманность простиралась далеко за орбиту наиболее далекой планеты, – она не простиралась все-таки в бесконечность. В самом деле, частички, очень далекие от центрального сгущения, могли им притягиваться слабее, чем каким-либо другим массивным небесным телом, т. е. какой-нибудь другой звездой. Даже и без этого влияния со стороны солнечных соседей такие далекие частички при достаточной скорости или при случайном толчке легко могли выйти из области притяжения центрального сгущения и рассеяться в мировом пространстве.

Частички, лежащие на экваторе и испытывающие при вращении центробежную силу, равную силе их притяжения к центру, теряли связь с остальной массой туманности и отслаивались от нее. Они продолжали вращаться уже самостоятельно, на определенном расстоянии от центра и с постоянной скоростью. Так как процесс охлаждения и сжатия туманности происходил непрерывно, то от туманности, вращавшейся все быстрее и быстрее, в экваториальной плоскости отрывались слои за слоем, всякий раз как центробежная сила для данных частиц начинала уравновешивать тяготение.

Таким образом, сплющенная туманность превратилась в шар, оставшийся от центрального ядра, окруженный неоднородным, тонким и почти плоским газовым кольцом, лежащим в экваториальной плоскости. Образовавшееся плоское кольцо вращалось уже не как твердое тело, потому что после каждого отслоения газового пояска скорость вращения остатка туманности возрастала, как этого требуют законы механики. Различие в угловой скорости частичек кольца, сжатие поясков вследствие охлаждения и взаимное притяжение частичек таких поясков начало производить расслоение кольца на отдельные пояса или внутренние кольца, отделенные друг от друга промежутками. Наглядное представление о получившейся картине дает в миниатюре планета Сатурн со своими плоскими, концентрическими кольцами, отделенными друг от друга несколькими пустыми промежутками. При наблюдении в телескоп эти промежутки в кольцах Сатурна кажутся темными.

Образование колец является наиболее характерной чертой гипотезы Лапласа.

Лаплас полагал, что отделившиеся таким образом кольца образовались как раз в местах, занятых теперь орбитами планет. Он думал, что внутреннее трение между частичками каждого отдельного кольца должно было выравнять их угловые скорости, так что в конце концов кольцо вращается вокруг своего центра с угловой скоростью, одинаковой во всей своей массе. Охлаждение и взаимное тяготение частиц вело к дальнейшему сжатию кольца, которое, конечно, лишь в исключительных случаях могло бы быть однородным. В нем неизбежно должны были бы встречаться уплотнения и разрежения газа. Более массивные комки постепенно должны были притянуть к себе, собрать остальные частички, и, таким образом, каждое неоднородное кольцо сбивалось в один газовый шар, несущийся вокруг Солнца на том расстоянии, на каком отделилось соответствующее кольцо, и имеющий ту скорость, какую имела туманность на экваторе в момент отделения этого кольца. Поэтому-то кольца, отделившиеся позднее, находившиеся ближе к Солнцу и имевшие большую угловую скорость, превратились в планеты с наименьшим периодом обращения. Действительно, самая близкая к Солнцу планета – Меркурий обегает вокруг него в 88 суток; следующая планета – Венера – в 225 суток; Земля – в год, и так вплоть до Урана, обращение которого составляет 84 года. Солнце, которое Лаплас мыслит сжавшимся центральным ядром, обладает периодом вращения вокруг оси в 25 дней, т. е. еще более коротким, чем период Меркурия, что и соответствует теории Лапласа.

Действительно, после отделения кольца Меркурия сжимающееся центральное тело должно было начать вращаться еще быстрее. Вместе с тем описанные процессы, очевидно, вполне могли привести к тому, что существует в действительности, т. е. к тому, что орбиты всех планет – почти круговые и лежат почти в плоскости солнечного экватора, причем направления обращений все одни и те же – прямые.

Вращение планет и рождение спутников.

Возникновение вращения планет вокруг своей оси Лаплас об'ясняет тем, что кольцо, сгущающееся в газовый комок, двигающийся с одинаковой угловой скоростью, т. е. так, что все его частицы в одно и то же время делают полный круг около Солнца, – имело скорость на внутреннем краю меньше, чем на внешнем. Поэтому внешние части как бы забегали вперед и привели этим во вращение образующийся газовый шар, дальнейшее сжатие и охлаждение которого привело к формированию планет в их современном виде.

Незначительная вначале скорость вращения планет впоследствии должна была увеличиться, потому что планета сжималась при охлаждении, а при этом, как мы знаем, скорость вращения увеличивается.

Однако, прежде чем застыть, многие пришедшие во вращение газовые шары – будущие планеты – испытали тот же процесс, в результате которого они сами образовались. Их охлаждение и сжатие повело к отслоению от них колец, лежащих почти в той же плоскости, что путь планеты около Солнца. С этими кольцами повторился процесс их распадения, и так, по мысли Лапласа, образовались спутники планет – их луны. Лишь у Сатурна, говорит Лаплас, газовые кольца, отслоившиеся от будущей планеты, оказались так однородны, что не могли собраться в отдельные большие тела, а распались на множество крошечных телец, которые, благодаря своему количеству, образовали метеоритные кольца. Действительно, исключительный вид планеты Сатурн, не забываемый никем, кто его видел в телескоп, является как будто лучшей иллюстрацией и лучшим подтверждением правильности гипотезы Лапласа.

Опыт Плато.

Можно себе представить, какое впечатление произвел опыт, при помощи которого гипотеза Лапласа, как казалось, была подтверждена. Его сделал в 1843 году Плато. Он взял смесь воды со спиртом, плотность которой была одинаковой с плотностью жидкого масла. Если в такую жидкость влить масло, то оно соберется в спирте в виде шара, находящегося в безразличном равновесии, не всплывая наверх и не падая на дно. Плато проткнул через этот шар палочку и привел ее в быстрое вращение, увлекающее и масляный шар. При быстром вращении жидкий масляный шар сплющивается, и от него в плоскости экватора отделяются кольца. Кольца скоро распадаются на отдельные мелкие шарики, продолжающие вращаться вокруг большого масляного шара, проткнутого палочкой. Получается как будто полная аналогия той картины, которую так мастерски набросал Лаплас.

Теперь мы уже знаем, что опыт Плато совсем не является подтверждением гипотезы Лапласа. Масляный шар, плавающий в спирте, не имеет ничего общего с огромной, разреженной и раскаленной туманностью Лапласа. В частности, в опыте Плато большую роль играют явления так называемого поверхностного натяжения жидкостей.

Происхождение комет.

На иную точку зрения стал Лаплас для об'яснения происхождения комет с их вытянутыми путями вокруг Солнца, нередко пересекающимися под большим углом с плоскостями планетных орбит. Здесь Лаплас находится под влиянием тех результатов, которые он получил, тщательно вычисляя влияния, которые массивные планеты, особенно Юпитер, оказывают на движение комет.

Идея эволюции.

Гипотеза Лапласа чрезвычайно убедительно продемонстрировала идею эволюции мировых тел, их естественного и постоянного развития. Она показала, как из более простых форм материи образуются более сложные, показала, что солнечная система должна была иметь свою историю во времени и что ее упорядоченность сегодня является необходимым (детерминированным) следствием законов, действовавших то вселенной миллиарды лет назад. Будущее солнечной системы обусловлено действием тех же неизменных законов природы и современным состоянием этой системы. Простому случаю и потусторонней воле в этой картине мира уже не осталось никакого места, и изменяемость солнечной системы, а с ней и Земли, должны были оказать и оказали свое влияние на целый ряд смежных дисциплин.

Если такое влияние гипотезы Лапласа имело место, а теория Канта осталась почти незамеченной, то это об'ясняется не только высоким авторитетом Лапласа в научных кругах. Ко времени Лапласа идеи эволюции уже зарождались в умах. Еще в 1759 году, почти одновременно с Кантом, К. Вольф впервые попытался указать в биологии на развитие видов и протестовал против теории их неизменяемости. Однако в его руках еще не было всех нужных для этого данных. Но через четверть века данные науки умножились и сами собой подготовили почву к восприятию идей эволюции, а Французская революция сделала мозги людей более восприимчивыми к новым мыслям, к новому мировоззрению.

Вслед за астрономией идею эволюции должна была воспринять геология, потому что господствовавшая в ней теория катастроф Кювье не вязалась с медленным и непрерывным видоизменением того небесного тела, верхними слоями (корой) которого занималась геология.

Кювье предполагал, что геологические периоды отделялись друг от друга бурными катастрофами, при которых вся жизнь на нашей планете погибала и что всякий раз после этого происходил новый акт творения органической жизни. Ляйелль, по примеру Лапласа, внес в геологию учение о непрерывном видоизменении лика Земли под влиянием процессов размывания, выветривания горных пород и т. п.

Позже всего идеи развития утвердились в биологии, и то лишь после продолжительной борьбы, в которой фон Бух, Ламарк и Сент Илер были в первых рядах защитников этих идей. Однако лишь Дарвину в 1859 году удалось утвердить эти идеи, и с тех пор понятие о развитии всех форм природы стало для нас привычным и естественным. Идея о всеобщей связи явлений в мире и развитии природы, таким образом, прочно утвердились в естествознании и с ними вошли в науку элементы диалектики. Хотя Лаплас в основном стоит еще на механистических позициях материализма, его космогоническая гипотеза уже содержала в себе зародыш диалектического мышления. Это видно, например, из следующих слов Энгельса:

НОВЫЕ И СВЕРХНОВЫЕ ЗВЕЗДЫ, УВИДЕННЫЕ ЛАПЛАСОМ


Реконструкция вспышки сверхновой, которую наблюдал Тихо Браге в 1572 году.

«Иногда были видны звезды, появляющиеся почти внезапно и после периода яркого блеска исчезающие. Такой была знаменитая звезда, наблюдавшаяся в 1572 году в созвездии Кассиопеи. За короткое время она достигла яркости, превышающей яркость самых прекрасных звезд и даже Юпитера.

Лаплас исходил из видимых траекторий планет, чтобы объяснить принципы их движения. Он подчеркивал, что исключительно благодаря теории системы мира человеческий разум смог подняться по крутой лестнице и возвыситься над чувственным обманом, преодолеть путь от геоцентризма к гелиоцентризму. Он напомнил о том, что существуют чрезвычайные небесные явления, такие как появление комет, которые движутся во всех направлениях, не учитывая плоскости эклиптики или направления траекторий планет. Ученый также заявил, что белое свечение Млечного Пути, поясом охватившее небесный свод, — это огромная туманность. Таким образом, Лаплас описал в книге все небесные объекты, от самых маленьких до гигантских.

ПРОИСХОЖДЕНИЕ СОЛНЕЧНОЙ СИСТЕМЫ:

ГИПОТЕЗА О ГАЗОВОЙ ТУМАННОСТИ

Гипотеза Лапласа стремилась объяснить подтвержденный наблюдениями факт, который Ньютон так и не смог обосновать сторонникам Декарта: все планеты и известные спутники вращаются по своим орбитам, которые лежат практически в одной плоскости; также эти орбиты имеют очень небольшой эксцентриситет (планеты практически двигаются по кругу) и этим отличаются от орбит комет (очень вытянутых, иногда ретроградных и с наклонением, которое резко отличается от плоскости движения планет и спутников). Лаплас считал, что этот факт должен иметь четкую причину. Наконец, поскольку все небесные тела, за исключением комет, имеют некоторые общие характеристики, очень вероятно, что их объединяет и общее происхождение. Однако катастрофическая теория де Бюффона, по мнению Лапласа, была неполной. Конечно, она объясняла, почему планеты двигаются в одном направлении и в одной плоскости, но не помогала понять, почему орбиты имеют такой малый эксцентриситет.

Лаплас предположил, что Солнце изначально было намного больше, а его атмосфера распространялась до границ Солнечной системы, образуя своего рода туманность. В этот период Солнце было похоже на туманности, наблюдаемые в телескоп. Остывая, молекулы, расположенные на границах солнечной атмосферы, образовали вокруг звезды круговые пояса, которые, сгущаясь, приняли сферическую форму, чтобы превратиться в известные нам планеты. Таким образом, все планеты и их спутники вращаются в одном направлении (которое было присуще вращению солнечной атмосферы) и расположены в одной плоскости. Сгущаясь, атмосфера ускоряет свое вращение. Таким образом, наиболее удаленные от Солнца планеты вращаются медленнее, чем более близкие. При ускорении вращения увеличивается центробежная сила, которая превышает силу тяготения, удерживающую молекулы на месте (см. рисунок). Согласно этой гипотезе вокруг Солнца вращались многочисленные туманные кольца, из которых и были образованы планеты. Кометы же, напротив, являются небесными телами, не входящими в Солнечную систему.


Реконструкция гипотезы газовой туманности Лапласа.

В течение многих лет гипотеза Лапласа называлась гипотезой Лапласа — Гершеля, но в конце XIX века немецкий физик Герман фон Гельмгольц (1821-1894) напомнил о вкладе Канта и дал гипотезе новое название: гипотеза Канта — Лапласа. Эта гипотеза считалась довольно правдоподобной даже после того, как некоторые ее критики отметили, что на самом деле не все планеты и спутники Солнечной системы вращаются в одном направлении. Это стало известно после открытия в 1846 году Тритона — спутника Нептуна, который движется в противоположном направлении.


Модель черной дыры в 10 солнечных масс, наблюдаемой на расстоянии 600 километров, на заднем плане — Млечный Путь.



Портрет графа де Бюффона, автора гипотезы об образовании Солнечной системы.


Портрет Иммануила Канта. Немецкий философ сформулировал гипотезу об образовании системы мира, аналогичную гипотезе Лапласа.

БОГ В РАБОТЕ ЛАПЛАСА

Именно поэтому Бонапарт удивился тому, что Лаплас ни разу не сослался в своем труде на Бога.

Лагранжу и Лапласу удалось избежать заблуждения Ньютона, которое позднее соблазнит и Эйлера, что божественное провидение должно регулярно проявлять себя, восстанавливая порядок во Вселенной. Лагранж начал исследования, анализируя удаленность планет от центра Солнечной системы и доказывая, что ни одна из них не может покинуть ее пределы. Лаплас проанализировал другие факторы и отклонения и пришел к выводу, что планеты также не могут покинуть плоскость, в которой вращаются. К тому же, как мы уже увидели в главе 2, в математических выражениях вековых неравенств, которые проявляли Юпитер, Сатурн и Луна, члены ряда не могут расти до бесконечности и дестабилизировать в долгосрочной перспективе их орбиты. Сатурн никогда не покинет Солнечную систему, а Луна не упадет на Землю. Главный труд Лапласа венчает труды Ньютона в области механики и объясняет, что орбитальные аномалии, так заботившие британца, являются лишь возмущениями, которые зависят от закона тяготения и имеют тенденцию с течением времени компенсироваться.

Лаплас — с его космологической гипотезой первичной туманности — смог объяснить происхождение Солнечной системы, ее конфигурацию, слаженное движение, не ссылаясь на Бога. Происхождение и устойчивость Солнечной системы — две астрономические загадки, побудившие Ньютона апеллировать к идее божественного вмешательства, — были наконец решены. После долгих лет верной службы Создатель мог отправляться на покой: гармонию Вселенной можно было гарантировать и без него.

Читайте также: