Гипоксия и физические упражнения кратко

Обновлено: 30.06.2024

Для нашего организма очень важно дыхание. В дыхательную систему поступает необходимый кислород, который способствует окислению органических веществ, а выделяется углекислый газ. Так, один из видов тренировки — гипоксия.

Те, кто занимается гипоксическими тренировками, отмечают следующие положительные изменения в организме: Улучшается работа дыхательного аппарата. Укрепляется иммунитет. Легко снимается стрессовое напряжение. Дыхание становится правильным, полным. Улучшается работа мозга.

1.Задержки дыхания в покое. Делается натощак. Перерыв между задержками не меньше 1 минуты, не более 3-х минут.

2.Ограничение дыхания в повседневной жизни. Необходимо постоянно ощущать легкую нехватку воздуха.

3.Задержка дыхания на ходу.

4.Задержки дыхания при наклонах.

6.Кратковременные задержки дыхания.

О том, насколько полезен горный воздух, было рассказано ранее. Но есть существенные недостатки такого вида терапии.

Это: Для лечения и профилактики заболевания необходимо от 30 до 60 дней. Нет индивидуального подбора гипоксического фактора. Есть случаи плохой переносимости горного климата.

Нормобарическая гипоксия. Это способ, который повышает сопротивляемость организма за счет привыкания к гипоксии. Она достигается при дыхании газовой смесью, в которой содержание кислорода снижено до 10%

Стоит отметить: чтобы была эффективной гипоксическая тренировка, необходимо придерживаться условий :

Гипоксическое воздействие на организм должно длиться 3-10 минут, не более. Общая продолжительность сеанса за день – не более 1,5-2 часа.

Гипоксические нагрузки стоит пересмотреть или отменить если наблюдаются следующие проявления: Кашель. Боли в желудке. Боли в желчном пузыре, обострение гипертонии. Некоторым необходимо подготовить организм. Для этого рекомендуют использовать следующие способы:

Использовать растения-адаптогены. К ним относятся: элеутерококк колючий, аралия маньчжурская, золотой корень и др..

Выполнение упражнений на растяжение. Это повышает адаптационные свойства организма к гипоксии.

Паровая баня. Кровообращение в сосудах улучшается за счет их расширения.

Занятия бегом. Появляется стойкая гипоксия в результате повышения потребности организма в кислороде. Это гипоксия двигательная.

Дозированное голодание. Это мощный стимулятор, который повышает адаптационные свойства организма к гипоксии и обладает оздоровительным эффектом.

Однако, для того, чтобы заниматься гипоксическими тренировками не обязательно уезжать в горы. Сохранить молодость и здоровье вам поможет уникальная отечественная разработка — дыхательный тренажер “Самоздрав”. Занимаясь на тренажере, вы дышите воздухом, обогащенным углекислым газом и при этом можете регулировать не только время тренировки, но и объем вдыхаемой вами воздушной смеси. Постепенно увеличивая нагрузку вы можете подобрать наиболее удобный для вас режим тренировок, в результате которых у вас улучшается сон, нормализуется артериальное давление, вы будете значительно легче переносить стресс. Заниматься на тренажере “Самоздрав” легко и удобно, это можно делать во время просмотра телепередач или листая ленту соцсетей.

Рассмотрев положительные и отрицательные стороны такого вида занятий мы видим что, гипоксическая тренировка – путь к здоровью и долголетию.

Гипоксические тренировки используются в практике многих видов спорта. Спортсмены в настоящее время понимают, что могут получить преимущества в области результативности благодаря высотной тренировке в условиях гипоксии, увеличивая силу и выносливость.

Экспериментально и клинически доказано, что моделирование горных условий активирует каскад прямых и перекрёстных адаптационных эффектов. Повышается устойчивость организма как к последующим гипоксическим стимулам, так и к другим воздействиям (физические нагрузки, температурный, эмоциональный стресс).

Исследования демонстрируют улучшения в области максимального потребления кислорода (VO2 Max) и лактатного порога. В зависимости от уровня спортсмена, повышение может достигать целых 10%.

Польза тренировок в условиях гипоксии

Каковы физиологические эффекты от тренировок в условиях пониженного содержания кислорода? Вот некоторые из них:

  • увеличение количества капилляров на единицу площади в сердце, лёгких и печени;
  • увеличение рабочей площади лёгочной ткани;
  • возрастание кислородной ёмкости крови;
  • увеличение активности ферментов, участвующих в синтезе гормонов;
  • увеличение количества энергетических станций клеток (митохондрий);
  • возрастание активности ферментов окислительного фосфорилирования;
  • повышение эффективности процессов утилизации кислорода: увеличение способности тканей к извлечению и использованию кислорода из крови при его низких концентрациях;
  • повышение адаптационных возможностей организма.

Естественная гипоксия

В условиях естественного среднегорья два фактора влияют на спортсмена:

  • снижение аэродинамического сопротивления;
  • снижение доставки кислорода к работающим мышцам.

Плотность воздуха на высоте значительно ниже, чем на уровне моря, что позволяет спортсменам достигать более высоких скоростей (например, в спринтерской работе). С другой стороны, снижение парциального давления кислорода во вдыхаемом воздухе существенно снижает аэробную работоспособность спортсмена, особенно в первые дни акклиматизации. Каждые 300 м набора высоты наблюдается снижение максимального потребления кислорода на 3%.

Искусственная гипоксия

По мере развития технологий применение тренировки с имитацией условий дефицита кислорода стало популярно как среди профессиональных спортсменов для повышения спортивной работоспособности, так и среди любителей, которые хотят подготовить себя к среднегорью или просто повысить эффективность своих тренировок.

Основной прирост физической работоспособности при применении разных режимов гипоксических тренировок происходит за счёт повышения кислородной ёмкости крови, максимальной лёгочной вентиляции, стимуляции насосной функции сердца и, как результат, – увеличения максимального потребления кислорода при тестовых физических нагрузках до отказа.

Типы гипоксических тренировок

На сегодняшний день существует большое количество методик, в основе которых лежит тренировка в условиях пониженного содержания кислорода. Эти методики можно применять как в отдельности, так и комбинируя между собой. Все они обозначаются под общим названием “гипоксические тренировки”.

Выделяют три типа гипоксических тренировок:

  • длительное пребывание в условиях пониженного содержания кислорода (сон);
  • временное пребывание, а также выполнение тренировок в условиях дефицита кислорода (низкой и высокой интенсивности) с целью повышения преакклиматизации к высоте;
  • тренировки физической выносливости и повышения спортивных результатов, реабилитации после травм.

Такие тренировки очень эффективны, но при их использовании контроль за состоянием спортсмена должен быть намного выше, так как высок риск срыва адаптации. При добавлении таких тренировок лучше проконсультироваться со специалистом по данному вопросу для наиболее грамотного планирования и безопасного введения различных методик в годичный тренировочный цикл.

Корректная программа высотной (гипоксической) тренировки способна существенно повысить эффективность систем переноса кислорода в организме путем усиления вентиляции, естественной интенсификации выработки гормона эритропоэтина и увеличения митохондриальной эффективности. Это позволяет повысить эффективность выработки энергии организмом как в аэробных, так и анаэробных условиях.

Влияние высоты на спортивные результаты

Не секрет, что сегодня элитные спортсмены используют гипоксические тренировки в своей подготовке. А причиной столь массового распространения стало ухудшение результатов в стайерских дистанциях на Олимпийских играх в Мехико в 1968 году, которые прошли на высоте 2200-2300 м над уровнем моря. Результаты в беге на 10 000 м ухудшились на 1,48 мин., а на марафонской дистанции на целых 10,35 мин. Также температура, влажность, повышенное ультрафиолетовое излучение являются дополнительными факторами, влияющими на спортсмена в естественных условиях среднегорья.

Интервальная гипоксическая тренировка

Интервальное дыхание в покое смесью с пониженным содержанием кислорода во вдыхаемом воздухе (10%). Периоды дыхания и восстановления подбираются индивидуально по результатам теста и показателей пульсоксиметра во время интервалов дыхания.

Благодаря сочетанию сна в условиях нормобарической гипоксии каждую ночь и высотных тренировок со средней нагрузкой 2-3 раза в неделю, спортсмены могут увеличить результативность до уровней, недостижимых в иных условиях.

Подходы к организации гипоксических тренировок

Жить высоко – тренироваться высоко

Этот подход представляет длительное/многодневное пребывание в условиях естественной гипоксии (тренировочные спортивные базы низко- и среднегорья). Регулярные учебно-тренировочные сборы на базах в условиях естественного среднегорья также систематически применяются для подготовки спортсменов к предстоящим соревнованиям как в горной местности, так и на равнине (целенаправленно они были начаты при подготовке к Олимпийским играм в Мехико, 1968 г.).

Жить высоко – тренироваться высоко (на равнине)

Смысл подхода в том, что в ночное время суток (до 12–14 часов) человек находится в условиях гипоксии, а днём выполняет физические тренировки в условиях равнины. В первую очередь данная методика была разработана для спортсменов, специализирующихся на видах спорта с преимущественным проявлением выносливости для увеличения кислородной емкости крови и нивелирования отрицательного эффекта длительного гипоксического воздействия – снижения активности Na, K-АТФазы скелетных мышц, что сопровождается иммунодепрессией, снижением мышечной массы и, как следствие, мощности и интенсивности выполняемых нагрузок.

Жить высоко – тренироваться низко и высоко

Этот подход ориентирован прежде всего на профессиональных спортсменов, проходящих длительные курсы тренировок и предсоревновательной подготовки (минимально 3–4 недели) в естественных или моделируемых условиях среднегорья.

Жить низко – тренироваться высоко

Периодические спортивные тренировки, физические упражнения в гипоксических условиях. Метод представляет собой сочетание действия на организм физической нагрузки и гипоксической стимуляции (при этом моделируются условия высоты 2000–3500 м н.у.м., что соответствует 13–15% O2 во вдыхаемом воздухе). Спортсмен выполняет соответственно умеренные или интенсивные (на уровне анаэробного порога) физические нагрузки на тредмиле или велоэргометре, находясь одновременно в гипоксической комнате или получая гипоксическую газовую смесь через маску гипоксикатора.

Российский опыт применения гипоксии

В 2014 году перед Олимпийскими играми в Сочи Олимпийским комитетом России был реализован специальный проект, целью которого была подготовка спортсменов Олимпийской команды по биатлону к выступлению на высоте 1450 м над уровнем моря (лыжно-биатлонный комплекс “Лаура”).

Для решения задачи были сформированы контрольная и экспериментальная группа, состоящая из лыжников уровня мастеров спорта. Одна группа тренировалась как обычно, а другая группа использовала в своей подготовке специальное оборудование для адаптации к пониженному содержанию кислорода.

Научные специалисты апробировали различные методики, разрабатывали новые, искали наиболее эффективную модель практического применения. По результатам этого исследования были написаны методические рекомендации, а наиболее эффективные стратегии были апробированы сначала на резервном составе сборной России по биатлону, а потом уже и внедрены в работу основного состава. Причём не только сборной по биатлону, но и скоростному бегу на коньках, а также шорт-треку.


В работе обобщены материалы многолетних экспериментальных исследований по проблеме гипоксии в тренировке спортсменов, проведенных коллективом сотрудников отдела спортивной медицины ВНИИФК. Анализ предпринят с позиции определения факторов, обеспечивающих эффективность работы спортсменов в условиях гипоксии, позволяющих исключить ее возможные негативные последствия. Для врачей, тренеров и специалистов, работающих со спортсменами высокой квалификации.

Оглавление

  • Введение
  • Список использованных сокращений
  • 1. Гипоксический фактор в повышении функционального состояния организма спортсменов

Приведённый ознакомительный фрагмент книги Гипоксия в тренировке спортсменов и факторы, повышающие ее эффективность предоставлен нашим книжным партнёром — компанией ЛитРес.

1. Гипоксический фактор в повышении функционального состояния организма спортсменов

Для нормальной деятельности организма человека необходимо постоянное поступление кислорода (O2), воспроизводство энергии, а следовательно, постоянная работа газотранспортных систем (дыхания, кровообращения) и системы биологического окисления. В случае нарушения деятельности этих систем возникает эндогенная гипоксия (Noreen R.,Henig David J., Pirson, 2000).

Гипоксия может быть обусловлена различными нарушениями.

Дыхательная, или респираторная, гипоксия возникает в результате нарушения газообменной функции легких при нормальном парциальном давлении O2O2) в атмосферном воздухе, вследствие затруднения проникновения O2 в кровь через дыхательные пути либо при понижении PO2 в воздухе. Практически любые тяжелые нарушения внешнего дыхания могут вызвать респираторную гипоксию. При дыхательной гипоксии развивается гипоксемия, сопровождающаяся метаболическим ацидозом. Гиперкапния способствует стимуляции внешнего дыхания и кровообращения. Однако при высокой степени увеличения двуокиси углерода усугубляется респираторная гипоксия (Piiper I, 1967; Чоговадзе А.В., 1984).

Циркуляторная гипоксия возникает в результате снижения объемной скорости кровотока, что приводит либо к уменьшению притока артериальной крови к тканям, либо к затруднению оттока венозной крови от тканей. Обычными причинами циркуляторной гипоксии являются сердечная недостаточность, сосудистая недостаточность или гиповолемия. Последняя может приводить к сердечной недостаточности вследствие уменьшения притока крови к сердцу и к сосудистой недостаточности вследствие несоответствия сосудистого тонуса объему циркулирующей крови. Снижение объемной скорости кровотока при циркуляторной гипоксии сопровождается уменьшением O2 в венозной крови, а также увеличенной артериовенозной разницей по O2. Обычно гипоксия данного типа приводит к появлению метаболического ацидоза (Рябов Г.А., 1988).

Гемическая гипоксия связана с большим снижением эритроцитов либо инактивацией гемоглобина.

Гипоксия может возникать и при нормальном составе окружающей газовой среды, и при нормальной деятельности системы, транспортирующих O2 в клетки. Она развивается в том случае, если нарушается утилизация O2 в процессе биологического окисления. Кислородное голодание данного типа называется тканевой гипоксией. Недостаточность биологического окисления может быть следствием снижения интенсивности окислительных процессов или же уменьшения эффективности биологического окисления. Ослабление окислительных процессов возникает в результате снижения активности дыхательных ферментов, ослабления их образования, изменений свойств мембран митохондрий и др. (Koistinenp О., Rusko Н., Irjala К., 2000).

Гипоксемия — это состояние, при котором РO2 в артериальной крови меньше нормального ( [1] (1982) также установил, что в группе пловцов, тренировавшихся с задержкой дыхания, уровень максимального потребления кислорода (МПК) возрос на 16,6 %, а в контрольной группе лишь на 5,5 %. При этом у испытуемых не было обнаружено изменение объема сердца, количества эритроцитов и гемоглобина в крови. Автор полагает, что повышение МПК связано с улучшением капилляризации мышц, повышением эффективности внутриклеточных обменных процессов и способности вырабатывать большое количество энергии в единицу времени.

В последнее время в практике подготовки спортсменов широко стал применяться метод вдыхания гипоксически-гиперкапнических смесей (Глазачев О.С., Дудних Е.Н., Ярцева Л.А., 2010).

Таким образом, гипоксическая гипоксия в сочетании с физической нагрузкой является наиболее перспективной в повышении адаптации резервов организма, но предлагаемый метод гипоксической тренировки (в среднегорье, барокамере) не всегда приемлем и недоступен для массового применения.

Наиболее доступен для спортивной практики метод гипоксической тренировки с применением специальных масок, создающих ДМП.

Исследованиями В.С. Фарфеля (1965); А.М. Перминова (1994), проведенными на взрослых спортсменах, выявлено, что дыхание через ДМП во время работы значительно отягощается деятельностью дыхательного аппарата, при этом изменяется газовый состав воздуха, концентрация кислорода снижается с 13,9 до 11,3 %, а содержание углекислоты увеличивается с 5,0 до 5,9 %.

По данным Д.И. Тулевича, интенсивные 2-3-минутные упражнения с применением ДМП значительно более эффективны, чем длительная, но малоинтенсивная работа. Автор отметил значительное увеличение силы дыхательных мышц на вдохе и, как следствие, повышение вентиляторных возможностей респираторной системы.

М.А. Артыков в специальном исследовании установил, что на каждые 500 мл ДМП прирост легочной вентиляции составляет 10 л/мин, при этом МОД увеличивается, главным образом, за счет глубины вдоха при относительно постоянной частоте дыхательных движений.

Механизм приспособления к работе в условиях гипоксической гипоксии в целом заключается в ряде функциональных и морфологических изменений, направленных на удержание РO2

Гипоксическая силовая тренировка (KAATSU)

Самсонова, А.В. Гипоксическая силовая тренировка (KAATSU-TRAINING) / А.В. Самсонова, Е.П. Токмакова // Труды кафедры биомеханики университета имени П.Ф.Лесгафта, 2016.- Вып.10.- С. 32-36.

Самсонова А.В., Токмакова Е.П.

ГИПОКСИЧЕСКАЯ СИЛОВАЯ ТРЕНИРОВКА (KAATSU TRAINING)

Аннотация. В статье представлен обзор нового метода силового тренинга – гипоксической силовой тренировки (KAATSU Training), впервые разработанной японским ученым Йошиаки Сато в 70-х гг. ХХ в. Такой тип тренировки позволяет за короткий отрезок времени повысить уровень силы скелетных мышц или не допустить их атрофию, что очень важно в медико-спортивной реабилитации спортсменов после травмы. Авторы описали основные цели и задачи гипоксической силовой тренировки, особенности ее методики, результаты ее применения, механизмы, лежащие в основе воздействия гипоксической силовой тренировки на скелетные мышцы человека, проанализировав основные достижения в данной области отечественных и зарубежных ученых.

Ключевые слова: гипоксическая силовая тренировка, гипоксическая тренировка, тренинг с ограничением кровотока, KAATSU тренировка, гипертрофия скелетных мышц, предотвращение атрофии скелетных мышц.

HYPOXIC STRENGTH TRAINING (KAATSU TRAINING)

Alla V. Samsonova, HD, Professor, Head of Department

Lesgaft National State University of Physical Culture, Sports and Health, St. Petersburg, Department of Biomechanics

Elena P. Tokmakova, Postgraduate Student

Saint Petersburg State University, Department of Economic Cybernetics

Abstract. The article provides an overview of the new method of strength training, hypoxic strength training (KAATSU Training), pioneered by Japanese scientist Yoshiaki Sato in 70 s in 20 th century. This type of training allows to raise the level of skeletal muscle strength in a short period of time, or to prevent the muscle atrophy, which is very important in medical and sports rehabilitation of athletes after injury. The authors have described the main aims and objectives of hypoxic strength training, special aspects of it’s methodology, the results of it’s application, the underlying mechanisms of the effects of hypoxic strength training on human skeletal muscles, have analyzed the main achievements of domestic and foreign scientists in the field.

Keywords: hypoxic strength training, hypoxic training, training with blood flow restriction, KAATSU Training, hypertrophy of skeletal muscles, prevention of skeletal muscle atrophy.

ВВЕДЕНИЕ

Методика гипоксической (гипоксия – кислородное голодание) силовой тренировки, позволяющая увеличить силу и добиться значительной гипертрофии скелетных мышц была разработана японским ученым Йошиаки Сато в 70-х годах ХХ века и получила название KAATSU TRAINING (дополнительное давление). Суть методики заключалась в том, что при выполнении силовых упражнений, а также иногда и во время отдыха между сетами, посредством бароманжеты, которая накладывалась на верхнюю или нижнюю конечность, частично ограничивался кровоток в артериях (рис. 1). Последующие исследования показали, что такого рода гипоксическая силовая тренировка очень эффективна для увеличения силы скелетных мышц человека и их гипертрофии.

 Разгибание ноги на тренажере с манжетой KAATSU

Рис. 1. Момент проведения эксперимента [7]

Цели и задачи гипоксической силовой тренировки

В основном гипоксическая силовая тренировка применяется в двух направлениях. Во-первых, эта разновидность силовой тренировки используется индивидуумами различного возраста, пола и уровня подготовленности (в том числе и спортсменами) для увеличения силы и гипертрофии скелетных мышц [2, 8, 6]. Во-вторых, гипоксическая силовая тренировка используется для уменьшения последствий атрофии мышц после травм и хирургических операций [4, 3].

Организация и методы гипоксической силовой тренировки

Для гипоксической силовой тренировки используются манжеты шириной от 30 мм до 135 мм, в которых при выполнении силовых упражнений сохраняется давление от 100 до 240 мм рт. ст. В некоторых программах тренировки давление в манжетах сохраняется только в течение выполнения силовых упражнений, в других – еще и в паузах отдыха между сетами. Особенностью гипоксической силовой тренировки являются короткие паузы между сетами – 30 секунд и невысокий уровень внешней нагрузки (таблица 1).

Некоторые виды программ гипоксической силовой тренировки

Результаты применения гипоксической силовой тренировки

Приведем несколько научных исследований, характеризующих результаты, полученные в этих двух направлениях.

Увеличение силы и гипертрофия скелетных мышц человека

Одной из положительных особенностей гипоксической силовой тренировки является увеличение силы и гипертрофия скелетных мышц при достаточно коротком периоде тренировок (1-2 недели). Так, например, в исследованиях Т. Abe et al. (2005) было установлено, что площадь поперечного сечения четырехглавой мышцы бедра увеличилась на 7,7% после двух недель тренировок [2]. При этом прирост площади поперечного сечения мышечных волокон I типа составил 6%, а II типа – 28% [8].

Второй положительной особенностью гипоксической силовой тренировки является использование небольших или средних отягощений (20-50% от максимума). При этом достигается эффект такого же уровня, как и при обычной силовой тренировке с отягощениями 70% от максимума и более [7].

Уменьшение последствий атрофии мышц после травм и хирургических операций

Takarada, H. Takazawa, N. Ishii [4] в течение двух недель изучали влияние ишемии (ишемия – местное снижение кровообращения) четырехглавой мышцы бедра на уменьшение ее атрофии в группе пациентов (мужчин и женщин в возрасте 22,4±2,1 года), содержащихся на постельном режиме после хирургической операции на коленном суставе [4]. Ишемия мышцы возникала благодаря использованию бароманжеты шириной 9 см, в которой в течение пяти минут поддерживалось давление 238 мм рт. ст. В контрольной группе (без ишемии), площадь поперечного сечения мышц-разгибателей и сгибателей бедра снизилась на 20,7±2,2% и 11,3±2,6% соответственно в то время, как в экспериментальной группе, использующей ишемию четырехглавой мышцы бедра, она снизилась на 9,4±1,6% и 9,2±2,6%, соответственно. Из этого авторы сделали вывод, что ишемия мышц эффективно уменьшает атрофию разгибателей голени, вызванную послеоперационным бездействием.

По данным B. Rosenblatt [3] использование гипоксической силовой тренировки спортсменами-олимпийцами Великобритании, имеющими травмы коленного сустава, позволило повысить уровень силы четырехглавой мышцы бедра на 28% в течение 9 дней тренировки (рис. 2, таблица 2).

Прирост силы на травмированной конечности за 9 дней тренировки методом гипоксической силовой тренировки

Рис. 2. Прирост силы на травмированной конечности за 9 дней тренировки методом гипоксической силовой тренировки [3]: по оси ординат – прирост силы в %, LOWER – нижние конечности; UPPER – верхние конечности

Прирост силы мышц при использовании различных протоколов тренировки [3]

Механизмы, лежащие в основе воздействия гипоксической силовой тренировки на скелетные мышцы человека

Можно выделить несколько механизмов, лежащих в основе влияния гипоксии на силу и гипертрофию скелетных мышц человека.

Во-первых, доказано, что в условиях гипоксии дополнительно рекрутируются мышечные волокна II типа [4, 7]. Это подтверждается высоким уровнем электрической активности мышц [6, 7], а также пониженным уровнем креатинфосфата в 93% быстрых мышечных волокон.

Во-первых, Y. Takarada, H. Takazawa, N. Ishii [4] обращают внимание на тот факт, что в мышцах ног больных сердечной недостаточностью, хроническими обструктивными заболеваниями легких и периферическими сосудистыми заболеваниями имеют место гипертрофия и увеличение процентного содержания мышечных волокон II типа. Исследования российских ученых [1] подтверждают этот факт. Показано достоверное увеличение процента мышечных волокон IIB типа у больных хронической сердечной недостаточностью по сравнению со здоровыми индивидуумами.

Во-вторых, ишемия мышц вызывает увеличение производства активных форм кислорода [4, 7]. Следствием этого является повреждение мембран мышечных волокон и органоидов, что приводит к делению и последующему увеличению количества клеток-сателлитов и миоядер. Возрастание количества миоядер приводит к повышению синтеза белка.

В-третьих, в гипоксических условиях в крови увеличивается уровень норадреналина, адреналина и гормона роста, что повышает анаболический фон и стимулирует синтез белка [4].

ВЫВОДЫ

В настоящее время в зарубежной литературе активно изучаются эффекты и механизмы гипоксической силовой тренировки с небольшими или средними отягощениями. Такой тип тренировки позволяет за короткий отрезок времени повысить уровень силы скелетных мышц или не допустить их атрофию, что очень важно при спортивных травмах.

ЛИТЕРАТУРА

С уважением, А.В. Самсонова

Похожие записи:

Саркоплазматическая гипертрофия мышц

Дано определение и описаны механизмы саркоплазматической гипертрофии скелетных мышц. Показано, что этот вид гипертрофии мышц широко…

Типы гипертрофии скелетных мышц человека

В статье дается классификация различных видов гипертрофии скелетных мышц человека на основе ряда классификационных признаков: времени проявления…

Influence of the KAATSU Training on the Strength Endurance of the Muscles of the Lower Extremities in Qualified Football Players

Изучалось влияние KAATSU-тренинга на силовую выносливость мышц нижних конечностей квалифицированных футболистов. Установлены достоверные изменения в локальной силовой…

Миоглобин скелетных мышц

Дано определение миоглобина и описаны его структура и функции. Приведены данные о концентрации миоглобина в скелетных мышцах…

Упражнение и ограничение кровотока

В обзоре анализируются литературные источники, посвященные проблеме тренировки с ограничением кровотока. Авторы показали, что большое число исследований продемонстрировало…

Отсроченное начало болезненности мышц. Стратегии лечения и факторы эффективности

Описаны симптомы, причины, теории отсроченного начала болезненности мышц (запаздывающих болезненных ощущений, DOMS), а также способы уменьшения этих болей:…

Срочные гормональные ответы у элитных тяжелоатлетов-юниоров

Изучалось изменение концентрации в крови: тестостерона, кортизола, гормона роста, бета-эндорфина и лактата у тяжелоатлетов-юниоров…

Миомейкер: Мембранный активатор слияния миобластов и образования мышц

Ученые установили, что для образования мышечных волокон необходимо слияние клеток-предшественников, которые называются миобластами. Эти клетки имеют только…

Effect of KAATSU-training on the maximum voluntary isometric contraction of lower extremity muscles of qualified football players

Изучалось влияние KAATSU-тренинга на изометрическую силу мышц квалифицированных футболистов. Установлено, что интенсивный рост максимальной силы мышц…

Гидролиз АТФ в мышечных волокнах

Описано протекание реакции гидролиза АТФ в мышечных волокнах. Показано, что именно реакция гидролиза АТФ приводит к ацидозу,…

Биохимия метаболического ацидоза, вызванного физическими упражнениями

В обзоре представлены четкие доказательства того, что основной причиной ацидоза (закисления) скелетных мышц является гидролиз АТФ,…

Применение изометрических упражнений в тренировочном процессе спортсменов

Приведены две формы для проведения анкетного опроса тренеров и спортсменов относительно применения изометрических упражнений в тренировочном процессе спортсменов.

Влияние технических приёмов на механические характеристики перемещения штанги при выполнении жима штанги лёжа мужчинами и женщинами

Проведен сравнительный анализ влияния технических приёмов на механические характеристики перемещения штанги в жиме штанги лёжа мужчинами и женщинами.

Биомеханика опорно-двигательного аппарата человека

Читайте также: