Генератор прямоугольных импульсов принцип работы кратко

Обновлено: 02.07.2024

Начинаю готовиться к статье про функциональные генераторы, и решила сперва сделать подборку схем генераторов прямоугольных импульсов, так как они зачастую входят в состав функциональных генераторов, да и вообще полезны в хозяйстве.

Начнем с классики, а именно с мультивибраторов.

Симметричный мультивибратор на транзисторах

Принцип работы состоит в переходе из одного нестабильного состояния (Q1 закрыт, Q2 открыт) в другое (Q1 открыт, Q2 закрыт).

Начнем с первого состояния: Q1 закрыт, Q2 открыт .

Конденсатор С1 быстро заряжается идет через "меньший" резистор R4 и базовый переход Q2. Одновременно с этим через открытый Q2 через "больший" резистор R2 медленно разряжается C2, отрицательное напряжение на котором держит в запертом состоянии Q1.

В процессе дальнейшего перезаряда С2 на базе Q1 появляется уже положительное, отпирающее напряжение, и Q1 начинает открываться. Ток через него возрастает, снижается напряжение на коллекторе Q1 и базе Q2, что вызывает его запирание.

Напряжение на коллекторе Q2 увеличивается и через конденсатор C2 еще сильнее открывает Q1.

Процесс открывания Q1 ускоряет запирание Q2, и процесс происходит практически лавинообразно, и переход из одного состояния в другое происходит очень быстро.

В общем, транзисторы периодически друг друга открывают и закрывают.

Теперь немного о расчете элементов .

Период состоит из двух частей t1 и t2, зависящих от сопротивлений R2, R3 и емкостей C1, C2:

t1 = 0,7 x R3 x C1;

t2 = 0,7 x R2 x C2

Для примера, в схеме на картинке выше период равен t1 + t2 = 2*0,7*22 кОм*0,1 мкФ = 3,08 мс.

Мультивибратор — это простой генератор прямоугольных импульсов, который работает в режиме автогенератора. Для его работы необходимо лишь питание от батареи, или другого источника питания. Работа симметричного мультивибратора основана на зарядно-разрядных процессах конденсаторов, образующих совместно с резисторами RC-цепочки.

Как работает мультивибратор?

Начинается первый полупериод работы (колебания) мультивибратора.

Когда, в результате перезаряда С1, напряжение на базе VT2 достигнет значения +0,6 вольта относительно эмиттера VT2, транзистор откроется. Поэтому, напряжение заряженного конденсатора С2, через открытый коллекторно-эмиттерный переход VT2 окажется приложенным к эмиттерно-базовому переходу транзистора VT1 обратной полярностью. VT1 закроется.

Начинается второй полупериод работы (колебания) мультивибратора.

Процесс повторяется до момента отключения мультивибратора от источника питания.

Способы подключения нагрузки к симметричному мультивибратору

Нагрузка мультивибратора должна подключаться параллельно одному из коллекторных резисторов, но ни в коем случае не параллельно транзисторному переходу коллектор-эмиттер. Нельзя шунтировать транзистор нагрузкой. Если это условие не выполнять, то как минимум — изменится длительность импульсов, а как максимум – мультивибратор не будет работать. На рисунке ниже показано, как подключить нагрузку правильно, а как не надо это делать.

Для того, чтобы нагрузка не влияла на сам мультивибратор, она должна иметь достаточное входное сопротивление. Для этого обычно применяют буферные транзисторные каскады.

Для подключения к мультивибратору высокоомной динамической головки буферный каскад не нужен. Головка подключается вместо одного из коллекторных резисторов. Должно выполняться единственное условие – ток, идущий через динамическую головку не должен превышать максимальный ток коллектора транзистора.

Разберёмся теперь, какие параметры элементов мультивибратора задают выходные токи и частоту генерации мультивибратора?

Мультивибратор, хоть и называется симметричным, это относится только к схемотехнике его построения, а вырабатывать он может как симметричные, так и не симметричные по длительности выходные импульсы. Длительность импульса (высокого уровня) на коллекторе VT1 определяется номиналами R3 и C2, а длительность импульса (высокого уровня) на коллекторе VT2 определяется номиналами R2 и C1.

Длительность перезаряда конденсаторов определяется простой формулой, где Тау – длительность импульса в секундах, R – сопротивление резистора в Омах, С – ёмкость конденсатора в Фарадах:

Таким образом, если вы уже не забыли написанное в этой статье на пару абзацев ранее:

Полный период колебания мультивибратора – T равен сумме длительностей импульса и паузы:

Частота колебаний F (Гц) связана с периодом Т (сек) через соотношение:

Как правило, в интернете если и есть какие либо расчёты радиоцепей, то они скудные. Поэтому произведём расчёт элементов симметричного мультивибратора на примере.

Как и любые транзисторные каскады, расчёт необходимо вести с конца — выхода. А на выходе у нас стоит буферный каскад, потом стоят коллекторные резисторы. Коллекторные резисторы R1 и R4 выполняют функцию нагрузки транзисторов. На частоту генерации коллекторные резисторы никакого влияния не оказывают. Они рассчитываются исходя из параметров выбранных транзисторов. Таким образом, сначала рассчитываем коллекторные резисторы, потом базовые резисторы, потом конденсаторы, а затем и буферный каскад.

Мультивибратор в автоколебательном режиме

На рисунке 1 показана наиболее распространенная схема мультивибратора на транзисторах с емкостными коллекторно-базовыми связями, на рисунке 2 - графики, поясняющие принцип его работы.

Мультивибратор состоит из двух усилительных каскадов на резиках. Выход каждого каскада соединен со входом другого каскада через кондеры С1 и С2.

Рис. 1 - Мультивибратор на транзисторах с емкостными коллекторно-базовыми связями

Мультивибратор, у которого транзисторы идентичны, а параметры симметричных элементов одинаковы, называется симметричным. Обе части периода его колебаний равны и скважность равна 2. Если кто забыл, что такое скважность, напоминаю: скважность - это отношение периода повторения к длительности импульса Q=Tи /tи . Величина, обратная скважности называется коэффициентом заполнения. Так вот, если имеются различия в параметрах, то мультивибратор будет несимметричным.

Мультивибратор в автоколебательном режиме имеет два состояния квазиравновесия, когда один из транзисторов находится в режиме насыщения, другой - в режиме отсечки и наоборот. Эти состояния не устойчивые. Переход схемы из одного состояния в другое происходит лавинообразно из-за глубокой ПОС.

Рис. 2 - Графики, поясняющие работу симметричного мультивибратора

Допустим, при включении питания транзистор VT1 открыт и насыщен током, проходящим через резик R3. Напряжение на его коллекторе минимально. Кондер С1 разряжается. Транзистор VT2 закрыт и кондер С2 заряжается. Напряжение на кондере С1 стремится к нулю, а потенциал на базе транзистора VT2 постепенно становится положительным и VT2 начинает открываться. Напряжение на его коллекторе уменьшается и кондер С2 начинает разряжаться, транзистор VT1 закрывается. Далее процесс повторяется до бесконечности.

Параеметры схемы должны быть следующими: R1=R4, R2=R3, C1=C2. Длительность импульсов определяется по формуле:

Период импульсов определяется:

Ну а чтобы определить частоту, надо единицу разделить на вот эту вот хренотень (см. чуть выше).

Выходные импульсы снимаются с коллектора одного из транзисторов, причем с какого именно - не важно. Другими словами, в схеме два выхода.

Улучшение формы выходных импульсов мультивибратора, снимаемых с коллектора транзистора, может быть достигнуто включением разделительных (отключающих) диодов в цепи коллекторов, как показано на рисунке 3. Через эти диоды параллельно коллекторным нагрузкам подключены дополнительные резики Rд1 и Rд2 .

Рис. 3 - Мультивибратор с улучшенной формой выходных импульсов

В этой схеме после закрывания одного из транзисторов и понижения потенциалла коллектора подключенный к его коллектору диод также закрывается, отключая кондер от коллекторной цепи. Заряд кондера происходит через дополнительный резик Rд , а не через резик в коллекторной цепи, и потенциал коллектора запирающегося транзистора почти скачком становится равным Eк . Максимальная длительность фронтов импульсов в коллекторных цепях определяется в основном частотными свойствами транзисторов.

Такая схема позволяет получить импульсы почти прямоугольной формы, но её недостатки заключаются в более низкой максимальной скважности и невозможностью плавной регулировки периода колебаний.

На рисунке 4 приведена схема быстродействующего мультивибратора, обеспечивающая высокую частоту автоколебаний.

Рис. 4 - Быстродействующий мультивибратор

В этой схеме резики R2, R4 подключены параллельно кондерам С1 и С2, а резики R1, R3 ,R4, R6 образуют делители напряжения, стабилизирующие потенциал базы открытого транзистора (при токе делителя, большем тока базы). При переключении мультивибратора ток базы насыщенного транзистора изменяется более резко, чем в ранее рассмотренных схемах, что сокращает время рассасывания зарядов в базе и ускоряет выход транзистора из насыщения.

Ждущий мультивибратор

Мультивибратор, работающий в автоколебательном режиме и не имеющий состояния устойчивого равновесия, можно превратить в мультивибратор, имеющий одно устойчивое положение и одно неустойчивое положение.

Такие схемы называются ждущими мультивибраторами или одновибриторами, одноимпульсными мультивибраторами, релаксационными реле или кипп-реле. Перевод схемы из устойчивого состояния в неустойчивое происходит путем воздействия внешнего запускающего импульса.

В неустойчивом положении схема находится в течение некоторого времени в зависимости от её параметров, а затем автоматически, скачком возвращается в первоначальное устойчивое состояние.

Для получения ждущего режима в мультивибраторе, схема которого была показана на рис. 1, надо выкинуть пару деталюшек и заменить их, как показано на рис. 5.

Рис. 5 - Ждущий мультивибратор

В исходном устойчивом состоянии транзистор VT1 закрыт. Когда на вход схемы приходит положительный запускающий импульс достаточной амплитуды, через транзистор начинает проходить коллекторный ток. Изменение напряжения на коллекторе транзистра VT1 передается через кондер С2 на базу транзистора VT2. Благодаря ПОС (через резик R4) нарастает лавинообразный процесс, приводящий к закрыванию транзистора VT2 и открыванию транзистора VT1. В этом состоянии неустойчивого равновесия схема находится до тех пор, пока кондер С2 не разрядится через резик R2 и проводящий транзистор VT1. После разряда кондера транзистор VT2 открывается, а VT1 закрывается и схема возвращается в исходное состояние.

Блокинг-генератор представляет собой однокаскадный релаксационный генератор кратковременных импульсов с сильной индуктивной положительной обратной связью, создаваемой импульсным трансформатором. Вырабатываемые блокинг-генератором импульсы имеют большую крутизну фронта и среза и по форме близки к прямоугольным. Длительность импульсов может быть в пределах от нескольких десятков нс до нескольких сотен мкс. Обычно блокинг-генератор работает в режиме большой скважности, т. е. длительность импульсов много меньше периода их повторения. Скважность может быть от нескольких сотен до десятков тысяч. Транзистор, на котором собран блокинг-генератор, открывается только на время генерирования импульса, а остальное время закрыт. Поэтому при большой скважности время, в течении которого транзистор открыт, много меньше времени, в течении которого он закрыт. Тепловой режим транзистора зависит от средней мощности, рассеиваемой на коллекторе. Благодаря большой скважности в блокинг-генераторе можно получить очень большую мощность во время импульсов малой и средней мощности.

При большой скважности блокинг-генератор работает весьма экономично, так как транзистор потребляет энергию от источника питания только в течении небольшого времени формирования импульса. Так же, как и мультивибратор, блокинг-генератор может работать в автоколебательном, ждущем режиме и режиме синхронизации.

Автоколебательный режим

Блокинг-генераторы могут быть собраны на транзисторах, включенных по схеме с ОЭ или по схеме с ОБ. Схему с ОЭ применяют чаще, так как она позволяет получить лучшую форму генерируемых импульсов (меньшую длительность фронта), хотя схема с ОБ более стабильна по отношению к изменению параметров транзистора.

Схема блокинг-генератора показана на рис. 1.

Рис. 1 - Блокинг-генератор

Работу блокинг-генератора можно разделить на две стадии. В первой стадии, занимающей большую часть периода колебаний, транзистор закрыт, а во второй - транзистор открыт и происходит формирование импульса. Закрытое состояние транзистора в первой стадии поддерживается напряжением на кондере С1, заряженным током базы во время генерации предыдущего импульса. В первой стадии кондер медленно разряжается через большое сопротивление резика R1, создавая близкий к нулевому потенциал на базе транзистора VT1 и он остается закрытым.

Когда напряжение на базе достигнет порога открывания транзистора, он открывается и через коллекторную обмотку I трансформатора Т начинает протекать ток. При этом в базовой обмотке II индуктируется напряжение, полярность которого должна быть такой, чтобы оно создавало положительный потенциал на базе. Если обмотки I и II включены неправильно, то блокинг-генератор не будет генерировать. Значится, концы одной из обмоток, неважно какой, необходимо поменять местами.

Мультивибратор на транзисторах

Мультивибратор на транзисторах – это генератор прямоугольных сигналов. Ниже на фото одна из осциллограмм симметричного мультивибратора.

Симметричный мультивибратор генерирует прямоугольные импульсы со скважностью два. Подробнее про скважность можно прочитать в статье генератор частоты. Принцип действия симметричного мультивибратора мы будем использовать для поочередного включения светодиодов.

Классификация генераторов импульсов. Автоколебательные генераторы

Генератор импульсов — это устройство, которое способно создавать волны определенной формы.

Генератор прямоугольных импульсов — это генератор, который используется для получения колебаний прямоугольной формы.

В настоящее время существует большое разнообразие генераторов импульсов, которые могут классифицироваться по следующим признакам:

  1. Выходная последовательность основных импульсов – кодовые комбинации, одиночные импульсы, кодовые пакеты, парные импульсы и т.п.
  2. Количество каналов – одноканальные и многоканальные.

Генераторы прямоугольных импульсов широко используются в телевидении, технике, радиотехнике, системах автоматического управления. В данных генераторах, в отличии от генераторов гармонических колебаний, используется цепь обратного порядка, и активный элемент функционирует в нелинейном режиме. В зависимости от режима работы различают два основных вида генераторов прямоугольных импульсов:

  1. Автоколебательные мультивибраторы
  2. Ждущие мультивибраторы.

Пример схемы автоколебательного мультивибратора изображена на рисунке ниже.

Рисунок 1. Схема автоколебательного мультивибратора. Автор24 — интернет-биржа студенческих работ

Активным элементом автоколебательного мультивибратора является инвертирующий триггер Шмитта, который реализован на операционном устройстве и двух резисторах (R1 и R2). Функция третьего резистора и конденсатора заключается в формировании времязадающей цепи, которая определяет продолжительность формируемых сигналов. Операционный усилитель в данном случае охвачен связью R1 - R2 и находится в режиме насыщения, поэтому напряжение на выходе равняется напряжению насыщения (Uвых = Uнас). Переключение операционного усилителя из положительного насыщения в отрицательное или обратно происходит в том случае, когда напряжение, сформированное на инвертирующем входе, достигает отрицательного или положительного порога срабатывания – –BUнас или Buнас. В данном случае B – коэффициент обратной связи, который рассчитывается по следующей формуле:

Готовые работы на аналогичную тему

Передаточная характеристика триггера Шмитта изображена на рисунке ниже.

Рисунок 2. Передаточная характеристика. Автор24 — интернет-биржа студенческих работ

Рассмотрим работу автоколебательного мультивибратора, при условии, что t = 0, Uвых = +Uнас, при этом напряжение конденсатор — Uc(0)

В момент времени t1 напряжение достигает величины Buнас, а операционный усилитель переключается в отрицательное насыщение. Выходное напряжение становится равным отрицательному напряжению насыщения, и начинается перезарядка конденсатора, напряжение Uс(t) изменяется по следующему закону:

Рисунок 3. Формула. Автор24 — интернет-биржа студенческих работ

В момент времени t2 напряжение равно –Вuнас, и операционный усилитель переключается в положительное насыщение. Затем данный процесс повторяется. Временные диаграммы напряжений Uc(t) и Uвых(t) изображены на рисунке ниже

Рисунок 4. Временные диаграммы. Автор24 — интернет-биржа студенческих работ

Ждущие мультивибраторы

Ждущий мультивибратор — это генератор прямоугольных импульсов, который предназначен для получения одиночных импульсов установленной длительности.

Пример схемы ждущего мультивибратора изображен на рисунке ниже.

Рисунок 5. Схема ждущего мультивибратора. Автор24 — интернет-биржа студенческих работ

Импульс на выходе ждущего мультивибратора возникает в результате подачи на вход специального запускающего сигнала. Так как на его входе подключена дифференциальная цепь, то продолжительность и форма этого сигнала могут быть произвольными.

Устойчивое состояние ждущего мультивибратора достигается за счет включения диода (VD) параллельно первому конденсатору. Когда достигается состояние, при котором Uвых = -Uнас, диод открывается и напряжение конденсатора пстановится римерно равно 0,7В. Дифференциальное напряжение на входе операционного устройства отрицательно, а схема находится в устойчивом состоянии. В случае подачи на вход импульса положительной полярности в момент времени t1 напряжение на операционном устройстве становится положительным, и он переключается в состояние положительного насыщения. Когда напряжение на инвертирующем входе усилителя достигает отметки Buнас, на усилителе напряжение становится отрицательным, и он переключается в состояние отрицательного насыщения, напряжение на конденсаторе начинается снижаться. В тот момент, когда напряжение достигает отметки -0,7В, диод открывается, и схема опять оказывается в устойчивом положении. Временные диаграммы для ждущего мультивибратора изображены на рисунке ниже.

Рисунок 6. Временные диаграммы. Автор24 — интернет-биржа студенческих работ

Продолжительность импульса, который формируется на выходе ждущего мультивибратора, определяется по следующей формуле:

$tи = t1 - t2 = R3 * C1ln((R1 + R2) / R1)$

Время, которое необходимо для восстановления устойчивого состояния рассматриваемой схемы (время релаксации), рассчитывается следующим образом:

На рис. 1 приведена схема генератора, который формирует одиночные импульсы прямоугольной формы при нажатии кнопки S1 (то есть он не является автогенератором, схемы которых приводятся далее). На логических элементах DD1.1 и DD1.2 собран RS-триггер, предотвращающий проникновение импульсов дребезга контактов кнопки на пересчетное устройство. В положении контактов кнопки S1, показанном на схеме, на выходе 1 будет напряжение высокого уровня, на выходе 2 - напряжение низкого уровня; при нажатой кнопке - наоборот. Этот генератор удобно использовать при проверке работоспособности различных счетчиков.

Схема генераторов импульсов

На рис. 2 показана схема простейшего генератора импульсов на электромагнитном реле. При подаче питания конденсатор С1 заряжается через резистор R1 и реле срабатывает, отключая источник питания контактами К 1.1. Но реле отпускает не сразу, поскольку некоторое время через его обмотку будет протекать ток за счет энергии, накопленной конденсатором С1. Когда контакты К 1.1 опять замкнутся, снова начнет заряжаться конденсатор - цикл повторяется.

Частота переключении электромагнитного реле зависит от его параметров, а также номиналов конденсатора С1 и резистора R1. При использовании реле РЭС-15 (паспорт РС4.591.004) переключение происходит примерно один раз в секунду. Такой генератор можно использовать, например, для коммутации гирлянд на новогодней елке, для получения других световых эффектов. Его недостаток - необходимость использования конденсатора значительной емкости.

На рис. 3 приведена схема еще одного генератора на электромагнитном реле, принцип работы которого аналогичен предыдущему генератору, но обеспечивает частоту импульсов 1 Гц при емкости конденсатора в 10 раз меньшей. При подаче питания конденсатор С1 заряжается через резистор R1. Спустя некоторое время откроется стабилитрон VD1 и сработает реле К1. Конденсатор начнет разряжаться через резистор R2 и входное сопротивление составного транзистора VT1VT2. Вскоре реле отпустит и начнется новый цикл работы генератора. Включение транзисторов VT1 и VT2 по схеме составного транзистора повышает входное сопротивление каскада. Реле К 1 может быть таким же, как и в предыдущем устройстве. Но можно использовать РЭС-9 (паспорт РС4.524.201) или любое другое реле, срабатывающее при напряжении 15. 17 В и токе 20. 50 мА.

В генераторе импульсов, схема которого приведена на рис. 4, использованы логические элементы микросхемы DD1 и полевой транзистор VT1. При изменении номиналов конденсатора С1 и резисторов R2 и R3 генерируются импульсы частотой от 0,1 Гц до 1 МГц. Такой широкий диапазон получен благодаря использованию полевого транзистора, что позволило применить резисторы R2 и R3 сопротивлением в несколько мегаом. С помощью этих резисторов можно изменять скважность импульсов: резистор R2 задает длительность напряжения высокого уровня на выходе генератора, а резистор R3 - длительность напряжения низкого уровня. Максимальная емкость конденсатора С1 зависит от его собственного тока утечки. В данном случае она составляет 1. 2 мкФ. Сопротивления резисторов R2, R3 - 10. 15 МОм. Транзистор VT1 может быть любым из серий КП302, КП303. Микросхема - К155ЛА3, ее питание составляет 5В стабилизированного напряжения. Можно использовать КМОП микросхемы серий К561, К564, К176, питание которых лежит в пределах 3 … 12 В, цоколевка таких микросхем другая и показана в конце статьи.

Схема генераторов импульсов

При наличии микросхемы КМОП (серия К176, К561) можно собрать широкодиапазонный генератор импульсов без применения полевого транзистора. Схема приведена на рис. 5. Для удобства установки частоты емкость конденсатора времязадающей цепи изменяют переключателем S1. Диапазон частот, формируемых генератором, составляет 1. 10 000 Гц. Микросхема - К561ЛН2.

Схема кварцованного генераторов импульсов

На рис. 6 представлена схема генератора импульсов с регулируемой скважностью.

Скважность – отношение периода следования импульсов (Т) к их длительности (t):

Скважность импульсов

Скважность импульсов высокого уровня на выходе логического элемента DD1.3, резистором R1 может изменяться от 1 до нескольких тысяч. При этом частота импульсов также незначительно изменяется. Транзистор VT1, работающий в ключевом режиме, усиливает импульсы по мощности.

Генератор, схема которого приведена на рисунке ниже, вырабатывает импульсы как прямоугольной, так и пилообразной формы. Задающий генератор выполнен на логических элементах DD 1.1-DD1.3. На конденсаторе С2 и резисторе R2 собрана дифференцирующая цепь, благодаря которой на выходе логического элемента DD1.5 формируются короткие положительные импульсы (длительностью около 1 мкс). На полевом транзисторе VT2 и переменном резисторе R4 выполнен регулируемый стабилизатор тока. Этот ток заряжает конденсатор С3, и напряжение на нем линейно возрастает. В момент поступления на базу транзистора VT1 короткого положительного импульса транзистор VT1 открывается, разряжая конденсатор СЗ. На его обкладках таким образом формируется пилообразное напряжение. Резистором R4 регулируют ток зарядки конденсатора и, следовательно, крутизну нарастания пилообразного напряжения и его амплитуду. Конденсаторы С1 и СЗ подбирают исходя из требуемой частоты импульсов. Микросхема - К561ЛН2.

Схема генераторов импульсов

Микросхемы для генераторов импульсов

Если требуется повысить нагрузочную способность какого либо узла (чтобы, например, подключить динамик или другую нагрузку), можно применить на выходе усилитель на транзисторе, как в схеме на рис. 6, или же включить несколько элементов микросхемы параллельно, как показано на рисунке ниже:

Включение нескольких элементов микросхемы параллельно

Универсальная печатная макетная плата для двух микросхем. На таких платах удобно собирать несложные схемы с небольшим количеством деталей, как, например, приведенные в этой статье. Детали паяются к контактным площадкам и при необходимости соединятся перемычками. Размеры платы 100 х 55 мм.

Макетная плата

Цоколевка

Барышев Андрей Опубликована: 2012 г. 0 0


Вознаградить Я собрал 0 0

Читайте также: