Физиологическая характеристика работы в зоне субмаксимальной мощности кратко

Обновлено: 06.07.2024

Зона относительной мощности мышечной работы — период, на протяжении которого совершаемая физическая активность с заданными параметрами мощности и энергетического порога будет сохранять свою интенсивность.

На основании соотношения между тремя путями ресинтеза АТФ: гликолитического, креатинфосфатного и аэробного, — которые используются при выполнении того или иного вида физической активности для энергообеспечения мышечной деятельности, выделяют четыре зоны:

I зона — зона максимальной мощности. Физическая активность длится до 20 секунд.

II зона — зона субмаксимальной мощности. Нагрузка длится от 20 секунд до 5 минут.

III зона — зона большой мощности с длительностью физической нагрузки от 5 минут до получаса.

IV зона — зона умеренной мощности. Работа длится более получаса.

В некоторых видах спорта: футболе, баскетболе, бадминтоне, теннисе и некоторых других — мощность многократно меняется.

Возраст, пол, другие индивидуальные особенности спортсмена, объективные законы мышечного сокращения определяют структуру зон.

I зона

Прыжок с шестом, метание копья, толкание ядра и некоторые другие легкоатлетические дисциплины, рывок штанги в тяжелой атлетике, отдельные упражнения в спортивной гимнастике относятся к первой зоне. Физическая нагрузка выполняется в период, не превышающий 20 секунд.

Аденозинтрифосфат образуется в ходе анаэробных путей. В первые секунды работы используется креатинфосфатный путь ресинтеза. В конце физической нагрузки происходит замещение креатинфосфатной реакции гликолитическим путем, или гликолизом.

II зона

Бег на 800 метров, брасс на 50 метров, трековые велогонки, забег на 1000 метров в шорт-треке — примеры физической активности, выполняемой во второй зоне. Длительность совершаемой физической нагрузки составляет от 20 секунд до 5 минут.

EPOC, или избыточное потребление кислорода после нагрузки, — 20 литров. Это самый высокий показатель среди всех зон.

В первые минуты после начала физической нагрузки активируется креатинфосфатный путь ресинтеза АТФ, который впоследствии замещается гликолитическим путем. В конце организм для получения энергии использует клеточное дыхание.

III зона

Основные поставщики энергии — гликолиз и клеточное дыхание. В самом начале работы вклад вносит креатинфосфатная реакция.

К третьей зоне относятся виды физической активности, длящиеся от 5 минут до получаса. Это забег на 10000 метров у мужчин в конькобежном спорте, гонки в биатлоне и другие.

IV зона

Спортивная ходьба на 20 и 50 км, марафонский бег, масс-старт на 50 км в лыжных гонках и некоторые другие виды физической активности относятся к четвертой зоне.

АТФ образуется в ходе аэробного пути ресинтеза.

Подготовка спортсменов к соревнованиям

Во время тренировочного периода необходимо ориентироваться на преобладание той или иной зоны в практикуемом спортсменом виде спорта. Учитывая специфику, следует выбирать те физические упражнения, нагрузки, которые будут развивать пути ресинтеза АТФ, играющие основную роль в энергообеспечении функционирования мышц.

Для работы субмаксимальной мощности характерна высокая частота движений, но меньшая, чем при работе максимальной мощности.

Работа проходит в субмаксимальной зоне мощности в упражнениях, длящихся от 20 секунд до 3-4 минут. К этой группе относятся: бег на 400, 800 и 1500 метров; конькобежный спорт, плавание, гребля, велосипедный спорт с временем работы до 4 минут.

Эта работа идет преимущественно за счет анаэробных источников энергии, но в этой зоне уже идут и аэробные процессы. Чем больше время работы (ближе к 3 минутам), тем большее значение имеют аэробные источники.

Работу в зоне субмаксимальной мощности можно разделить на две подгруппы:

1) работа, длящаяся до 50 секунд;

2) работа, длящаяся более 50 секунд (до 4 минут).

Работа до 50 секунд ведется преимущественно, как и в зоне максимальной мощности, за счет анаэробных источников, только в данном случае преобладает значение анаэробного расщепления глюкозы (гликолиза), а в зоне максимальной мощности - АТФ и КрФ. В кислородном долге преобладает лактатная фракция, но алактатная еще составляет значительную часть.

При работе, длящейся более 50 секунд (до 4 минут) лишь 15-20% энергии обеспечивается за счет АТФ и КрФ, 55% - за счет гликолиза и 25% - за счет аэробного

расщепления глюкозы, поэтому кислородный долг в основном составляет лактатная фракция.

В сравнении с зоной максимальной мощности в зоне субмаксимальной мощности суммарный кислородный запрос выше и составляет, в зависимости от времени работы, 20 -50л, а минутный – ниже (до 35л); кислородный долг в процентном отношении к запросу - меньше (75 - 85%), а в литрах – больше (до 35л).

Для этой зоны характерно резкое усиление кровообращения и дыхания (особенно при работе, длящейся более 50 секунд). При этом увеличиваются до предельных показателей ЧСС (200 - 220 уд/мин), ЧДД, систолический объем и минутный объем крови (до 35 - 40 литров).

Спортивный результат при работе в этой зоне определяется возможностями нервно-мышечного аппарата, а также как мощностью гликолитической (анаэробной) энергетической системы, так и мощностью окислительной (аэробной) системы. Большое значение также имеет деятельность сердечно- сосудистой и дыхательной систем.

III. Зона работы большой мощности.

Работа в зоне большой мощности характерна для упражнений, длящихся от 3 до 20 -30 минут (бег от 3000 до 10000 метров).

Суммарный кислородный запрос в этой зоне выше, чем в субмаксимальной (на 10 км - около 130 л), а минутный ниже (5 -6 л).

Через несколько минут после старта потребление кислорода близко к МПК, но, несмотря на это, кислородный запрос все же превышает потребление, поэтому образуется кислородный долг. Кроме того, поддерживать потребление кислорода на уровне близком к МПК (он составляет около 80% от МПК) долго невозможно. Через некоторое время от начала работы потребление кислорода падает, что еще боле увеличивается кислородный долг. В итоге он составляет 20 - 30% от запроса. Лактатная фракция в долге преобладает над алактатной, т.к. за счет гликолиза обеспечивается 15 - 20% энергетических потребностей, а за счет АТФ и КрФ в мышцах только 5 - 10%.

Остальные энергетические потребности (около 80%) покрываются за счет окислительного фосфорилирования глюкозы.

Минутный объем крови в этой зоне составляет 25 - 35 литров, систолический -120 - 160 мл; минутный объем дыхания (МОД) - 130 - 160 л/мин. К З-4 минуте от начала работы ЧСС увеличивается до 180.

Ведущими физиологическими системами при работе в зоне большой мощности являются: сердечно - сосудистая и дыхательная системы, которые функционируют на пределе возможностей. Большую роль играют выделительные процессы в связи с необходимостью выведения молочной кислоты через пот и в связи с необходимостью увеличения теплоотдачи, т.к. температура тела увеличивается при таком режиме работы на 1-2 градуса по Цельсию.




Деятельность этих систем, а также аэробные возможности организма и запасы гликогена определяют работоспособность и спортивный результат при работе в этой зоне.

IV. Зона работы умеренной мощности.

Длительность работы в этой зоне может составлять несколько часов. В группу упражнений с умеренной мощностью входят: бег на 30 км и более (включая марафонский), лыжные гонки от 20 до 50 км, спортивная ходьба с дистанцией свыше 20 км.

Для упражнений в зоне умеренной мощности характерно наличие устойчивого состояния, т.е. равенства величин кислородного запроса и потребления. Наличие устойчивого состояния свидетельствует о том, что энергетические потребности организма практически полностью удовлетворяются за счет аэробных источников. Только в начале работы кислородный запрос превышает потребление.

Часть потребляемого кислорода идет на окислительный ресинтез АТФ, другая часть на непосредственное окисление углеводов и жиров.

В этой зоне возрастает роль жиров как источника энергии, а роль углеводов уменьшается.

Суммарный кислородный запрос составляет до 500 литров.

Потребление кислорода находится на уровне ниже 70% от МПК.

Кислородный долг и накопление молочной кислоты практически отсутствуют. Кислотность крови в норме.

ЧСС при работе в зоне умеренной мощности составляет 140 - 160 уд/мин. Температура тела может достигать 39-40 градусов по Цельсию.

К концу работы в этой зоне (особенно в условиях марафонского бега) наступает истощение запасов гликогена, что ведет к снижению уровня глюкозы в крови до 50 мг% (в норме уровень глюкозы 80 -110 мг%). Это может привести к нарушению работы головного мозга и, как следствие, к обмороку.

Для этой зоны характерно значительное потоотделение (теряется до 1 кг от массы тела в час), что ведет к увеличению вязкости крови, увеличению осмотического давления крови и потере солей. Для нейтрализации вышеперечисленных негативных последствий длительной работы рекомендуется прием растворов глюкозы на дистанции, обильное питье малыми порциями (по 150 - 250 мл) и солевые растворы после работы.

Работа переменной мощности.

Работа переменной мощности наблюдается в кроссах, велогонках и лыжных гонках с перепадом высот на дистанции.

Переменная мощность чаще встречается при работе длительностью более 30 минут.

Если перемена мощности связана с особенностями рельефа, то при преодолении подъемов увеличивается частота движений и сила сокращений мышц, т.е. возрастает мощность работы. При этом увеличивается ЧСС, возрастает систолическое артериальное давление, увеличивается частота дыхания (у велосипедистов может достигать 60 - 70 раз в минуту).

В связи со значительным увеличением ЧСС (до 200 - 210 ударов), укорачивается диастола, во время которой сердце наполняется кровью. Это ведет к снижению величины систолического объема.

Несмотря на то, что потребление кислорода у спортсменов высокого класса может достигать 90% от МПК, этого недостаточно для того, чтобы обеспечить возрастающую мощность работы. Спортсмен достигает ПАНО, возрастает значение анаэробных источников энергии, что ведет к росту кислородного долга и накоплению молочной кислоты.

При спусках мышцы расслабляются, снижается мощность работы. При этом ЧСС еще некоторое время (30 - 50 секунд) поддерживается на прежнем уровне, затем снижается. Падает систолическое артериальное давление. Частота дыхания, также как и ЧСС уменьшается не сразу. Это необходимо для ликвидации кислородного долга. При этом уровень молочной кислоты снижается.

Кратковременное увеличение мощности работы оказывает положительное влияние на приспособительные процессы в организме. Выбрасываемый адреналин увеличивает обмен веществ, усиливает мобилизацию гликогена, повышая уровень глюкозы в крови. Закисление тканей продуктами обмена, в том числе молочной кислотой, облегчает переход кислорода из капилляров в ткани, усиливая тканевое дыхание.

Длительность работы переменной мощности ограничивается истощением энергетических резервов и утомлением ЦНС, т.к. предъявляются большие требования к сенсорным системам и координации движений (например, в лыжных гонках на спусках с поворотами).


Показатели Зоны мощности
Максимальная Субмаксимальная Большая Умеренная
Предельное время работы. 20 секунд 50 секунд 3 – 4 минуты 20 – 30 минут 180 минут
Дистанция бега, м. 100 – 200 м 200 – 400 м 800 – 1500 м 3000 – 10 000 м Марафонский бег
Процент энергии, получаемый за счет запасов АТФ и КрФ в мышцах. Не более 5 Незначительный
Процент энергии, получаемый за счет гликолиза.
Процент энергии, получаемый за счет аэробного расщепления энергетических веществ. Около 2 Около 95
Суммарный кислородный запрос. 8 – 12 литров 20 – 25 литров 25 – 50 литров До 130 литров До 500 литров
Минутный кислородный запрос. До 40 л/мин До 35 л/мин 10 – 15 л/мин 5 – 8 л/мин 3 – 4 л/мин
Кислородный долг в процентном отношении к суммарному запросу.
Кислородный долг, л. 7,5 – 11,7 До 23,5 До 35 До 26 До 25
Фракции кислородного долга. Алактатная (ок. 98 % от долга) Лактатная – 70%, алактатная -30% Лактная - 80%, алактатная -20% Преобладает лактатная Лактатная
Уровень молочной кислоты. Незначительный Максимальный Значительный Незначительный

Для работы субмаксимальной мощности характерна высокая частота движений, но меньшая, чем при работе максимальной мощности.

Работа проходит в субмаксимальной зоне мощности в упражнениях, длящихся от 20 секунд до 3-4 минут. К этой группе относятся: бег на 400, 800 и 1500 метров; конькобежный спорт, плавание, гребля, велосипедный спорт с временем работы до 4 минут.

Эта работа идет преимущественно за счет анаэробных источников энергии, но в этой зоне уже идут и аэробные процессы. Чем больше время работы (ближе к 3 минутам), тем большее значение имеют аэробные источники.

Работу в зоне субмаксимальной мощности можно разделить на две подгруппы:

1) работа, длящаяся до 50 секунд;

2) работа, длящаяся более 50 секунд (до 4 минут).

Работа до 50 секунд ведется преимущественно, как и в зоне максимальной мощности, за счет анаэробных источников, только в данном случае преобладает значение анаэробного расщепления глюкозы (гликолиза), а в зоне максимальной мощности - АТФ и КрФ. В кислородном долге преобладает лактатная фракция, но алактатная еще составляет значительную часть.

При работе, длящейся более 50 секунд (до 4 минут) лишь 15-20% энергии обеспечивается за счет АТФ и КрФ, 55% - за счет гликолиза и 25% - за счет аэробного

расщепления глюкозы, поэтому кислородный долг в основном составляет лактатная фракция.

В сравнении с зоной максимальной мощности в зоне субмаксимальной мощности суммарный кислородный запрос выше и составляет, в зависимости от времени работы, 20 -50л, а минутный – ниже (до 35л); кислородный долг в процентном отношении к запросу - меньше (75 - 85%), а в литрах – больше (до 35л).

Для этой зоны характерно резкое усиление кровообращения и дыхания (особенно при работе, длящейся более 50 секунд). При этом увеличиваются до предельных показателей ЧСС (200 - 220 уд/мин), ЧДД, систолический объем и минутный объем крови (до 35 - 40 литров).

Спортивный результат при работе в этой зоне определяется возможностями нервно-мышечного аппарата, а также как мощностью гликолитической (анаэробной) энергетической системы, так и мощностью окислительной (аэробной) системы. Большое значение также имеет деятельность сердечно- сосудистой и дыхательной систем.

III. Зона работы большой мощности.

Работа в зоне большой мощности характерна для упражнений, длящихся от 3 до 20 -30 минут (бег от 3000 до 10000 метров).

Суммарный кислородный запрос в этой зоне выше, чем в субмаксимальной (на 10 км - около 130 л), а минутный ниже (5 -6 л).

Через несколько минут после старта потребление кислорода близко к МПК, но, несмотря на это, кислородный запрос все же превышает потребление, поэтому образуется кислородный долг. Кроме того, поддерживать потребление кислорода на уровне близком к МПК (он составляет около 80% от МПК) долго невозможно. Через некоторое время от начала работы потребление кислорода падает, что еще боле увеличивается кислородный долг. В итоге он составляет 20 - 30% от запроса. Лактатная фракция в долге преобладает над алактатной, т.к. за счет гликолиза обеспечивается 15 - 20% энергетических потребностей, а за счет АТФ и КрФ в мышцах только 5 - 10%.

Остальные энергетические потребности (около 80%) покрываются за счет окислительного фосфорилирования глюкозы.

Минутный объем крови в этой зоне составляет 25 - 35 литров, систолический -120 - 160 мл; минутный объем дыхания (МОД) - 130 - 160 л/мин. К З-4 минуте от начала работы ЧСС увеличивается до 180.

Ведущими физиологическими системами при работе в зоне большой мощности являются: сердечно - сосудистая и дыхательная системы, которые функционируют на пределе возможностей. Большую роль играют выделительные процессы в связи с необходимостью выведения молочной кислоты через пот и в связи с необходимостью увеличения теплоотдачи, т.к. температура тела увеличивается при таком режиме работы на 1-2 градуса по Цельсию.

Деятельность этих систем, а также аэробные возможности организма и запасы гликогена определяют работоспособность и спортивный результат при работе в этой зоне.

IV. Зона работы умеренной мощности.

Длительность работы в этой зоне может составлять несколько часов. В группу упражнений с умеренной мощностью входят: бег на 30 км и более (включая марафонский), лыжные гонки от 20 до 50 км, спортивная ходьба с дистанцией свыше 20 км.

Для упражнений в зоне умеренной мощности характерно наличие устойчивого состояния, т.е. равенства величин кислородного запроса и потребления. Наличие устойчивого состояния свидетельствует о том, что энергетические потребности организма практически полностью удовлетворяются за счет аэробных источников. Только в начале работы кислородный запрос превышает потребление.

Часть потребляемого кислорода идет на окислительный ресинтез АТФ, другая часть на непосредственное окисление углеводов и жиров.

В этой зоне возрастает роль жиров как источника энергии, а роль углеводов уменьшается.

Суммарный кислородный запрос составляет до 500 литров.

Потребление кислорода находится на уровне ниже 70% от МПК.

Кислородный долг и накопление молочной кислоты практически отсутствуют. Кислотность крови в норме.

ЧСС при работе в зоне умеренной мощности составляет 140 - 160 уд/мин. Температура тела может достигать 39-40 градусов по Цельсию.

К концу работы в этой зоне (особенно в условиях марафонского бега) наступает истощение запасов гликогена, что ведет к снижению уровня глюкозы в крови до 50 мг% (в норме уровень глюкозы 80 -110 мг%). Это может привести к нарушению работы головного мозга и, как следствие, к обмороку.

Для этой зоны характерно значительное потоотделение (теряется до 1 кг от массы тела в час), что ведет к увеличению вязкости крови, увеличению осмотического давления крови и потере солей. Для нейтрализации вышеперечисленных негативных последствий длительной работы рекомендуется прием растворов глюкозы на дистанции, обильное питье малыми порциями (по 150 - 250 мл) и солевые растворы после работы.

Работа переменной мощности.

Работа переменной мощности наблюдается в кроссах, велогонках и лыжных гонках с перепадом высот на дистанции.

Переменная мощность чаще встречается при работе длительностью более 30 минут.

Если перемена мощности связана с особенностями рельефа, то при преодолении подъемов увеличивается частота движений и сила сокращений мышц, т.е. возрастает мощность работы. При этом увеличивается ЧСС, возрастает систолическое артериальное давление, увеличивается частота дыхания (у велосипедистов может достигать 60 - 70 раз в минуту).

В связи со значительным увеличением ЧСС (до 200 - 210 ударов), укорачивается диастола, во время которой сердце наполняется кровью. Это ведет к снижению величины систолического объема.

Несмотря на то, что потребление кислорода у спортсменов высокого класса может достигать 90% от МПК, этого недостаточно для того, чтобы обеспечить возрастающую мощность работы. Спортсмен достигает ПАНО, возрастает значение анаэробных источников энергии, что ведет к росту кислородного долга и накоплению молочной кислоты.

При спусках мышцы расслабляются, снижается мощность работы. При этом ЧСС еще некоторое время (30 - 50 секунд) поддерживается на прежнем уровне, затем снижается. Падает систолическое артериальное давление. Частота дыхания, также как и ЧСС уменьшается не сразу. Это необходимо для ликвидации кислородного долга. При этом уровень молочной кислоты снижается.

Кратковременное увеличение мощности работы оказывает положительное влияние на приспособительные процессы в организме. Выбрасываемый адреналин увеличивает обмен веществ, усиливает мобилизацию гликогена, повышая уровень глюкозы в крови. Закисление тканей продуктами обмена, в том числе молочной кислотой, облегчает переход кислорода из капилляров в ткани, усиливая тканевое дыхание.

Длительность работы переменной мощности ограничивается истощением энергетических резервов и утомлением ЦНС, т.к. предъявляются большие требования к сенсорным системам и координации движений (например, в лыжных гонках на спусках с поворотами).

Зона максимальной мощности. Максимальная скорость выполнения упражнения обеспечивается на 85-100% за счет анаэробного пути энергообеспечения, что обусловлено относительной инертностью кардиореспираторной системы (КРС). За столь короткое время она просто не успевает выйти на высокий уровень функционирования, вследствии чего в организме спортсмена образуется кислородный долг (КД), равный 10-15 литрам. Например, максимальная скорость в беге на спринтерских дистанциях достигается за 5-6 секунд, а максимальная ЧСС – только через 1 минуту. Полная ликвидация КД происходит спустя 30-40 минут после окончания работы.

Огромная нагрузка при работе в этой зоне ложится на структуры ЦНС (особенно нервных центров), высокий уровень возбудимости и лабильности которых определяют соответствующий темп движений. Функционирование сенсорных (особенно, двигательной сенсорной системы) и моторных нервных центров ЦНС на пределе своих возможностей приводит к быстрому утомлению ЦНС.

В связи с ограничением депо АТФ и КФ в организме огромная нагрузка ложиться на анаэробную систему энергообеспечения (5% алактатной и 95% лактатной). Запасов самой мощной фосфагенной (АТФ и КФ) системы хватает только на 5-6 секунд работы и для дальнейшего продолжения соревновательного упражнения подключается уже менее мощная система гликолиза. В результате концентрация молочной кислоты увеличивается до 5-7 мМоль/л (физиологическая норма 0,9-2,0 мМоль/л). Доля суммарных энергозатрат при выполнении данного упражнения в этой зоне мощности не велика и составляет около 80 ккал.

Зона субмаксимальной мощности. Время работы в этой зоне мощности в разных видах спорта колеблется от 30 секунд до 3-5 минут. Энергообеспечение мышечной работы осуществляется также преимущественно за счет анаэробных компонентов (20% алактатная и 55-40% лактатной). Несмотря на подключение кислородной системы энергообеспечения (12-25% от общего выхода энергии) КД во время работы не компенсируется, достигая 25 л. Увеличение концентрации уровня молочной кислоты в крови до 10 мМоль/л является одним из главных факторов сдвига pH в кислую сторону (до 6,9-6,4) – ацидоза.

К 4-5 минуте работы уровень работы КРС выходит на свой максимальный уровень функционирования. Нагрузка на КРС, так же как и в максимальной зоне, приходится на восстановительный период и направлена на ликвидацию КД. Восстановление происходит в среднем в течение 1,5-2 часов после работы (концентрации глюкозы в мышечной ткани – около 3-х дней). Огромная нагрузка так же ложится на ЦНС – приходится работать в условиях метаболического ацидоза в темпе, близком к максимальному.

2.3 Энергетическая характеристика скоростно-силовых упражнений

С энергетической точки зрения, все скоростно-силовые упражнения относятся к анаэробным. Предельная продолжительность их - менее 1-2 мин. Для энергетической характеристики этих упражнений используется два основных показателя: максимальная анаэробная мощность и максимальная анаэробная емкость (способность). Максимальная анаэробная мощность. Максимальная для данного человека мощность работы может поддерживаться лишь несколько секунд. Работа такой мощности выполняется почти исключительно за счет энергии анаэробного расщепления мышечных фосфагенов - АТФ и КрФ. Поэтому запасы этих веществ и особенно скорость их энергетической утилизации определяют максимальную анаэробную мощность. Короткий спринт и прыжки являются упражнениями, результаты которых зависят от максимальной анаэробной мощности,

Для оценки максимальной анаэробной мощности часто используется тест Маргарин. Он выполняется следующим образом. Испытуемый стоит на расстоянии 6 м перед лестницей и вбегает по ней, как только можно быстрее. На 3-й ступеньке он наступает на включатель секундомера, а на 9-й - на выключатель. Таким образом, регистрируется время прохождения расстояния между этими ступеньками. Для определения мощности необходимо знать выполненную работу - произведение массы (веса) тела испытуемого (кг) на высоту (дистанцию) между 3-й и 9-й ступеньками (м) и время преодоления этого расстояния (с). Например, если высота одной ступеньки равна 0,15 м, то общая высота (дистанция) будет равна 6 * 0,15 м =0,9 м. При весе испытуемого 70 кг и времени преодоления дистанции 0,5 с. мощность составит (70 кг*0,9 м)/0,5с = 126 кгм/а. В таблице 4 приводятся "нормативные" показатели максимальной анаэробной мощности для женщин, и мужчин.

Максимальная анаэробная емкость. Наиболее широко для оценки максимальной анаэробной, емкости используется величина максимального кислородного долга - наибольшего кислородного долга, который выявляется после работы предельной продолжительности (от 1 до 3 мин). Это объясняется тем, что наибольшая часть избыточного количества кислорода, потребляемого после работы, используется для восстановления запасов АХФ, КрФ и гликогена, которые расходовались в анаэробных процессах за время работы. Такие факторы, как высокий уровень катехоламинов в крови, повышенная температура тела и увеличенное потребление О2 часто сокращающимся сердцем и дыхательными мышцами, также могут быть причиной повышенной скорости потребления О2 во время восстановления после тяжелой работы. Поэтому имеется лишь весьма умеренная связь между величиной максимального долга и максимальной анаэробной емкостью.

В среднем величины максимального кислородного долга у спортсменов выше, чем у неспортсменов, и составляют у мужчин 10,5 л (140 мл/кг веса тела), а у женщин-5,9 л (95 мл/кг веса тела). У неспортсменов они равны (соответственно) 5 л (68 мл/кг веса тела) и 3,1 л (50 мл/кг веса тела). У выдающихся представителей скоростно-силовых видов спорта (бегунов на 400 и 800 м) максимальный кислородный долг может достигать 20 л (Н. И. Волков). Величина кислородного долга очень вариативна и не может быть использована для точного предсказания результата.

По величине алактацидной (быстрой) фракции кислородного долга можно судить о той части анаэробной (фосфагенной) емкости, которая обеспечивает очень кратковременные упражнения скоростно-силового характера (спринт). Простое определение емкости алактацидного кислородного долга состоит в вычислении величины кислородного долга за первые 2 мин восстановительного периода. Из этой величины можно выделить "фосфагенную фракцию" алактацидного долга, вычитая из алактацидного кислородного долга количество кислорода, используемого для восстановления запасов кислорода, связанного с миоглобином и находящегося в тканевых жидкостях:

емкость "фосфагенного" (АТФ + КФ) кислородного долга (кал/кг веса. тела) = [ (О2-долг 2мин - 550) * 0,6 * 5 ] / вес тела (кг)

Первый член этого уравнения - кислородный долг (мл), измеренный в течение первых 2 мин восстановления после работы предельной продолжительности 2- 3 мин; 550 - это приблизительная величина кислородного долга за 2 мин, который идет на восстановление кислородных запасов миоглобина и тканевых жидкостей; г 0,6 - эффективность оплаты алактацидного кислородного долга; 5 - калорический эквивалент 1 мл О2.

Типичная максимальная величина "фосфагенной фракции" кислородного долга - около 100 кал/кг веса тела, или 1,5-2 л О2-В результате тренировки скоростно-силового характера она может увеличиваться в 1,5-2 раза.

Наибольшая (медленная) фракция кислородного долга после работы предельной продолжительности в несколько десятков секунд связана с анаэробным гликолизом, т. е. с образованием в процессе выполнения скоростно-силового упражнения молочной кислоты, и потому обозначается как лактацидный кислородный долг. Эта часть кислородного долга используется для устранения молочной кислоты из организма путем ее окисления до СО2 и Н2О и ресинтеза до гликогена.

Для определения максимальной емкости анаэробного гликолиза можно использовать расчеты образования молочной кислоты в процессе мышечной работы. Простое уравнение для оценки энергии, образующейся за счет анаэробного гликолиза, имеет вид: энергия анаэробного гликолиза (кал/кг веса тела) = содержанию молочной кислоты в крови (г/л) * 0,76 * 222, где содержание молочной кислоты определяется как разница между наибольшей концентрацией ее на 4-5-й мин после работы (пик содержания молочной кислоты в крови) и концентрацией в условиях покоя; величина 0,76 - это константа, используемая для коррекции уровня молочной кислоты в крови до уровня ее содержания во всех жидкостях; 222 - калорический эквивалент 1 г продукции молочной кислоты.

Максимальная емкость лактацидного компонента анаэробной энергии у молодых нетренированных мужчин составляет около 200 кал/кг веса тела, что соответствует максимальной концентрации молочной кислоты в крови около 120 мг% (13 ммоль/л). У выдающихся представителей скоростно-силовых видов спорта максимальная концентрация молочной кислоты в крови может достигать 250-300 мг%, что соответствует максимальной лактацидной (гликолитической) емкости 400-500 кал/кг веса тела.

Такая высокая лактацидная емкость обусловлена рядом причин. Прежде всего, спортсмены способны развивать более высокую мощность работы и поддерживать ее более продолжительно, чем нетренированные люди. Это, в частности, обеспечивается включением в работу большой мышечной массы (рекрутированием), в том числе быстрых мышечных волокон, для которых характерна высокая гликолитическая способность. Повышенное содержание таких волокон в мышцах высококвалифицированных спортсменов - представителей скоростно-силовых видов спорта - является одним из факторов, обеспечивающих высокую гликолитическую мощность и емкость. Кроме того, в процессе тренировочных занятий, особенно с применением повторно-интервальных упражнений анаэробной мощности, по-видимому, развиваются механизмы, которые позволяют спортсменам "переносить" ("терпеть") более высокую концентрацию молочной кислоты (и соответственно более низкие значения рН) в крови и других жидкостях тела, поддерживая высокую спортивную работоспособность. Особенно это характерно для бегунов на средние дистанции.

Силовые и скоростно-силовые тренировки вызывают определенные биохимические изменения в тренируемых мышцах. Хотя содержание АТФ и КрФ в них несколько выше, чем в нетренируемых (на 20-30%), оно не имеет большого энергетического значения. Более существенно повышение активности ферментов, определяющих скорость оборота (расщепления и ресинтеза) фосфагенов (АТФ, АДФ, АМФ, КрФ), в частности миокиназы и креатин фосфокиназы (Яковлев Н. Н.).

Скоростно-силовые качества увеличиваются за счет увеличения силы или скорости сокращения мышц или обоих компонентов. Обычно наибольший прирост достигается за счет увеличения мышечной силы.

Также следует учитывать энергообеспечение скоростно-силовой работы для того, чтобы предупредить утомление спортсмена и рационально построить тренировку.

На тренировке, помимо упражнений на развитие силы и скорости, следует применять скоростно-силовые упражнения. Они способствуют более лучшему развитию скоростно-силовых качеств.

1. Спортивная физиология. /Под ред. Я.М. Коца. - М.: ФИС, 1986. - 240с.

2. Васильева В.В. Физиология человека: Учеб. для ин-тов физ. культуры / В.В. Васильева, Э.В. Коссовская, Н.А. Стёпочкина. – М.: Физкультура и спорт, 1973.- 123с.

3. Гандельман А.Б. Физиологические основы спортивной тренировки: Учеб. пособие / А.Б. Гандельман, К.М Смирнов. – М.: Физкультура и спорт, 1970. – 207с.

4. Дедковский С. М. Скорость или выносливость? – М.: Физкультура и спорт, 1973. – 208с.

5. 3ациорский В.М. Физические качества спортсменов: Учеб. пособие / В.М. 3ациорский. – М.: Физкультура и спорт, 1970. – 200с.

6. Солодкой А. С. Физиология человека. Общая. Спортивная. Возрастная: Учеб / А.С. Солодкой, Е.Б. Сологуб. – М.: Терра-Спорт, Олимпия Пресс, 2001. – 520 с.

7. Холодов Ж.К., Теория и методика физического воспитания и спорта: Учеб. пособие для студ. высш. учеб. заведений. – 2-е изд., испр. и доп. / Ж.К. Холодов, В.С. Кузнецов. – М.: Издательский центр Академия, 2003. – 480 с.

Таблица 1. Максимальная произвольная сила мышц (кг) в зависимости от возраста

Возраст, лет Разгибатели бедра Разгибатели ходеци Разгибатели стопы
12 62 24 39
13 74 31 49
14 85 37 55
15 96 41 59
16 106 44 68

Таблица 2. Результаты (см) в скоростно-силовых упражнениях у мальчиков в зависимости от возраста

Возраст, дет Прыжок вверх (толчком двух ног) Прыжок в длину Тройной прыжок (с места)
12 35 171 517
13 38 185 560
14 40 194 591
15 42 201 615
16 44 211 636

Таблица 3. Соотношение и площадь поперечного сечения быстрых и медленных мышечных волокон икроножной мышцы у американских легкоатлетов и у нетренированных мужчин (Д. Костилл и др., 1976)

Спортивная специализация и квалификация (спортивный результат) % быстрых волокон Площадь поперечного сечения, мкм2 % площади, занимаемой быстрыми
быстрых волокон медленных волокон волокнами
Спринт (n=2): 100 м-10,5с 76,0 (79,0 и 73,0)- 6034 5878 76,5
Прыжки в длину (n = 2): 7,52 и 8,41 м 53 3 (56,0 и 50,7) 6523 4718 62,2
Метание диска (n = 2): 60,9 и 61,3 м и толкание ядра (n = 2): 18,9 и 19,7 м 62,3 (87,0-48,0) 9483 7702 66,0
Бег на средние дистанции (n = 7): 800 м - 1.51,5 (1:48,9-1.54,1) 48,1 (59,5-30,6) 7117 6099 53,5
Нетренированные мужчины (n=11) 47,4 (62,0-26,8) 4965 5699 44,0

Таблица 4. Классификация показателей максимальной анаэробной мощности (кгм/с, 1 кгм/с = 9,8 Вт.)

Раздел: Физкультура и спорт
Количество знаков с пробелами: 37065
Количество таблиц: 4
Количество изображений: 0

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ ПРИМОРСКОГО КРАЯ

филиал краевого государственного автономного

профессионального образовательного учреждения

Специальность: Техническая эксплуатация и обслуживание электрического и электромеханического оборудования.

Тема: Физиологическая характеристика циклических и ациклических упражнений.

Студент группы 4ТЭО-20 Железняк А.В

Преподаватель филиала КГА ПОУ

Введение…………………………………………………………………. ….3 стр.
Характеристики физических упражнений……………………………. 4 стр.
Энергетическая характеристика физических упражнений………………5 стр.
Физиологические характеристики физических упражнений……………..6 стр.
Циклические упражнения……………………………………………………8 стр.
Мощность циклических упражнений……………………………………….9 стр.
Мощность циклических упражнений по В. Фарфелю…………………..11 стр.
Циклические упражнения максимальной мощности……………………14 стр.
Циклические упражнения субмаксимальной мощности………………..15 стр.
Циклические упражнения большой мощности……………………. 16 стр.
Циклические упражнения умеренной мощности…………………………17 стр.
Ациклические упражнения………………………………………………….18 стр.
Вывод……………………………………………………………………. ….20 стр.
Источники…………………………………………………………………..….21 стр.

Физиологическая нагрузка является одним из главных критериев сдвига физиологических функций от начального уровня (учащение дыхания, пульса), хотя и не единственным. Другими факторами выступают тренированность спортсмена, место, где проводятся упражнения (высокогорье, на уровне моря, ниже уровня моря). Поэтому, если физиологическую нагрузку можно количественно измерить, то точный сдвиг физиологической функции определить нельзя. Для прогнозирования этих сдвигов, с учетом совокупности критериев, была введена классификация упражнений, виды которых будут рассмотрены в данной работе.

Характеристики физических упражнений

Физические упражнения — это такие двигательные действия (включая их совокупности), которые направлены на реализацию задач физического воспитания, сформированы и организованы по его закономерностям.

Важным отличительным признаком физических упражнений от трудовых, бытовых и прочих двигательных действий является соответствие формы и содержания действий сущности физического воспитания, закономерностям по которым оно происходит.

Энергетическая характеристика физических упражнений

Энергетическая стоимость служит важнейшей характеристикой упражнения. Для определения энергетической стоимости физического упражнения, используют два показателя: энергетическую, мощность и валовый (общий) энергетический расход. Энергетическая мощность - это количество энергии, расходуемое в среднем за единицу времени при выполнении данного упражнения. Она измеряется обычно в физических единицах: ваттах, ккал/мин, килоджоулях в минуту, а также в "физиологических": скорости потребления О2 (мл О2/мин) или в МЕТ,ах (метаболический эквивалент, т. е. количество О2) потребляемого в 1 мин- на 1 кг веса тела в условиях полного покоя лежа. 1 МЕТ равен 3,5 мл О2/кг мин).

Валовый (общий) энергетический расход - это количество энергии, расходуемой во время выполнения всего упражнения в целом. Валовый энергетический расход (общая энергетическая стоимость упражнения) может быть определен как произведение средней энергетической мощности на время выполнения упражнения.

При беге валовый энергетический расход на преодоление одинаковой дистанции в определенных пределах не зависит от скорости передвижения. Дело в том, что при увеличении скорости (энергетической мощности) время преодоления данной дистанции уменьшается, а при снижении скорости, наоборот, увеличивается, так что произведение энергетической мощности на время, т. е. общий энергетический расход, остается неизменным. Общая энергетическая стоимость преодоления одной и той же дистанции выше при беге, чем при ходьбе (до скорости около 8 км/ч): на каждый километр дистанции при ходьбе расходуется в среднем 0,72 ккал/кг веса тела у женщин и 0,68 ккал/кг веса тела у мужчин, а при беге соответственно 1,08 и 0,98 ккал/кг веса тела.

Физиологические характеристики физических упражнений

Физиологическая характеристика физических упражнений зоны максимальной мощности. Особенности энергообеспечения. Ведущие механизмы утомления. Характер физиологических сдвигов в организме (дыхание, кровообращение, состав крови, регуляция движений).

Работа максимальной мощности характеризуется максимально – возможной частотой движений и продолжается до 20-30с. (например, спринтерский бег на 60,100 и 200 м; плавание на 25 и 50м. и т.п.).

Такая работа относится к анаэробным алактатным нагрузкам, т. е. выполняется на 90-95% за счет энергии освобождающейся при расщеплении содержащихся в мышцах запасов АТФ и креатинфосфата (фосфогенная система); и небольшая часть энергии (5%) освобождается при анаэробном расщеплении глюкозы (лактацидная система) кислородный запрос во время работы удовлетворяется незначительно (отношение потребления кислорода к кислородному запросу составляет менее 1/10), но кислородный долг не успевает достичь большой величины из-за кратковременности нагрузки (до 8 л.).

Короткий рабочий период недостаточен для заметных сдвигов в системе дыхания и кровообращения. В силу высокого уровня предстартового возбуждения ЧСС достигает высокого уровня до 200 уд/мин. В крови незначительно повышается уровень эритроцитов и гемоглобина, за счет выхода части крови из депо, а так же некоторые повышения содержания глюкозы (гипергликемия). Водородный показатель составляет 7,3 –7,32. Систолическое артериальное давление повышается до 180 – 200мм. рт. ст. или не изменяется. Частота, глубина дыхания и минутный объем дыхания при работе почт не возрастают, их увеличение наблюдается после окончания работы.

Уровень возбудимости и лабильности нервных центров и скелетных мышц, хорошая подвижность нервных процессов, способность к быстрому расслаблению мышечных волокон и достаточные запасы в них креатинфосфата (КрФ). При резком сокращении работы у мало подготовительных спортсменов возможен гравитационный шок, из-за нарушения венозного притока крови к сердцу.

Циклические упражнения

Циклические упражнения (бег, ходьба, гребля, велоспорт, бег на коньках, плавание) отличаются повторяемостью фаз движений, лежащих в основе каждого цикла, и тесной связанностью каждого цикла с последующем и предыдущим. В основе циклических локомоций лежит ритмический двигательный рефлекс, проявляющийся автоматически. Таким образом, общими признаками циклических упражнений являются:

1. многократность повторения одного и того же цикла, состоящего из нескольких фаз;

2. все фазы движения одного цикла последовательно повторяются в другом цикле;

3. последняя фаза одного цикла является началом первой фазы движения последующего цикла.

Мощность циклических упражнений

Циклические движения могут выполняться с разной интенсивностью, или мощностью, и иметь разную длительность. Мощность - количество работы, выполняемой в единицу времени, представляет собой произведение силы на скорость мышечного сокращения.

Основной величиной, определяющей мощность циклических упражнений, является скорость. Предельная длительность выполнения любой работы зависит от ее мощности: если мощность велика, то длительность работы мала из-за быстрого утомления, и наоборот. Однако эта зависимость не пропорциональная, а гиперболическая. Например, если со скоростью 5 м/с модно бежать минуты и даже часы, то со скоростью 10 м/с - считанные секунды.

Первая зона относительной мощности - циклические движения максимальной мощности. Длительность их обычно не более 20-30 сек, так как развивающееся утомление вызывает снижение мощности работы. В этой зоне мощности работа мышц протекает в анаэробных условиях. Мощность работы настолько велика, что кислородный запрос мышц достигает десятков л/мин и во много раз превышает максимальную скорость его потребления. Поэтому во время самой работы удовлетворяется лишь небольшая часть (5-10%) кислородного запроса, остальная часть накапливается в виде кислородного долга, который достигает более 90% от суммарного запроса кислорода, хотя ввиду незначительной продолжительности работы абсолютная величина долга невелика - 7-8 л.

Вторая зона относительной мощности - субмаксимальная мощность. Предельная продолжительность работы - 3-5 мин, но не менее 20-30 сек. При такой работе происходит анаэробный распад АТФ и КФ, а также углеводов с образованием значительного количества молочной кислоты, которая диффундируют в кровь. Концентрация се в крови может достигать 25 мМ/л, что

Третья зона относительной мощности в циклических движениях - большая мощность. Работа такой мощности может продолжаться до 30-40 мин, а минимально - нс менее 3-5 мин. При этой работе дыхание и кровообращение могут усилиться в полной мере. Через 3-5 мин после старта объем легочной вентиляции у спортсменов высокой квалификации достигает 100-140 л/мин, ЧСС - 180-200 уд/мин, систолическое АД - 180-240 мм рт. ст., систолический объем крови - 150-200 мл, минутный объем кровообращения - 35—40 л/мин, т.е. увеличивается в 7-8 раз по сравнению с уровнем покоя.

Мощность циклических упражнений по В. Фарфелю

В 1937 г. B.C. Фарфель подверг математическому анализу десять, а затем и двадцать пять лучших достижений мирового масштаба в различных видах циклической работы спортивного характера. Оказалось, что мощность работы и ее длительность находятся в достаточно сложной зависимости и не являются просто обратно пропорциональными. Длительность работы возрастает в большей мере, чем уменьшается ее мощность (скорость). Отложив по оси ординат логарифмы скорости легкоатлетического бега, а по оси абсцисс - логарифмы рекордного времени, B.C. Фарфель обнаружил четыре отрезка прямых. Причем точки перелома соответствуют на абсциссе моментам времени 25-30 с, 3-5 мин и 30-40 мин.

По классификации, разработанной В.С. Фарфелем, следует различать циклические упражнения: максимальной мощности, в которых длительность работы не превышают 20-30 секунд (спринтерский бег до 200 м, гит на велотреке до 200 м, плавание до 50 м и др.); субмаксимальной мощности, длящиеся 3-5 минут (бег на 1500 м, плавание на 400 м, гит на треке до 1000 м, бег на коньках до 3000 м, гребля до 5 минут и др.); большой мощности, возможное время выполнения которых ограничивается 30 - 40 минутами (бег до 10000 м, велогонки до 50 км, плавание 800 м - женщины, 1500 м - мужчины, спортивная ходьба до 5 км и др.), и умеренной мощности которую спортсмен может удерживать от 30-40 минут до нескольких часов (шоссейные велогонки, марафонские и сверхмарафонские пробеги, др.)

Критерий мощности, положенный в основу классификации циклических упражнений, предложенной В.С. Фарфелем, является весьма относительным, на что указывает и сам автор.

Действительно, мастер спорта проплывает 400 метров быстрее четырёх минут, что соответствует зоне субмаксимальной мощности, новичок же проплывает эту дистанцию за 6 минут и более, т.е. фактически совершает работу, относящуюся к зоне большой мощности.Несмотря на определённую схематичность разделения циклической работы на 4 зоны мощности, оно вполне оправдано, поскольку каждая из зон определённое воздействие на организм и имеет свои отличительные физиологические проявления. Вместе с тем, для каждой зоны мощности характерны общие закономерности функциональных изменений, мало связанные со спецификой различных циклических упражнений. Это даёт возможность по оценке мощности работы создать общее представление о влиянии соответствующих нагрузок на организм спортсмена.Многие функциональные изменения, характерные для различных зон мощности работы, в значительной степени связаны с ходом энергетических превращений в работающих мышцах.

Как известно, освобождение энергии для работы мышц обеспечивается анаэробными и аэробными реакциями. Непосредственным источником энергии для мышечных сокращений является распад АТФ (анаэробная реакция), происходящий в результате взаимодействия этого вещества с миозином. Но запасы АТФ в мышцах ограниченны и длительная работа возможна только при условии одновременного ресинтезакреатинфосфата и гликогенолиза. Однако один анаэробный ресинтез АТФ не может обеспечить выполнение продолжительной работы в связи с тем, что он сопровождается накоплением больших количеств продуктов неполного обмена и, в частности, молочной кислоты, что снижает активность мышц и может привести к прекращению работы. Поэтому для выполнения длительной работы необходимы аэробные процессы, т.е. клеточное дыхание.

Оно находится в зависимости от кислородного обеспечения организма, увеличивающегося при физической нагрузке за счёт усиления работы сердечно – сосудистой и дыхательной систем (до определённого предела). Доля участия анаэробных и аэробных процессов при циклической работе определяется её мощностью. Это, однако, не означает, что с переходом от одной зоны мощности к другой, имеют место такие же резкие переходы в характере энергетического обеспечения мышечной деятельности. Их в действительности нет, но при переходе от одной зоны мощности к другой происходит почти линейное снижение объёма анаэробного обеспечения работающих мышц и соответствующее повышение объёма аэробных превращений в организме. При работе умеренной мощности достигается относительное уравновешивание анаэробных и аэробных процессов.

Выполнил студент IV курса

I группы факультета физической культуры

отделения заочного обучения

Архангельск, 2008

1. Физиологическая характеристика динамической циклической работы различной относительной мощности

2. Зона максимальной мощности

3. Зона субмаксимальной мощности

4. Зона большой мощности

5. Зона умеренной мощности

Физические упражнения выполняются с различной скоростью и величиной внешнего отягощения. Напряжённость физиологических функций (интенсивность функционирования), оцениваемая по величине сдвигов от исходного уровня, при этом меняется. Следовательно, по относительной мощности работы циклического характера (измеряется в Вт или кДж/мин) можно судить и о реальной физиологической нагрузке на организм спортсмена.

Разумеется, степень физиологической нагрузки связана не только с измеряемыми, поддающимися точному учёту показателями физической нагрузки. Она зависит и от исходного функционального состояния организма спортсмена, от уровня его тренированности и от условий среды. Например, одна и та же физическая нагрузка на уровне моря и в условиях высокогорья вызовет разные физиологические сдвиги. Иначе говоря, если мощность работы измеряется достаточно точно и хорошо дозируется, то величина вызываемых её физиологических сдвигов не поддастся точному количественному учёту. Затруднено и прогнозирование физиологической нагрузки без учёта текущего функционального состояния организма спортсмена.

Физиологическая оценка адаптивных изменений в организме спортсмена невозможна без соотнесения их с тяжестью (напряжённостью) мышечной работы. Эти показатели учитываются при классификации физических упражнений по физиологической нагрузке на отдельные системы и организм в целом, а также по относительной мощности работы, выполняемой спортсменом.

1. Физиологическая характеристика динамической циклической работы различной относительной мощности

В 1937 г. B.C. Фарфель подверг математическому анализу десять, а затем и двадцать пять лучших достижений мирового масштаба в различных видах циклической работы спортивного характера. Оказалось, что мощность работы и ее длительность находятся в достаточно сложной зависимости и не являются просто обратно пропорциональными. Длительность работы возрастает в большей мере, чем уменьшается ее мощность (скорость). Отложив по оси ординат логарифмы скорости легкоатлетического бега, а по оси абсцисс - логарифмы рекордного времени, B.C. Фарфель обнаружил четыре отрезка прямых. Причем точки перелома соответствуют на абсциссе моментам времени 25-30 с, 3-5 мин и 30-40 мин.

По классификации, разработанной В.С. Фарфелем, следует различать циклические упражнения: максимальной мощности, в которых длительность работы не превышают 20-30 секунд (спринтерский бег до 200 м, гит на велотреке до 200 м, плавание до 50 м и др.); субмаксимальной мощности, длящиеся 3-5 минут (бег на 1500 м, плавание на 400 м, гит на треке до 1000 м, бег на коньках до 3000 м, гребля до 5 минут и др.); большой мощности, возможное время выполнения которых ограничивается 30 - 40 минутами (бег до 10000 м, велогонки до 50 км, плавание 800 м - женщины, 1500 м - мужчины, спортивная ходьба до 5 км и др.), и умеренной мощности которую спортсмен может удерживать от 30-40 минут до нескольких часов (шоссейные велогонки, марафонские и сверхмарафонские пробеги, др.)

Критерий мощности, положенный в основу классификации циклических упражнений, предложенной В.С. Фарфелем, является весьма относительным, на что указывает и сам автор. Действительно, мастер спорта проплывает 400 метров быстрее четырёх минут, что соответствует зоне субмаксимальной мощности, новичок же проплывает эту дистанцию за 6 минут и более, т.е. фактически совершает работу, относящуюся к зоне большой мощности.

Несмотря на определённую схематичность разделения циклической работы на 4 зоны мощности, оно вполне оправдано, поскольку каждая из зон определённое воздействие на организм и имеет свои отличительные физиологические проявления. Вместе с тем, для каждой зоны мощности характерны общие закономерности функциональных изменений, мало связанные со спецификой различных циклических упражнений. Это даёт возможность по оценке мощности работы создать общее представление о влиянии соответствующих нагрузок на организм спортсмена.

Многие функциональные изменения, характерные для различных зон мощности работы, в значительной степени связаны с ходом энергетических превращений в работающих мышцах.

Как известно, освобождение энергии для работы мышц обеспечивается анаэробными и аэробными реакциями. Непосредственным источником энергии для мышечных сокращений является распад АТФ (анаэробная реакция), происходящий в результате взаимодействия этого вещества с миозином. Но запасы АТФ в мышцах ограниченны и длительная работа возможна только при условии одновременного ресинтеза креатинфосфата и гликогенолиза. Однако один анаэробный ресинтез АТФ не может обеспечить выполнение продолжительной работы в связи с тем, что он сопровождается накоплением больших количеств продуктов неполного обмена и, в частности, молочной кислоты, что снижает активность мышц и может привести к прекращению работы. Поэтому для выполнения длительной работы необходимы аэробные процессы, т.е. клеточное дыхание. Оно находится в зависимости от кислородного обеспечения организма, увеличивающегося при физической нагрузке за счёт усиления работы сердечно – сосудистой и дыхательной систем (до определённого предела). Доля участия анаэробных и аэробных процессов при циклической работе определяется её мощностью. Это, однако, не означает, что с переходом от одной зоны мощности к другой, имеют место такие же резкие переходы в характере энергетического обеспечения мышечной деятельности. Их в действительности нет, но при переходе от одной зоны мощности к другой происходит почти линейное снижение объёма анаэробного обеспечения работающих мышц и соответствующее повышение объёма аэробных превращений в организме. При работе умеренной мощности достигается относительное уравновешивание анаэробных и аэробных процессов.

Физиологические характеристики работ разной относительной мощности (по В.С. Фарфелю, Баннистеру, Тейлору, Н.И. Волкову, Робинсону, В.М. Зациорскому)

Читайте также: