Электроизоляционные материалы на основе каучуков кратко

Обновлено: 06.07.2024

Автор: Евгений Живоглядов.
Дата публикации: 17 марта 2015 .
Категория: Статьи.

В электротехнике для изоляции токоведущих частей и обеспечения их надежной работы находят применение множество электроизоляционных материалов с различными изоляционными свойствами. Среди этого множества можно выделить наиболее часто используемые.

Асбест

Минерал, имеющий волокнистое строение. Длина волокна – от десяти долей миллиметра до нескольких сантиметров. Из асбеста изготовляют пряжу, ленты, ткани, бумагу, картон и другие изделия. Ценным качеством асбеста является его высокая нагревостойкость. Нагрев до 300 – 400 °С не меняет свойств асбеста. Благодаря низкой теплопроводности асбест применяют в качестве тепловой изоляции при высоких температурах. Асбест обладает гигроскопичностью, которая уменьшается при пропитке его смолами, битумами и тому подобным. Асбестовое волокно, пропитанное битумом и подклеенное к проводу лаком, образует дельта-асбестовую изоляцию. Асбест входит в качестве наполнителя в состав пластичных масс. Электроизоляционные свойства асбеста невысоки. Электрическая прочность его 0,6 – 1,2 кВ/мм. Поэтому он не применяется при высоких напряжениях.

Асбоцемент

Пластическая масса холодного прессования. В качестве наполнителя входит асбестовое волокно, связующим веществом является цемент. Асбоцемент идет на изготовление щитков, панелей, оснований аппаратов, труб и тому подобного. Асбоцемент обладает хорошими механическими свойствами, высокой дугостойкостью, теплостойкостью и негорючестью. Электроизоляционные свойства асбоцемента низки. Пропитка его расплавленным парафином, льняным маслом, битумом и другими составами уменьшает гигроскопичность асбоцемента.

Бакелит

Искусственная смола, получаемая варкой фенола (спирта) с формалином (водным раствором формальдегида – продукта окисления спирта). Полученная в результате варки масса называется бакелитом стадии А. Температура размягчения бакелита А около 80 °С. Он может растворяться в спирте и в ацетоне. При нагреве до 110 – 140 °С бакелит А переходит в бакелит С, который не плавится и не растворяется. Бакелит применяют для пропитки дерева и других материалов, изготовления пластических масс – гетинакса, текстолита, склейки фанеры. Электрическая прочность бакелита 10 – 20 кВ/мм; ε = 4,5 – 6.

Бумага

Изготовляется путем специальной обработки щелочью измельченной древесины деревьев хвойных пород. В электротехнике применяют следующие основные сорта электроизолирующих бумаг: конденсаторную, кабельную, пропиточную (для изготовления листового гетинакса), намоточную (для изготовления бумажно-бакелитовых цилиндров), микалентную (для изготовления клееной слюдяной изоляции), оклеечную (для изготовления листов электротехнической стали).

Галовакс

Получают хлорированием нафталина. Галовакс имеет температуру плавления 95 – 135 °С. Ввиду высокой диэлектрической проницаемости (около 5) галовакс применяют для пропитки бумажных конденсаторов. В отличие от парафина и церезина галовакс не горюч.

Гетинакс

Изготовляют из бумаги, пропитанной искусственной смолой (бакелитом). Листы бумаги сдавливают прессом, одновременно нагревают до 160 – 165 °С, в результате чего бакелит стадии А переходит в стадию С. Таким образом получают гетинаксовые доски, которые имеют толщину от 0,5 до 50 мм. Гетинакс хорошо подвергается механической обработке: сверлению, обтачиванию, фрезерованию, распиливанию. При толщине от 2,5 до 3 мм гетинакс можно штамповать. Под действием электрической дуги блестящая поверхность гетинакса обугливания и становится электропроводящей. Гетинакс применяется для изготовления щитков, панелей, прокладок, каркасов изоляции в трансформаторах. Электрическая прочность гетинакса 20 – 25 кВ/мм; ε = 5 – 6.

Древесина

Природный волокнистый органический материал. Применяется для изготовления малоответственных изоляционных деталей. Используют обычные твердые лиственные породы: березу, дуб, бук, клен. Для повышения электрической прочности древесины ее пропитывают парафином, льняным маслом, смолами. Древесину в электротехнике применяют для опорных и крепежных деталей трансформаторов, пазовых клиньев электрических машин, деревянных опор линий связи и электропередач и так далее.

Канифоль

Хрупкая смола светло-желтого или коричневого цвета, получаемая путем обработки смолы хвойных деревьев (сосны). Канифоль растворяется в нефтяных маслах, жидких углеводородах, растительных маслах, спирте, скипидаре. Температура размягчения канифоли 50 – 70 °С. Электрическая прочность канифоли 10 – 15 кВ/мм. Канифоль употребляют для приготовления пропиточных и заливочных масс.

Картон электротехнический

Отличается от бумаги повышенной толщиной. Изготовляют два сорта картона: ЭВ – для работы на воздухе и ЭМ – для работы в масле. Картон применяют для изготовления мелких деталей. Электрическая прочность картона 8 – 10 кВ/мм; ε = 2,5 – 4.

Картон электротехнический

Каучук

Каучук (резина) получается из сока растений каучуконосов. Такой каучук называют натуральным (НК). Каучук можно получить также искусственным путем. Искусственный или синтетический каучуке (СК) изготовляют из спирта или нефтепродуктов. Нагретый до 50 °С каучук размягчается и становится липким, а при низкой температуре – хрупким. Каучук хорошо растворяется в углеводородах и сероуглероде. Для увеличения механической прочности, нагревостойкости и морозоустойчивости, стойкости к растворителям к каучуку добавляют 3 – 10 % серы. Этот процесс называется вулканизацией, в результате чего получается резина. В электротехнике резину применяют для изоляции установочных и монтажных проводов и кабелей некоторых конструкций, для изолирующих трубок, защитных перчаток, галош, ковриков и тому подобного. Резина обладает высокими электроизоляционными свойствами, влагостойкостью, непроницаемостью для воды и газов, имеет невысокую нагревостойкость (при нагреве свыше 60 – 75 °С резина делается хрупкой и трескается), при действии на резину нефтяных масел она набухает, при действии света – стареет. Электрическая прочность резины 24 кВ/мм; ε = 2,5 – 3.

Лаки электроизоляционные

Лакоткани

Изготовляют из хлопчатобумажной, шелковой или стеклянной ткани, которую затем пропитывают масляным или масляно-битумным лаком. Лакоткани применяют для изолирования обмоток машин и аппаратов. Хлопчатобумажные лакоткани имеют толщину 0,15 – 0,25 мм, электрическую прочность 35 – 40 кВ/мм. Шелковые лакоткани имеют толщину 0,05 – 0,1 мм и повышенную электрическую прочность (в 1,5 – 2 раза по сравнению с хлопчатобумажными лакотканями).

Трансформаторное масло

Мрамор

Горная порода зернисто-кристаллического строения. Глыбы мрамора распиливают на доски, которые затем фрезеруют и полируют. Недостатки мрамора: гигроскопичность, хрупкость, способность растрескиваться при сильном нагреве, способность разлагаться кислотами. Пропитка мрамора парафином, битумом, канифолью делает его практически негигроскопичным. Электрическая прочность мрамора 2,5 – 3,5 кВ/мм; ε = 8.

Пластические массы

Пропиточные и заливочные составы

По другому такие составы называют – компаунды. Они применяются для пропитки и заливки различных частей электрических установок. Эти составы изолируют отдельные токоведущие части, создают водостойкую изоляцию и улучшают условия охлаждения. Пропиточные и заливочные составы изготовляют из нефтяных битумов и сплавов минерального масла с канифолью. Иногда для увеличения теплопроводности в битумы вводят наполнитель, например кварцевый песок.

Пропиточные и заливочные составы

Слюда

Минерал кристаллического строения. Благодаря своему строению слюда легко расщепляется на отдельные листочки. Она обладает высокой электрической прочностью (80 – 200 кВ/мм), высокой нагревостойкостью, влагостойкостью, механической прочностью и гибкостью. В электротехнике применяют два вида слюды: мусковит и флогопит, различающиеся по составу, цвету и свойствам. Лучшей слюдой является мусковит. Из листочков слюды штампуют прямоугольные пластинки для конденсаторов, шайбы для электротехнических приборов и тому подобное. Однако чаще отдельные листочки слюды при помощи клеящих лаков (глифталевого, битумно-масляного, шеллачного и других) склеивают между собой. Такой материал называется миканитом. Различают миканиты: коллекторный (для изоляции коллекторных пластин), прокладочный (для изоляции шайб, прокладок), формовочный (прессуется при нагреве для изготовления фасонных деталей), гибкий (для межвитковой и пазовой изоляции электрических машин), жароупорный (для электронагревательных приборов). Иногда пластинки слюды наклеивают на бумагу или ткани (микалента, микафолий, стекломикафолий).

предохранителей, патронов, штепселей и тому подобные). Электрическая прочность фарфора 6 – 10 кВ/мм; ε = 5 – 6,5. Кроме фарфора, применяется другой керамический материал – стеатит, изготовляемый на основе минерала – талька. Стеатит по сравнению с фарфором обладает более высокими электроизоляционными и физико-механическими свойствами.

Фарфор электротехнический

Фибра

Изготовляется из пористой бумаги, обработанной раствором хлористого цинка. Фибра хорошо поддается механической обработке. Большим недостатком фибры является ее гигроскопичность. Фибра разъедается кислотами и щелочами. Из нее изготовляют мелкие детали, прокладки, каркасы катушек. Электрическая прочность фибры 5 – 11 кВ/мм; ε = 2,5 – 5. тонкая фибра (0,1 – 0,5 мм) называется летероидом.

Церезин

Получают путем очистки воскообразного минерала – озокерита или петролатума. Церезин по сравнению с парафином имеет повышенную температуру плавления (65 – 80 °С) и повышенную стойкость против окисления. Церезин применяют для пропитки бумажных конденсаторов, приготовления изолирующих составов и другого. Электрическая прочность церезина 15 кВ/мм.

12. Электроизоляционные резины

Резиновые материалы представляют собой сложную смесь разнообразных компонентов, основным из которых является продукт вулканизации каучука.

Свойства резиновых материалов:

  • высокая эластичность в широких интервалах температур;
  • хорошая вибростойкость;
  • повышенная химическая стойкость;
  • стойки к истиранию;
  • хорошие диэлектрические свойства.

Недостатки резиновых материалов:

  • невысокая бензо-и маслостойкость;
  • относительно низкая тепло-и морозостойкость;
  • склонность к старению под действием тепла, кислорода и света;
  • содержит свободную серу, а она с течением времени выделяется и вызывает коррозию металлов, контактирующих с резиной.

Основными компонентами резин являются каучук, вулканизирующие вещества, ускорители вулканизации, наполнители, противостарители, мягчители, регенерат и красители.

Каучук – основа резиновых смесей, определяющая основные физико-химические и механические свойства резин.

Вулканизация – это физико-химический процесс взаимодействия каучука с вулканизующим веществом, в результате которого происходит изменение свойств каучука: он теряет пластичность, становится эластичным, увеличивается прочность, стойкость к действию химических веществ. Важнейшим вулканизирующим веществом является сера.

Процесс вулканизации в смесях, содержащих одну серу, протекает медленно. Для сокращения времени вводят химические вещества, называемые ускорителями вулканизации (альтакс, каптакс, тиурам).

Наполнители – порошкообразные материалы: активные (сажи, каолин, цинковые белила) – повышают прочность при разрыве, сопротивление истиранию; неактивные(мел, тальк) – для удешевления резин.

Мягчители – вещества, предназначенные для облегчения перемешивания каучука с порошкообразными составляющими и придания резине мягкости (вазелиновое масло, парафин, стеарин, канифоль).

Противостарители применяют для предохранения резиновых изделий от старения (ароматические амины и диамины).

Регенерат – продукт переработки старых резиновых изделий, заменяет каучук, дешевле его.

Красители служат для окраски резины (окись титана, сурик, ультрамарин).

Электротехнические резины включают электроизоляционные и электропроводящие резины. Электроизоляционные резины, при­меняемые для изоляции токопроводящей жилы проводов и кабелей, для специальных перчаток и обуви, изготовляют только на основе неполярных каучуков НК, СКБ; СКС, СКТ и бутилкаучука.

Электропроводящие резины для экранированных кабелей получают из каучуков НК, СКН, наирита, особенно из полярного каучука СКН-26 с введением в их состав углеродной сажи и графита (65-70 %).

Резину, стойкую к воздействию гидравлических жидкостей, используют для уплотнения подвижных и неподвижных соеди­нений гидросистем, рукавов, диафрагм, насосов; для работы в масле применяют резину на основе каучука СКН, набухание которой в жидкости не превышает 1-4 %. Для кремнийорганических жидкостей применимы неполярные резины на основе каучуков НК, СКМС-10 и др.

Любое электрическое оборудование, включая генераторы, силовые установки и распределительные устройства, состоит из токоведущих частей. Для надежной и безопасной эксплуатации последние должны быть защищены друг от друга и от воздействия окружающих компонентов. В этих целях используются электроизоляционные материалы.

Важно, чтобы обмотка на якоре была отделена от его сердечника, виток возбуждения – от аналогичной детали, полюсов и каркаса агрегата. Материалы, которые применяются для изоляции чего-либо от воздействия электрического тока, называются диэлектриками. Стоит отметить, что такие изделия бывают двух типов – одни абсолютно не пропускают ток, другие – хоть и делают это, но в мизерных количествах.

Изоляция обмотки якоря

При создании подобных материалов применяют органические и неорганические элементы вкупе с различными добавками, необходимыми при пропитке и склеивании. В последнее время широкую популярность набирает жидкая изоляция для проводов, часто используемая в выключателях и трансформаторах (например, трансформаторное масло). Не реже в электротехническом оборудовании применяют газообразные диэлектрики, вплоть до обычного воздуха.

Электроизоляционные материалы и сферы их применения

К основным областям применения электроизоляционных материалов можно отнести различные промышленные ветви, радиотехнику, приборостроение и монтаж электрических сетей. Диэлектрики – это основные элементы, от которых зависит безопасность и стабильность работы любого электроприбора. На качество и функциональность изоляции влияют различные параметры.

Таким образом, главная причина применения электроизоляции – соблюдение правил безопасности. В соответствии с ними строго запрещено эксплуатировать оборудование с частично или полностью отсутствующей изоляцией, поврежденной оболочкой, поскольку даже малые токи могут нанести вред человеческому организму.

Диэлектрические изделия для электроприборов

Свойства диэлектриков

Для того чтобы гарантировать выполнение важных функций, электроизоляционные изделия должны обладать необходимыми свойствами. Основное отличие диэлектрика от проводника – намного большее удельное сопротивление (100-1100 Ом*см). С другой стороны, их электрическая проводимость в 14-15 раз ниже токоведущих жил. Связано это с природным происхождением изоляционных материалов, в составе которых намного меньше свободных отрицательных электронов и положительно заряженных ионов, влияющих на токопроводимость.

Важно! Несмотря на последнее высказывание, при нагревании любого диэлектрика количество ионов и электронов существенно возрастает, из-за чего повышается электрическая проводимость и возникает риск пробоя током.

Все свойства диэлектриков можно разделить на две основные группы – активные и пассивные, при этом вторая является наиболее важной. К пассивным относится диэлектрическая проницаемость: чем меньше ее значение, тем более надежным и качественным является изолятор, поскольку он не оказывает негативного влияния на электрическую схему и не добавляет паразитные емкости. С другой стороны, если изделие эксплуатируется в роли диэлектрического конденсатора, то проницаемость должна быть максимально высокой (паразитные емкости в данном случае важны).

Свойства изоляционных материалов

Параметры изоляции

К числу основных относятся:

  • электропрочность;
  • удельное электрическое сопротивление;
  • относительная проницаемость;
  • угол диэлектрических потерь.

Оценивая качество и эффективность диэлектриков, и сравнивая их свойства, нужно выявить зависимость перечисленных параметров от значений тока и напряжения. По сравнению с проводниками электроизоляционные компоненты имеют повышенную электрическую прочность. Учитывая сказанное выше, не менее важным является то, насколько хорошо изоляторы сохраняют свои полезные свойства и удельные величины при нагревании, увеличении напряжения и других воздействиях.

Параметры изоляции для силовых кабелей

Классификация диэлектрических материалов

Выбор того или иного изоляционного материала зависит от мощности тока, протекающего по проводникам оборудования. Существует несколько критериев для классификации диэлектриков, но наиболее важными являются два – агрегатное состояние и происхождение. Для изоляции шнуров бытовых электроприборов используют твердые изоляторы, трансформаторов и прочего высокомощного оборудования – жидкие и газообразные.

Классификация по агрегатному состоянию

По агрегатному состоянию выделяют три типа диэлектрических материалов – твердые, жидкие и газообразные.

Твердые диэлектрики

Электроизоляционные материалы данного типа считаются наиболее распространенными и популярными, используются практически во всех сферах, где присутствует оборудование с токоведущими частями. Их качество зависит от некоторых химических свойств, при этом диэлектрическая проницаемость может быть совершенно разной – 10-50 000 (безразмерная величина).

Твердые изоляторы бывают полярными, неполярными и сегнетоэлектрическими. Главное отличие трех разновидностей – принцип поляризации. Основными свойствами данных материалов являются химическая стойкость, трекингостойкость и дендритостойкость. От химической стойкости зависят возможности диэлектрика противостоять воздействию агрессивной среды – кислотам, щелочам, активным жидкостям. Трекингостойкость влияет на защиту от электрической дуги, дендритостойкость – от появления дендритов.

Твердые неорганические диэлектрики

Керамические изоляторы эксплуатируют как линейные и проходные диэлектрики в составе подстанций. Для защиты бытовых электрических приборов могут применяться текстолиты, полимеры и бумажные изделия, промышленного оборудования – лаки, картон и различные компаунды.

Сочетая несколько разных материалов, производителям диэлектриков удается получить особые свойства изделия. Благодаря этому повышается устойчивость к нагреву, воздействию влаги, экстремально низких температур и даже радиации.

Наличие нагревостойкости говорит о том, что изолятор способен выдерживать высокие температуры, но в каждом отдельном случае максимальная планка будет разной (она может достигать и 200, и 700 град. Цельсия). К числу таковых относятся стеклотекстолитовые, органосиликатные и некоторые полимерные материалы. Фторопластовые диэлектрики устойчивы к воздействию влаги, могут эксплуатироваться в тропиках. Вообще фторопласт не только гидрофобен, но еще и негигроскопичен.

Если в состав электротехнического оборудования включены атомные элементы, то важно использовать изоляцию, устойчивую к радиоактивному фону. На помощь приходят неорганические пленки, часть полимеров, стеклотекстолиты и различные слюдинитовые изделия.

К морозостойким диэлектрикам относятся компоненты, сохраняющие свои удельные свойства при температуре до -90 град. Цельсия. Наконец, в электроприборах, эксплуатируемых в космосе, применяются изоляционные материалы с повышенной вакуумной плотностью (например, керамика).

Жидкие диэлектрики

Диэлектрики в подобном агрегатном состоянии зачастую эксплуатируются в промышленном электрооборудовании. Наиболее ярким примером являются трансформаторы, для безопасной работы которых требуется специальное масло. К числу жидких диэлектриков можно отнести сжиженный газ, парафиновое или вазелиновое масло, спреи, дистиллированную воду, которая была очищена от солей и других примесей.

Жидкие электроизоляционные материалы описываются следующими технико-эксплуатационными характеристиками:

  • диэлектрическая проницаемость;
  • электропрочность;
  • электропроводность.

Величина физических параметров жидких диэлектриков зависит от степени их чистоты (загрязнения). Наличие твердых примесей в воде или масле приводит к существенному повышению электрической проводимости, что связано с увеличением числа свободных электронов и ионов. Жидкости очищаются разными методами, начиная от дистилляции и заканчивая ионным обменом. После выполнения данного процесса повышается электропрочность материала и снижается его электропроводность.

Виды жидких диэлектриков

Жидкие электроизоляторы можно разделить на три основные группы:

  1. Из нефти изготавливают трансформаторное, конденсаторное и кабельное масла.
  2. Синтетические жидкости активно применяются в промышленном приборостроении. К их числу можно отнести соединения на основе фтор- и кремнийорганики. Кремнийорганические материалы способны выдерживать сильные морозы, они относятся к числу гигроскопичных, поэтому могут применяться в малых трансформаторах. С другой стороны, стоимость таких соединений намного выше, чем у нефтяных масел.
  3. Растительные жидкости крайне редко используются при изготовлении электроизоляции. Речь идет о касторовом, льняном, конопляном и других маслах. Все перечисленные вещества считаются слабополярными диэлектриками, поэтому могут применяться только для пропитки бумажных конденсаторов или для образования пленки в электроизоляционных лаках и красках.

Газообразные диэлектрики

Самыми популярными газообразными диэлектриками считаются электротехнический газ, азот, водород и воздух. Все они могут быть разделены на две категории – естественные и искусственные. К первым относится воздух, который часто эксплуатируют в качестве диэлектрика для защиты токоведущих частей линий электрической передачи и машин.

Наряду с преимуществами, есть у воздуха недостатки, из-за чего он не подходит для эксплуатации в герметичном оборудовании. Поскольку в его состав входит большое содержание кислорода, то данный газ является окислителем, поэтому в неоднородном поле существенно снижается электрическая прочность.

Азот – отличный вариант для изоляции силовых трансформаторов и высоковольтных линий электропередач. Помимо хороших изоляционных свойств, водород способен принудительно охлаждать оборудование, поэтому зачастую применяется в высокомощных электромашинах. Для герметизированных установок подойдет электротехнический газ, при использовании которого снижается взрывоопасность любых агрегатов. Электротехнический газ часто эксплуатируется в высоковольтных выключателях, что обусловлено способностью к гашению электрической дуги.

Свойства газообразных диэлектриков при нормальном давлении

Классификация по происхождению

По происхождению диэлектрики делятся на органические и неорганические.

Органические диэлектрики

Органические электроизоляционные изделия можно разделить на естественные и синтетические. Все материалы, относящиеся к первой категории, в последнее время практически не эксплуатируются, что связано с увеличением производственных мощностей синтетических диэлектриков, стоимость которых намного ниже.

Естественными диэлектриками являются растительные масла, парафин, целлюлоза и каучук. К синтетическим материалам можно отнести пластмассы и эластомеры разных типов, применяемые в бытовых приборах и другой электротехники.

Неорганические диэлектрики

Электроизоляционные материалы неорганического типа бывают естественные и искусственными. Из компонентов природного происхождения можно выделить слюду с большой устойчивостью к воздействию химически активных веществ и высоких температур. Не менее популярными являются мусковит и флогопит.

Искусственные диэлектрики – стекло в чистом или разбавленном видах, фарфор и керамика. Материалам данной категории зачастую придают особые свойства, добавляя в их состав различные компоненты. Если изолятор проходной, то нужно применять полевошпатовую керамику с большим тангенсом диэлектрических потерь.

Волокнистые электроизоляционные материалы

Волокнистые диэлектрики эксплуатируются для защиты различного оборудования. К числу таковых относятся каучук, целлюлоза, различные ткани, нейлоновые и капроновые изделия, полистирол и полиамид.

Органические волокнистые диэлектрики имеют высокую гигроскопичность, поэтому практически никогда не используются без специальной пропитки. В последние годы вместо органических изоляторов применяют синтетические волокнистые изделия с ярко выраженной нагревостойкостью.

Ткань с лаковой пропиткой

В качестве примера можно выделить стеклянные волокна и асбест: первые пропитываются лаками и смолами, улучшающими гидрофобность, вторые характеризуются минимальной прочностью, поэтому в их состав добавляют хлопчатобумажные элементы. Речь идет о материалах, которые не плавятся при нагреве.

Классы нагревостойкости электроизоляционных материалов

Класс нагревостойкости диэлектриков указывается буквой латинского алфавита. Перечислим основные из них:

  • Y – максимальная температура 90 град. Цельсия. К данной категории относятся различные волокнистые изделия из хлопка, натуральных тканей и целлюлоза. Они не пропитываются и не дополняются жидкими электроизоляторами.
  • A – 105 град. Цельсия. Все материалы, перечисленные выше, и синтетический шелк, пропитываемые жидкими диэлектриками (погружаемые в них).
  • E – 120 град. Цельсия. Синтетические изделия, включая волокна, пленки и компаунды.
  • B – 130 град. Цельсия. Слюдинитовые диэлектрики, асбест и стекловолокно вкупе с органическим связующим и пропиткой.
  • F – 155 град. Цельсия. Слюдинитовые материалы, в качестве связующего звена которых выступают синтетические компоненты.
  • H – 180 град. Цельсия. Слюдинитовые диэлектрики с кремнийорганическими соединениями, выступающими в качестве связующего.
  • C – более 180 град. Цельсия. Все перечисленные выше изделия, в которых не используется связующее или применяются неорганические адгезивы.

Выбор электроизоляционных материалов зависит не только от мощностей оборудования, но и от условий его эксплуатации. Например, для высоковольтных линий электропередач должны использоваться диэлектрики с повышенной морозостойкостью и защитой от воздействия ультрафиолетовых лучей.

Таким образом, информация выше может использоваться только в качестве ознакомительных целей, а окончательное решение должен принимать профессиональный, квалифицированный специалист.

Каучук и каучуковые материалы: резина, эбонит, гуттаперча, балата

Каучук — общее имя, под которым продается продукт коагуляции млечного сока, выделяемого некоторыми тропическими растениями. К числу этих растений относится Бразильская гевея (Hevea brasiliensis) и родственные ей виды. Из гевей как дико растущих, так и плантационных получается около 9/10 мировой добычи каучука.

Плантационный каучук выше по своим качествам, нежели дико растущий. Продажный каучук носит различные названия, наиболее ценный сорт "пара-каучук". В химическом отношении главной составной частью каучука является углеводород состава ( С10 H16 ) n. В настоящее в больших объемах выпускается искусственный каучука, путем полимеризации изопрена (C5 H8 ) . Каучук растворим в бензине, бензоле, сероуглероде и др.

Еще до открытия Бразилии местные индейцы имели "резиновые мячики", бутылки из небьющегося материала и пользовались для освещения на праздниках факелами, которые долго горели, но выделили много сажи и имели резкий запах. Они изготовлялись из молочно-белых "слез" дерева кауучу.

Пробы этого материала в виде каучуковых сухих лепешек привез на родину французский исследователь и ученый Шарль Мари де ла Кондамин в 1744 году во время английской морской блокады против Франции. Но промышленное значение каучук получил только после того, как американскому химику Чарльзу Нельсону Гудьиру в 1839 году удалось превратить каучук с серой под действием тепла из пластичного в эластичное состояние (резину).

В результате процесса вулканизации и изготовления эбонита, в 1848 году он стал основателем современной резиновой промышленности. В 1898 году в Акране (Огайо) была основана компания "Goodyear Tire & Rubber". Еще сегодня она относится к самым крупным производителям изделий из каучука и синтетической резины в мире.

Старая реклама компании Goodyear

Обработка каучука

В чистом виде каучук не применяется, а предварительно смешивается с различными веществами, из которых главную роль играет сера. Полученная смесь формуется и подвергается вулканизации. Смешение происходит путем перетирания каучука на вальцах, с постепенной подсыпкой того или иного вещества.

В состав каучуковой массы могут входить следующие вещества:

суррогаты каучука (регенерат — старый каучук и фактисы — жирные масла, вулканизированные серой);

наполнители (окись цинка, мел, као л ин и т. п.);

смягчители, прибавляемые при большом проценте наполнителей (парафин, церезин, асфальт и пр.);

В электротехнике применяется мягкий каучук, с большим содержанием наполнителей (до 60% и выше), но с малым содержанием серы, и твердый каучук — роговой каучук, эбонит, с большим содержанием серы.

Резина — смесь каучука с серой, обработанная при повышенной температуре. Чрезвычайно гибкий, эластичный, совершенно водонепроницаемый материал, обладающий высокими изоляционными свойствами. Изготовляется в виде листов различной толщины и широко используется для изоляции проводов. Отрицательные качества — малые теплостойкость и маслостойкость.

Резиновая шина

Вулканизаци я

Для электротехнических изделий применяется исключительно горячая вулканизация. Температура вулканизации 160 - 170° С для твердого каучука и 125 - 145° С для мягкого. Время вулканизации зависит от рода изделий и их размера.

Для ускорения процесса вулканизации в с месь прибавляют особые вещества органического и неорганического происхождения - ускорители. К таким веществам принадлежат окиси некоторых металлов, а также некоторые сложные органические соединения. У скорители н е только сокращают время вулканизации в 4 - 6 раз, но и дают продукт более однородный и во всех отношениях лучших качеств.

Электроизоляционные перчатки

Свойства мятого каучука

Свойства каучука зависят от его сорта, рода наполнителей, количества серы, времени вулканизации и т. д. Увеличение содержания серы увеличивает диэл ектричсекую постоянную и угол потерь. Из примесей наиболее вредно влияет на электрические свойства сажа, наименее — молотый кварц.

Уд ельное об ъ емное сопротивление в среднем составляет 10 14 - 10 16 Ом х с м . Диэл ектричская постоянная от 2,5 до 3. Эл ектрическая прочность составляет для сырого каучука - 24 кВ/мм , для каучука вулканизированного - 38,7 кВ/мм . Тангенс угла потерь для вулканизированного каучука 0,005 - 0 ,02. Уд ельный вес чистого каучука 0,93 - 0,97, каучуковой смеси - 1,7 - 2. Временное сопр отивление пр и растяжении хорошего каучука - 120 кг/см 2 , при чем при разрыве каучук удлиняется в 7 раз.

Мягкий каучук идет, главным образом, н а изоляцию проводников, на выделку трубок, лент, перчаток и т. д. При электромонтажных работах широко применяется изоляционная лента, представляющая собой обычную миткалевую ленту, покрытую с одной стороны каучуковой клейкой массой.

Иначе называется твердым каучуком. Лучшие сорта эбонита содержат 75% чистого каучука и 25% серы. Некоторые сорта содержат, кроме того, регенерат и наполнители. Впрочем, наполнители иногда прибавляются для изменения свойств эбонита в желаемом направлении, напр имер , для увеличения его теплостойкости.

Уд ельное об ъ емное сопротивление лучших сортов эбонита доходит до 10 16 - 10 1 7 Ом х с м. Поверхностное удельное сопротивление до 10 1 5 Ом . Однако, поверхностное сопротивление при длительном действии световых лучей значительно уменьшается. Для уменьшения этого эффекта поверхность эбонита должна быть хорошо полирована.

Старение происходит вследствие выделения из эбонита свободной серы, которая, соединяясь с кислородом воздуха и влагой, дает серную кислоту. Для восстановления поверхности,. эбонит промывается сначала нашатырным спиртом, а затем, многократно, дистиллированной водой.

Электрическая прочность эбоинта составляет от 8 до 10 кВ/мм при толщинах порядка 5 - 10 мм . Временное сопротивление при изгибе от 400 до 1 000 кг /c м 2 . Временное сопротивл е ние при ударном изгибе 5 - 20 (кг х см)/см 2 . Теплостойкость 45 - 55° С.

Предприятия , вырабатывающие эбонит, обычно выпускают несколько сортов его. Чем ниже сорт, тем больше в нем суррогатов каучука и наполнителей. Эбонит имеет весьма широкое применение в электротехнике . Эбонит продается в листах, прутках и трубах.

К специальным сортам эбонита принадлежат а сбестонит и вулкан-асбест. Производство их несколько отличается от производства эбонита,а именно: так как асбестовое волокно совершенно размалывается вальцами, то каучук растворяют в бензияе и затем уже смешивают с асбестом и прочими наполнителями. Такие смеси могут содержать очень мало каучука, до 10%, вследствие чего теплостойкость этих изделий может быть поднята до 160° С.

Эбонитовый порошок используют для изготовления пластмассы, из которой прессуют различные изоляционные детали.

Синтетический искусственный каучук

В современной кабельной промышленности отдается предпочтение не натуральному каучуку, а его синтетическим видам и смесям. Эти смеси придают специфические свойства изолировочному слою и оболочке готовых продуктов (жилы, провода и кабеля). К смесям добавляют присадки, ускоряющие реакцию сшивания, а также цветные пигменты и присадки, защищающие готовый продукт от старения.

Существует несколько видов синтетического каучука - карбоксилатные, полисульфидные, этиленпропимновые и др. Электрические свойства синтетического каучука близки к свойствам естественного, но механические ниже.

Гуттаперча представляет продукт коагуляции млечного сока некоторых растений, произрастающих на островах Малайского архипелага.

Гуттаперча содержит 20 - 30% смол и 70 - 80% каучука с углеводородом и по химическому составу приближается к природному каучуку. Но, так как родственники не всегда похожи друг на друга, гуттаперча тоже ведет себя по-иному, чем натуральный каучук. При температуре 50 - 70 о С гуттаперча становится пластичной, но не эластичной, как каучук, и затвердевает при воздействии холода.

Гуттаперча не вулканизируется. Начинает размягчаться при 37° С, при 60° С становится совершенно пластичной и при 130° С расплавляется. Уд ельное объемное сопротивление 10 14 - 10 16 Ом х с м .

Это один из самых древних электроизоляционных материалов. С 1845 года гуттаперчей изолировались телеграфные провода в Великобритании, в т.ч. для изоляции подводных линий.

Подводный телеграфный кабель 1864 года

Подводный телеграфный кабель 1864 года

В семидесятых годах XIX века появляются первые кабельные заводы за границей и в России. Эти заводы изготовливали главным образом изолированную проволоку для телеграфа и немногие из них — изолированный гуттаперчей подводный телеграфный кабель.

За применение новых сырьевых материалов, как, резины, гуттаперчи, балаты ратовал родившийся в Кельне Франц Клоут (1838 - 1910 гг.), ставший новатором и важнейшим основателем резиновой промышленности в Германии.

С гуттаперчей, как изоляционной облицовкой, эксперименты проводились и Вернером фон Сименсом, который хотел применить ее для подземного кабеля. При проведении трехлетних испытаний по поручению немецкого правительства оказалось, что гуттаперча разрушается натуральными агрессивными веществами земли и теряет через короткое время свои изоляционные качества в грунтовых водах.

В качестве изолятора жил силового кабеля гуттаперча продержалась сравнительно короткое время, так как изоляция на холоде становилась твердой, а под действием тепла мягкой, была дорогостоящей, а поэтому не могла стать идеальной (смотрите - Какие бывают кабельные изделия).

Покрытие кабеля гуттаперчей. Гринвич, 1865-66 годы. Картина Р. Ч. Дадли

Покрытие кабеля гуттаперчей. Гринвич, 1865-66 годы. Картина Р. Ч. Дадли

Жилы в то время укладывались в трубах из железа и свинца и были обмотаны лентами из хлопка, льна или джута. А в 1882 году появилась идея применения этих материалов для изоляции. Для этого на базе вазелина с добавлением природных смол для сгущения были созданы средства пропитки.

Употребляемый тогда гуттаперчевый пресс превратился в гидравлический свинцовый пресс, с помощью которого непосредственно на жилу накладывалась свинцовая облицовка и отпала необходимость применять железные трубы.

От коррозии облицовка защищалась джутом, пропитанным битумом, который обматывался вокруг кабеля. В качестве механической защиты применялись два оцинкованных железных листа, пропитанных битумом и уложенных внахлестку. Для полной защиты от коррозии их еще раз покрывали джутом, пропитанным битумом.

Битум относится к продуктам, оставлявшим на руках монтеров-прокладчиков подземного кабеля еще многие десятилетия черные следы. Поскольку он, известный как "земная смола" или "горная смола", добывался как "природный асфальт", а сегодня выделяется в основном при перегонке нефти в вакууме, применялся еще за 2500 лет до н.э. под названием "асфальта" жителями Мессопотамии для уплотнений между досками палубы их судов. Применялся он и как предшественник линолеума для изоляции полов от проникновения влаги.

Балата — продукт, родственный каучуку и гуттаперче, добывается в Венесуэле. По свойствам близка к гуттаперче и применяется, как прибавка к ней и к каучуку. Балата содержит больше природных смол, чем каучук и гуттаперча и в отличие от резины не вулканизируется. В большом количестве она применяется в виде пропитки при изготовлении приводных ремней и конвейерных лент.

Читайте также: