Экспериментальный метод галилея кратко

Обновлено: 04.07.2024

Если натурфилософы со времен Аристотеля считали, что ни одно тело не переходит из состояния покоя в движение без действия силы, а всякое движение может прекратиться само собой, то Галилей, в открытом им законе инерции, установил равноправие покоя и равномерного прямолинейного движения, показав, что ни одно тело не может изменить своей скорости (ни ее величину, ни направление) без действия силы. Закон инерции не опирается на повседневный опыт, он сформулирован на основе мысленного эксперимента с идеализированными объектами. Этот закон открыт чисто теоретическим путем. Натурфилософы Древней Греции стали первыми теоретиками в понимании естественного единства мира в целом; Галилей первым возвел механику на уровень теоретической науки.

Одной из самых важных заслуг Галилея в истории науки является установление и разработка им нового экспериментального методапознания природы, предполагающий активную деятельность естествоиспытателя, направленную на постановку специальных экспериментов. Экспериментальный метод Галилея предполагает этапы: установление гипотез на основе данных наблюдений и опытов, вывод следствий из гипотез,экспериментальная проверка следствий, подтверждающих гипотезуи превращающих ее в научный закон (рис. 2.2).


Рис.2.2. Экспериментальный метод Галилея.

Первым достижением экспериментального метода Галилея было открытие закона свободного падения тел. В XVII в. экспериментальный метод Галилея становится основным научным методом познания природы, что означало начало становление физики как самостоятельной науки и – естествознания как системы естественных наук.

От здравого смысла через эксперимент к идеализациям, а от них к теории, проверяемой на практике, таков путь физики к научному познанию движения тел.

Становление физики как самостоятельной науки

Научная революция XVI–XVII вв. обусловила становление физики как самостоятельной науки– следующую после астрономии и статики ступень процесса выделения естественных наук из философии. Становление физики как самостоятельной науки сопровождалось развитием экспериментального метода познания природы, заложенного Галилеем, и выдающимися достижениями в области механики, оптики, физики жидкостей и газов.

В период становления физики как самостоятельной науки была создана теория маятника(Галилей, Гюйгенс), разработанатеория вращательного движения(Гюйгенс). Теоретическая разработка проблемы маятника имела прямую связь с решением практической задачи измерения времени: свойство маятника сохранять постоянный период колебаний, открытое Галилеем, сразу натолкнуло на мысль применить маятник для измерения времени. Галилеем был составлен чертеж проекта маятниковых часов, однако, из-за смерти Галилея проект не был осуществлен. Разработка и осуществление практически пригодных часов принадлежит голландскому ученому Х. Гюйгенсу (1629–1695). В 1657 г. Гюйгенс запатентовал изобретенные им часы с маятником. Одновременно он разработал теорию маятника. Гюйгенс разработал также теорию вращательного движения для материальной точки, равномерно движущейся по окружности.

В период становления физики как самостоятельной науки был установлен закон преломления света. Впервые этот закон был экспериментально установлен голландским ученым Снеллиусом (1580–1626) на границе воздух – вода, однако, Снеллиус не дал его современной формулировки. Позднее этот закон в уже современной формулировке был опубликован Декартом в сочинении "Диоптрика" (1637). Декарт вывел этот закон теоретически, исходя из постулатов о различной скорости света в средах с различной плотностью. Открытие закона преломления света давало возможность приступить к количественному расчету оптических систем. В дальнейшем была получена формула линзы и развиты основы теории оптических систем. В этот же период были открыты явленияинтерференцииидифракциисвета. Эти явления были впервые описаны итальянским ученым Ф. Гримальди (1618–1663) в его труде "Физико-математические рассуждения о свете, цветах и радуге" (1665). Гримальди наблюдал, что если на пути пучка света, проходящего через отверстие в ставне, поставить стержень, то на экране тень получается размытой. Этому явлению Гримальди дал название дифракции (раздробление). Другой опыт, описанный Гримальди, заключался в следующем. Свет пропускался через два узких отверстия в ставне, расположенных близко друг к другу, так что на экране два конуса лучей накладывались друг на друга. Рассматривая картину на экране, Гримальди пришел к выводу, что "прибавление света к свету" (интерференция) может привести к уменьшению его интенсивности.

В период становления физики как самостоятельной науки было создано учение об атмосферном давлении(Торричелли, Паскаль). В 1603 г. Э. Торричелли (1608–1647) провел первый опыт с трубкой, наполненной ртутью и пришел к заключению о возможности существования пустоты, а также измерил величину атмосферного давления. Позже Декарт высказал мысль, что атмосферное давление должно уменьшаться с высотой и что это можно проверить, подняв барометр в гору. Такой опыт проделал Б. Паскаль (1623–1663) и установил, что, действительно, высота ртутного столба с подъемом уменьшается. Опыты Торричелли-Паскаля привели к изобретению нового прибора – барометра, который начал применяться в метеорологических исследованиях.

На этот второй вопрос дает ответ научное знание. При этом научное знание является нейтральным по отношению к вопросам духовных и религиозных ценностей, а вера не должна рассматривать Библию как источник точных фактических знаний об окружающем нас мире. Таким образом провозглашается автономия научного знания относительно Священного Писания. Наука и вера у Галилея несоразмерны, но вполне могут сосуществовать.

Рассмотрим образ науки у Галилея. Прежде всего, как уже было сказано, наука более не служанка веры, она имеет самостоятельное значение. Основы и задачи науки и веры отличаются. Более того, наука должна стать независимой от оков догматизма, слепого преклонения перед древними авторитетами.

Для определения истинности или ложности того или иного положения следует использовать доказательства, а не бумажные ссылки на авторитеты. При этом такой подход не означает полного отказа от традиций и наследия того же Аристотеля. Следует только отделить истинно научные доказательства, опирающиеся на чувственные опыт, от оторванных от действительности рассуждений.

Галилей воспринимает науку в стиле реализма. Рассуждая более как физик, нежели как математик, он считает научное знание описание реальной действительности, а не просто набором инструментов для практических расчетов. В этом заключается основное эпистемологическое противоречие между Галилеем и церковью, причина гонений и суда инквизиции.

Наука будет в состоянии дать достоверное описание действительности только в том случае, когда она будет в состоянии различить субъективные и объективные свойства тел.

Объективность науки состоит в том, что она оперирует количественными характеристиками тел, не зависимыми от наблюдающего их субъекта, доступными исчислению и измерению. Субъективные качества тел (к ним Галилей относил в том числе цвет, запах, вкус) не являются предметом науки. Объективная и доступная измерениям наука о действительности возможна, так как природа, с точки зрения Галилея, написана на языке математики.

Сочетание чувственного опыта с необходимыми доказательствами образует научный опыт - эксперимент. Отличие эксперимента от простого пассивного наблюдения заключается в том, что эксперимент проводится для подтверждения или опровержения какой-либо гипотезы. В результате происходит формирование научной теории, подтвержденной экспериментально. Следует отметить, что Галилей широко использовал также мысленные эксперименты, часто невыполнимые на практике. Такие эксперименты вполне оправданы в случае использования их с критической или эвристической точки зрения.

Галилей использовал подзорную трубу в качестве инструмента научного исследования. Это являлось революционным шагом, так как до того механические приборы не признавались научной средой как средства, способные расширить наше представление о мире. Велик вклад Галилея в преодоление эпистемологических барьеров на пути внедрения инструмента в научное исследование. Он превратил подзорную трубу из простого предмета в решающий элемент научного знания. Несовершенство человеческих чувств может быть преодолено использованием научных приборов, расширяющих возможности познания. Галилеяможно назвать теоретиком гипотетико-дедуктивного метода в научном познании. Он продолжил научную революцию, которая будет завершена Ньютоном.




Значение натурфилософии Возрождения.

1. В рамках натурфилософии происходит ломка теоцентризма и переход к научной картине мира, что способствовало освобождению философии от средневековой теологии.

2. В эту эпоху были заложены теологические, технологические, социальные и духовные предпосылки для осуществления научной революции и формирования рационализаторской картины мира, что произошло в 18в. и имело свое продолжение в будущем. Имена философов естествоиспытателей Возрождения символизируют собой борьбу старого и нового. Противоречивый процесс становление науки и утверждение ее позиции в общественной жизни.

3. Видя в природе не только совершенное божественное творение, но прежде всего совокупность присущих ей закономерностей, свободных от непосредственного вмешательства, натурфилософия эпохи открывала путь дальнейшему развитию экспериментального естествознания, воз­никновению классической механики Ньютона, созданию философских концепций XVII - XVIII вв.

7.Гуманистический антропоцентризм. Гуманисты Возрождения.

Гуманизм - особое явление духовной жизни эпохи Возрождения. В 14 - 15 веке было принято деление наук на: науки божественные, науки человеческие (гуманистические), причем к последним относили: граммати­ку, риторику, литературу, поэзию, историю и этику.

Гуманистами называли образованных людей особенно хорошо знавших эти науки. Со II половины 14 века особое значение придается классической древнегреческой и римско-латинской литературе. Греческие и латинские писатели стали считаться на­ставниками человечества. Особенно высок авторитет Вергилия и Цицерона. Именно у Цицерона был и заимствован термин гуманизм. Цицерон называл гуманизмом высшее культурное и нравственное развитие человеческих способностей. Гуманизм представляет собою восприятие человека в качестве некоего центра мира и высшей ценно­сти. Известно, что объектом внимания для античной философии был, прежде всего, космос, в средние века - Бог, а эпоха Возрождения свое основное вни­мание сконцентрировала на человеке, его сущности и природе, смысле существования, и призвании в мире.

Гуманизм объявлял человека свободным от государства и церкви, властелином собственной судьбы и вершиной природы и исторического развития. Гуманизм как течение зародился среди образованных городских слоев, он формировался в недрах художественной литературы как критическая ре­акция на догмы религии, на ее учение о греховности и несвободе человека.

По своему жанру гуманистическая философия сливалась с литературой, из­лагалась иносказательно и в художественной форме. Его центром была Италия, а лидером безусловно стала Флоренция. Здесь был и творил последний поэт средневековья и первый поэт Возрождения - Данте, Франческа Петрарка, Лоренцо Валла.

На этот второй вопрос дает ответ научное знание. При этом научное знание является нейтральным по отношению к вопросам духовных и религиозных ценностей, а вера не должна рассматривать Библию как источник точных фактических знаний об окружающем нас мире. Таким образом провозглашается автономия научного знания относительно Священного Писания. Наука и вера у Галилея несоразмерны, но вполне могут сосуществовать.

Рассмотрим образ науки у Галилея. Прежде всего, как уже было сказано, наука более не служанка веры, она имеет самостоятельное значение. Основы и задачи науки и веры отличаются. Более того, наука должна стать независимой от оков догматизма, слепого преклонения перед древними авторитетами.

Для определения истинности или ложности того или иного положения следует использовать доказательства, а не бумажные ссылки на авторитеты. При этом такой подход не означает полного отказа от традиций и наследия того же Аристотеля. Следует только отделить истинно научные доказательства, опирающиеся на чувственные опыт, от оторванных от действительности рассуждений.

Галилей воспринимает науку в стиле реализма. Рассуждая более как физик, нежели как математик, он считает научное знание описание реальной действительности, а не просто набором инструментов для практических расчетов. В этом заключается основное эпистемологическое противоречие между Галилеем и церковью, причина гонений и суда инквизиции.

Наука будет в состоянии дать достоверное описание действительности только в том случае, когда она будет в состоянии различить субъективные и объективные свойства тел.

Объективность науки состоит в том, что она оперирует количественными характеристиками тел, не зависимыми от наблюдающего их субъекта, доступными исчислению и измерению. Субъективные качества тел (к ним Галилей относил в том числе цвет, запах, вкус) не являются предметом науки. Объективная и доступная измерениям наука о действительности возможна, так как природа, с точки зрения Галилея, написана на языке математики.

Сочетание чувственного опыта с необходимыми доказательствами образует научный опыт - эксперимент. Отличие эксперимента от простого пассивного наблюдения заключается в том, что эксперимент проводится для подтверждения или опровержения какой-либо гипотезы. В результате происходит формирование научной теории, подтвержденной экспериментально. Следует отметить, что Галилей широко использовал также мысленные эксперименты, часто невыполнимые на практике. Такие эксперименты вполне оправданы в случае использования их с критической или эвристической точки зрения.

Галилей использовал подзорную трубу в качестве инструмента научного исследования. Это являлось революционным шагом, так как до того механические приборы не признавались научной средой как средства, способные расширить наше представление о мире. Велик вклад Галилея в преодоление эпистемологических барьеров на пути внедрения инструмента в научное исследование. Он превратил подзорную трубу из простого предмета в решающий элемент научного знания. Несовершенство человеческих чувств может быть преодолено использованием научных приборов, расширяющих возможности познания. Галилеяможно назвать теоретиком гипотетико-дедуктивного метода в научном познании. Он продолжил научную революцию, которая будет завершена Ньютоном.

Значение натурфилософии Возрождения.

1. В рамках натурфилософии происходит ломка теоцентризма и переход к научной картине мира, что способствовало освобождению философии от средневековой теологии.

2. В эту эпоху были заложены теологические, технологические, социальные и духовные предпосылки для осуществления научной революции и формирования рационализаторской картины мира, что произошло в 18в. и имело свое продолжение в будущем. Имена философов естествоиспытателей Возрождения символизируют собой борьбу старого и нового. Противоречивый процесс становление науки и утверждение ее позиции в общественной жизни.

3. Видя в природе не только совершенное божественное творение, но прежде всего совокупность присущих ей закономерностей, свободных от непосредственного вмешательства, натурфилософия эпохи открывала путь дальнейшему развитию экспериментального естествознания, воз­никновению классической механики Ньютона, созданию философских концепций XVII - XVIII вв.

7.Гуманистический антропоцентризм. Гуманисты Возрождения.

Гуманизм - особое явление духовной жизни эпохи Возрождения. В 14 - 15 веке было принято деление наук на: науки божественные, науки человеческие (гуманистические), причем к последним относили: граммати­ку, риторику, литературу, поэзию, историю и этику.

Гуманистами называли образованных людей особенно хорошо знавших эти науки. Со II половины 14 века особое значение придается классической древнегреческой и римско-латинской литературе. Греческие и латинские писатели стали считаться на­ставниками человечества. Особенно высок авторитет Вергилия и Цицерона. Именно у Цицерона был и заимствован термин гуманизм. Цицерон называл гуманизмом высшее культурное и нравственное развитие человеческих способностей. Гуманизм представляет собою восприятие человека в качестве некоего центра мира и высшей ценно­сти. Известно, что объектом внимания для античной философии был, прежде всего, космос, в средние века - Бог, а эпоха Возрождения свое основное вни­мание сконцентрировала на человеке, его сущности и природе, смысле существования, и призвании в мире.

Гуманизм объявлял человека свободным от государства и церкви, властелином собственной судьбы и вершиной природы и исторического развития. Гуманизм как течение зародился среди образованных городских слоев, он формировался в недрах художественной литературы как критическая ре­акция на догмы религии, на ее учение о греховности и несвободе человека.

По своему жанру гуманистическая философия сливалась с литературой, из­лагалась иносказательно и в художественной форме. Его центром была Италия, а лидером безусловно стала Флоренция. Здесь был и творил последний поэт средневековья и первый поэт Возрождения - Данте, Франческа Петрарка, Лоренцо Валла.

«Идеализированный подход к экспериментальным фактам состоит в построении такой идеальной модели эксперимента, которая позволяет выделить существенные зависимости исследуемых явлений в чистом виде, что достигается путём абстрагирования от всех посторонних факторов, искажающих реальный эксперимент.

Например, для доказательства зависимости величины скорости тела от высоты наклонной плоскости Галилей использует эксперимент, идеальная модель которого проектируется следующим образом.

Указанная зависимость выполняется с идеальной точностью, если наклонные плоскости абсолютно твёрдые и гладкие, а движущееся тело имеет совершенно правильную круглую форму, так что между плоскостями и телом нет трения. Пользуясь этой идеальной моделью, Галилей строит реальную установку, параметры которой максимально приближены к идеальному случаю.

Таким образом, идеализированный подход Галилея предполагает использование мысленного эксперимента в качестве теоретического условия (проекта) реального эксперимента.

Обычно мысленному эксперименту предшествуют грубые опыты и наблюдения. Так, в опытах со свободным падением тел Галилей мог лишь уменьшить сопротивление воздуха, но не мог исключить его полностью. Поэтому он переходит к идеальному случаю, где сопротивление воздуха отсутствует. Нередко мысленный эксперимент используется в качестве теоретического обоснования тех или иных положений.

Так, Галилей даёт изящное опровержение тезиса Аристотеля о том, что тяжёлые тела падают быстрее, чем легкие. Допустим, говорит он, Аристотель прав. Тогда, если мы соединим два тела вместе, то более легкое тело, падая медленнее, будет задерживать более тяжёлое тело, в результате чего комбинация уменьшит свою скорость. Но два тела, соединенные вместе, имеют большую тяжесть, чем каждое из них в отдельности. Таким образом, из положения, что тяжёлое тело движется быстрее, чем лёгкое, следует, что тяжёлое тело движется медленнее, чем лёгкое. Путем reductio ad absurdum (сведения к абсурду - Прим. И .Л. Викентьева ) Галилей доказывает положение, что все тела падают с одинаковой скоростью (в вакууме).

Одним из самых замечательных достижений Галилея является внедрение математики в практику научного исследования. Книга природы, считает он, написана на языке математики, буквами которой являются треугольники, окружности и другие геометрические фигуры. Поэтому предметом истинной науки может быть все то, что доступно измерению: длина, площадь, объём, скорость, время, и т.д., т.е. так называемые первичные свойства материи.

В общем виде структуру научного метода Галилея можно представить следующим образом.

1. На основе данных наблюдений и грубого опыта строится идеальная модель эксперимента, которая затем реализуется и тем самым уточняется.

2. Путём многократного повторения эксперимента выводятся средние значения измеряемых величин, в которые вносятся поправки с учетом различных возмущающих факторов.

3. Полученные экспериментальным путем величины являются отправной точкой при формулировании математической гипотезы, из которой путем логических рассуждений выводятся следствия.

4. Эти следствия проверяются затем в эксперименте и служат косвенным подтверждением принятой гипотезы.

Если публикация Вас заинтересовала - поставьте лайк или напишите об этом комментарий внизу страницы.

Сама идея экспериментального исследования неявно предполагала наличие в культуре особых представлений о природе, о деятельности и познающем субъекте, представлений, которые сформировались только в культуре Нового времени. Идея экспериментального исследования полагала субъекта в качестве активного начала, противостоящего природной материи, изменяющего ее вещи путем силового давления на них. Природный объект познается в эксперименте потому, что он поставлен в искусственно созданные условия и только благодаря этому проявляет для субъекта свои невидимые сущностные связи.

Наиболее знаменитые ученые этого периода – Галилео Галилей, Френсис Бэкон, Рене Декарт, Исаак Ньютон.

В учении Галилея были заложены прочные основы механистического естествознания. В центре его научных интересов стояла проблема движения. Открытие принципа инерции, исследование им свободного падения тел имели большое значение для становления механики как науки.

Галилей выделял два основных метода экспериментального исследования природы:

Достоверное знание в итоге реализуется в объясняющей теоретической схеме как единство синтетического и аналитического, чувственного и рационального. Отличительное свойство метода Галилея – построение научной эмпирии, которая сильно отлична от обыденного опыта.

Философия Ф.Бэкона была продолжением натурализма Возрождения, который он вместе с тем освобождал от пантеизма, мистицизма и различных суеверий. Остатки органистических воззрений сочетались в ней с началами аналитического метода, поэтичность с трезвым рационализмом, критицизм с нетерпеливым желанием охватить все и обо всем высказаться. И по своим намерениям, и в действительности Бэкон играл в философии роль реформатора.

Он включал в философию почти всю совокупность наук и видел ее задачу в изучении как природы, так и человека с некоторой методологически единой точки зрения.

В своем произведении "Великое Восстановление Наук" Бэкон впервые сформулировал свою идею универсальной реформы человеческого знания на базе утверждения опытного метода исследований и открытий.

Его первая часть "Разделение наук" призвана была дать обзор и классификацию уже достигнутых человеческих знаний и указать темы, которые, прежде всего, нуждаются в дальнейшем изучении. Вторую часть составлял "Новый Органон или указания для истолкования природы". Здесь излагалось учение о методе познания как "законном сочетании способностей опыта и разума" и "истинной помощи" разума в исследованиях вещей. В противоположность дедуктивной логической теории аристотелевского "Органона" Бэкон выдвигает индуктивную концепцию научного познания, в основе которой лежат опыт и эксперимент, определенная методика их анализа и обобщения. Третья часть предполагала кропотливую работу по изучению и систематизации различных природных фактов, свойств и явлений, естественнонаучных наблюдений и экспериментов, которые, согласно его концепции, должны были стать исходным материалом для последующего индуктивного обобщения.

Заслуга Бэкона, в частности, состоит в том, что он со всей определенностью подчеркнул: научное знание проистекает из опыта, не просто из непосредственных чувствительных данных, а именно из целенаправленного организованного опыта, эксперимента. Более того, наука не может строиться просто на непосредственных данных чувства.

В трактате "О достоинстве и преумножении наук" Бэкон разбирает различные способы постановки опытов и модификации экспериментирования, в частности изменение, распространение, перенос, инверсию, усиление и соединение экспериментов.

Бэкон ставит перед собой задачу сформировать принцип научной индукции, "которая производила бы в опыте разделение и отбор и путем должных исключений и отбрасываний делала бы необходимые выводы". Он мыслил индукцию не как средство узкоэмпирического исследования, а как метод выработки фундаментальных теоретических понятий и аксиом естествознания, или, как он выражался, естественной философии.

В противовес индукции через простое перечисление, распространенной в то время, он выдвигает на передний план истинную, по его словам, индукцию, дающую новые выводы, получаемые на основании не столько в результате наблюдения подтверждающих фактов, сколько в результате изучения явлений, противоречащих доказываемому положению. Один-единственный случай способен опровергнуть необдуманное обобщение. Пренебрежение к так называемым отрицательным инстанциям, по Бэкону, - главная причина ошибок, суеверий, предрассудков.

В индуктивный метод Бэкона необходимыми этапами входит собирание фактов, их систематизация. Бэкон выдвинул идею составления трех таблиц исследования - таблицы присутствия, отсутствия и промежуточных ступеней.

Бэкон решительно переосмысливает предмет и задачи науки. В отличие от античности, когда к природе относились созерцательно, становится задача обращения научного знания на пользу человечеству: "знания - сила", Бэкон ориентирует на поиск открытий не в книгах, как схоласты, а в процессе производства и ради него. Он обосновывает важность индуктивного метода (от единичных фактов к общим положениям).

Близкие цели ставятся и Рене Декартом, но он предлагает анализ, требующий строгой последовательности в познании по образу математики. Особую роль Декарт отводит самосознанию ("мыслю, следовательно существую"), а также методическому сомнению.

В истории математики Декарт занимает весьма видное место. Он сыграл решающую роль в становлении современной алгебры: ввел буквенные символы, обозначил последними буквами латинского алфавита переменные величины, ввел нынешнее обозначение степеней, заложил основы теории уравнений. Историческое значение Декартовой "геометрии" состоит также в том, что здесь была открыта связь величины и функции, что преобразовало математику.

Применение алгебраических методов к геометрическим объектам, введение системы прямолинейных координат означало создание аналитической геометрии. Вместе с конкретным научным открытием было совершено еще одно, методологическое открытие. Обнаружилась необходимость и возможность постоянной работы над собственным умом, необходимость и возможность постоянного обращения мысли на мысль, постоянного развития самой способности мыслить, открывать, изобретать.

Декарт разрабатывал метод, необходимый для отыскания истины. Выделяется два основных средства познания: интуицию и дедукцию.

Интуиция - центральное положение картезианского рационалистического метода, требующего ясности и отчетливости как высшего и решающего критерия истинности. Поэтому учение Декарта об интуиции совпадает с учением об "естественном свете разума".

Под интуицией имеется в виду "понятие ясного и внимательного ума, настолько простое и отчетливое, что оно не оставляет никакого сомнения в том, что мы мыслим, или, что одно и то же, прочное понятие ясного и внимательного ума, порождаемое лишь естественным светом разума".Интуиция выступает элементарным актом познания и его "точкой роста", а само познание понимается как последовательность, упорядоченная цепочка интуиций.

Интуиция находится в теснейшей связи с дедукцией. Посредством дедукции мы познаем все, что необходимо выводится из чего-либо достоверно известного.

Рационалистический метод Декарта, концентрируя внимание на деятельности самого человеческого ума в процессе достижения истины, представляется прямой противоположностью методу эмпиризма Бэкона, основанному на чисто опытном выведении аксиом знания, лишенных математического осмысления.

Кроме того, Ньютон – независимо от Лейбница – создал дифференциальное и интегральное исчисление как адекватный язык математического описания физической реальности.

Научный метод Ньютона имел целью четкое противопоставление достоверного естественнонаучного знания вымыслам и умозрительным схемам натурфилософии.

1) провести опыты, наблюдения, эксперименты;

2) посредством индукции вычленить в чистом виде отдельные стороны естественного процесса и сделать их объективно наблюдаемыми;

3) понять управляющие этими процессами фундаментальные закономерности, принципы, основные понятия;

4) осуществить математическое выражение этих принципов, то есть математически сформулировать взаимосвязи естественных процессов;

5) построить целостную теоретическую систему путем дедуктивного развертывания фундаментальных принципов;

6) использовать силы природы и подчинить их целям человека в технике.

Сам Ньютон с помощью своего метода решил три кардинальных задачи:

- Четко отделил науку от умозрительной натурфилософии и дал критику последней. Под натурфилософией Ньютон понимал точную науку о природе, теоретико-математическое учение о ней.

- Разработал классическую механику как целостную систему знаний о механическом движении тел. Его механика стала классическим образцом научной теории дедуктивного типа и эталоном научной теории вообще.

- Ньютон завершил построение новой революционной для того времени картины природы, сформулировав основные идеи, понятия, принципы, составившие механическую картину мира.

Теоретическое естествознание, возникшее в эту историческую эпоху, предстало в качестве второй (после становления математики) важнейшей вехи формирования науки в собственном смысле этого слова.

Читайте также: