Датчик давления принцип действия кратко

Обновлено: 04.07.2024

Датчик давления — устройство, физические параметры которого изменяются в зависимости от давления измеряемой среды (жидкости, газы, пар). В датчиках давление измеряемой среды преобразуется в унифицированный пневматический, электрический сигналы или цифровой код.

Содержание

Принципы реализации

Датчик давления состоит из первичного преобразователя давления, в составе которого чувствительный элемент - приемник давления, схемы вторичной обработки сигнала, различных по конструкции корпусных деталей, в том числе для герметичного соединения датчика с объектом и защиты от внешних воздействий и устройства вывода информационного сигнала. Основными отличиями одних приборов от других являются пределы измерений, динамические и частотные диапазоны, точность регистрации давления, допустимые условия эксплуатации, массогабаритные характеристики, которые зависят от принципа преобразования давления в электрический сигнал: тензометрический, пьезорезистивный, емкостной, индуктивный, резонансный, ионизационный, пьезоэлектрический и другие.

Тензометрический метод

Чувствительные элементы датчиков базируются на принципе изменения сопротивления при деформации тензорезисторов, приклееных к упругому элементу, который деформируется под действием давления.

Пьезорезистивный метод

Основан на интегральных чувствительных элементах из монокристаллического кремния. Кремниевые преобразователи имеют высокую чувствительность благодаря изменению удельного объемного сопротивления полупроводника при деформировании давлением. Для измерения давления чистых неагрессивных сред применяются, так называемые, Low cost — решения, основанные на использовании чувствительных элементов либо без защиты, либо с защитой силиконовым гелем. Для измерения агрессивных сред и большинства промышленных применений используется преобразователь давления в герметичном металло-стеклянном корпусе, с разделительной диафрагмой из нержавеющей стали, передающей давление измеряемой среды посредством кремнийорганической жидкости.

Ёмкостной метод

Ёмкостные преобразователи используют метод изменения ёмкости конденсатора при изменении расстояния между обкладками. Известны керамические или кремниевые ёмкостные первичные преобразователи давления и преобразователи, выполненные с использованием упругой металлической мембраны. При изменении давления мембрана с электродом деформируется и происходит изменение емкости. В элементе из керамики или кремния пространство между обкладками обычно заполнено маслом или другой органической жидкостью. Недостаток — нелинейная зависимость емкости от приложенного давления.

Резонансный метод

В основе метода лежит изменение резонансной частоты колеблющегося упругого элемента при деформировании его силой или давлением. Это и объясняет высокую стабильность датчиков и высокие выходные характеристики прибора. К недостаткам можно отнести индивидуальную характеристику преобразования давления, значительное время отклика, невозможность проводить измерения в агрессивных средах без потери точности показаний прибора.

Индуктивный метод

Основан на регистрации вихревых токов (токов Фуко). Чувствительный элемент состоит из двух катушек, изолированных между собой металлическим экраном. Преобразователь измеряет смещение мембраны при отсутствии механического контакта. В катушках генерируется электрический сигнал переменного тока таким образом, что заряд и разряд катушек происходит через одинаковые промежутки времени. При отклонении мембраны создается ток в фиксированной основной катушке, что приводит к изменению индуктивности системы. Смещение характеристик основной катушки дает возможность преобразовать давление в стандартизованный сигнал, по своим параметрам прямо пропорциональный приложенному давлению.

Ионизационный метод

В основе лежит принцип регистрации потока ионизированных частиц. Аналогом являются ламповые диоды. Лампа оснащена двумя электродами: катодом и анодом, — а также нагревателем. В некоторых лампах последний отсутствует, что связано с использованием более совершенных материалов для электродов. Преимуществом таких ламп является возможность регистрировать низкое давление — вплоть до глубокого вакуума с высокой точностью. Однако следует строго учитывать, что подобные приборы нельзя эксплуатировать, если давление в камере близко к атмосферному. Поэтому подобные преобразователи необходимо сочетать с другими датчиками давления, например, емкостными. Зависимость сигнала от давления является логарифмической.

Пьезоэлектрический метод

В основе лежит прямой пьезоэлектрический эффект, при котором пьезоэлемент генерирует электрический сигнал, пропорциональный действующей на него силе или давлению. Пьезоэлектрические датчики используются для измерения быстроменяющихся акустических и импульсных давлений, обладают широкими динамическими и частотными диапазонами, имеют малую массу и габариты, высокую надежность и могут использоваться в жестких условиях эксплуатации.

Сигналы с датчиков давления могут быть как медленноменяющимися, так и быстропеременные. В первом случае их спектр лежит в области низких частот. Для того, чтобы с высокой точностью оцифровать такой сигнал необходимо подавить высокочастотную часть спектра, полностью состоящую из помех. Это особенно актуально в промышленных условиях. Специально для ввода медленноменяющихся сигналов используются интегрирующие АЦП. Они проводят измерение не мгновенного значения сигнала (которое изменяется под действием помех), а интегрируют сигнальную функцию за заданный промежуток времени, который заведомо меньше постоянной времени процессов, происходящих в контролируемой среде, но заведомо больше периода самой низкочастотной помехи. Интегрирующие АЦП выпускают многие зарубежные фирмы (Texas Instruments, Analog Devices и др).

Для измерения переменных давлений применяют датчики с аналоговым выходным сигналом, например, 0-20,4-20 мА и 0-5, 0,4-2 В.

Пьезоэлектрические датчики применяются для измерения быстропеременных процессов в диапазоне частот от единиц Гц до сотен кГц.

Отличие от манометра

В отличие от датчика давления, манометр — прибор, предназначенный для измерения (а не преобразования) давления. В манометре от давления зависят показания прибора, которые могут быть считаны с его шкалы, дисплея или аналогичного устройства.

В современной промышленности не обойтись без точных приборов измерения, которые служат для учета расхода различных жидкостей, а также газа, газовых смесей и пара. Помимо расходомеров с разными принципами действия, широко применяются электронные датчики давления. Они являются неотъемлемой частью измерительных комплексов, а также входят в состав теплосчетчиков, используются в системах автоматизированного контроля технологических процессов. Датчики давления востребованы в энергетике, пищевой промышленности, нефтяной и газовых отраслях и других сферах производства.

что такое датчик давления

Это устройство для измерения и преобразования давления среды - жидкости, газа или пара. Полученное значение выводится на дисплей или передается в виде аналогового или цифрового выходного сигнала.
Принцип работы зависит от типа измеряемого давления, которое может быть абсолютным, избыточным и дифференциальным.

Типы датчиков давления

Так, в пищевом и химическом производстве широкое применение получил интеллектуальный датчик абсолютного давления, осуществляющий измерение относительно абсолютного вакуума. Отметим, что именно такое измерение применяется в узлах учета газа, пара и тепловой энергии для приведения расхода к стандартным условиям.

Решать задачи учета расхода измеряемой среды позволяет датчик дифференциального давления. Принцип его работы заключается в измерении разности давлений между двумя полостями – плюсовой и минусовой. Могут применяться для учета расхода, при помощи сужающих устройств. Сужающее устройство в трубопроводе представляет собой местное сопротивление, при прохождении через которое изменяется характер течения потока. Непосредственно перед сужающим устройством давление среды возрастает, а после него – снижается. Чем больше разница на входе и выходе сужающего устройства, тем больше расход среды, протекающей по трубе.

Кроме того, такой датчик позволяет производить учет объема жидкости не только в трубе, но и в емкости при помощи измерения давления столба жидкости на плюсовую мембрану и, при необходимости, измерения минусовой полостью давления под куполом емкости, для исключения влияния насыщенных паров. Такой метод называют гидростатическим.

В системах автоматического контроля, регулирования и управления технологическими процессами не обойтись без такого прибора, как датчик избыточного давления. Он может использоваться в составе водяных систем теплоснабжения, а также входить в комплектацию узлов коммерческого и технологического учета жидкостей, газа и пара.

датчики давления

Продуктовая линейка "ЭМИС-БАР"

Несколько вариантов исполнения позволяет сделать оптимальный выбор, в зависимости от поставленных задач и условий эксплуатации, в том числе при работе на низкотемпературных, высокотемпературных и агрессивных средах.

Стоит отметить, что у заказчика имеется возможность выбора материалов изготовления разделительной мембраны и корпуса электронного блока, типа, материала и размера фланца, типа и материала кронштейна. Также на выбор представлены несколько вариантов длины погружной части разделительной мембраны плюсовой полости.
Остановимся более подробно на технических характеристиках и модификациях.

Устройство прибора

устройство датчика давления

  • 1. Корпус;
  • 2. Крышки корпуса, передняя крышка чаще всего служит экраном дисплея;
  • 3. RFI- и EMI-фильтры– служат для гашения электромагнитных и радиопомех;
  • 4. Электронный блок – модуль процессора;
  • 5. Модуль дисплея – может отсутствовать;
  • 6. Приемник давления – имеет различный внешний вид, в зависимости от типа;
  • 7. Фланцы и метизы – для фланцевого исполнения;
  • 8. Клеммная колодка;
  • 9. Кнопки настройки.

В качестве сенсора используется монокристаллическая кремниевая мембрана с расположенными на ней пьезорезисторами. При этом мембрана, подложка и резистор выполнены из одного материала – кремния. Для защиты сенсора возможно исполнение с разделительной мембраной и заполняющей жидкостью.

Устройство сенсорного модуля

схема преобразователя давления

Сенсорный модуль состоит из:

  • штуцера;
  • разделительной мембраны;
  • сенсора;
  • камеры;

Сигнал с сенсора по гермовводам передается в модуль электроники.
Имеется внутреннее программное обеспечение с возможностью самодиагностики. Настройка основных параметров может осуществляться с помощью кнопок ввода, расположенных на устройстве. Также настройка всех параметров возможна через протокол HART. При этом цифровой HART-сигнал накладывается на аналоговый, не оказывая влияния на его постоянную составляющую.

  • настройка шкалы измерения с подачей опорного давления;
  • настройка времени демпфирования;
  • настройка шкалы измерения без подачи опорного давления;
  • установка нуля;
  • установка фиксированного значения тока выходного сигнала;
  • установка аварийных значений тока;
  • блокировка управления с кнопок;
  • функция корнеизвлечения для преобразователей дифференциального давления;
  • выбор единиц измерения.



Выпускаются с возможностью фланцевого и штуцерного соединения. На выбор заказчика есть несколько материалов мембраны, полости камеры и корпуса электронного блока, а также типа заполняющей жидкости.


    Имеют несколько вариантов исполнения:
  • с фланцевым присоединением
  • со штуцерным присоединением
  • с открытой мембраной
  • с выносной разделительной мембраной



Данные спецификации представлены с фланцевым креплением и с выносными разделительными мембранами. Модели 186,187, 188 являются преобразователями разрежения.



Спецификация 163 – с плоской мембраной, 164 – с погружной мембраной. Они применяются для точного определения уровня жидкости в различных емкостях и резервуарах.

Преимущества

Каждый из представленных приборов обладает высокой точностью измерений на уровне лучших мировых образцов. При специальном заказе основная приведенная погрешность составляет 0,04%. Также они отличаются долговременной стабильностью - не более 0,1% в течение 5 лет (или 0,02% в течение года).
Их ключевыми особенностями являются широкий диапазон измерения (от -0,5 до 69 МПа), способность работать в условиях перегрузки до 105 МПа и расширенная самодиагностика.

УЗЕЛ УЧЕТА ЭМИС ЭСКО 2210.jpg

Точные измерительные приборы – важная составляющая деятельности всех современных отраслей хозяйства. Они служат для своевременного учета расхода разных жидкостей, нужны в работе с газовыми смесями и паром.

Кроме классических расходомеров, обладающих различными принципами действия, часто применяются еще и электронные приборы, измеряющие давление. Подобные устройства – обязательный элемент большей части измерительных комплексов и теплосчетчиков. Они часто входят в состав систем, служащих для осуществления автоматического контроля.

Так называемые датчики давления востребованы на предприятиях энергетического комплекса, в производстве продуктов питания, нефтеперерабатывающей сфере и других отраслях, где требуется знать цифровое значение давления для обеспечения бесперебойной и безопасной работы оборудования.

Что такое датчик давления

Датчик давления – это прибор, предназначенный для мониторинга давления в жидкостной либо газообразной среде с передачей сигнала о полученных измерениях на соответствующее оборудование. Это необходимо для своевременной корректировки параметров различных технологических процессов.

Датчик для измерения давления является компактным устройством, представляющим собой жидкокристаллический дисплей в алюминиевом корпусе. В него входят специальные трубки, которые оценивают давление конкретной среды – жидкости, газа или пара, а затем преобразовывают его либо выводят на экран его числовое значение при помощи аналогового или цифрового сигнала.

Принцип осуществления деятельности данного прибора напрямую зависит от типа измеряемого давления:

  • абсолютное – полное значение по отношению к принятому нулю (точке перехода вакуума в давление),
  • дифференциальное – диапазон давления между двумя заданными точками,
  • избыточное – значение по отношению к атмосферному давлению.

Типы датчиков

Датчики давления используются преимущественно в пищевом или же химическом производстве. Особенно интересным вариантом можно назвать практичный и современный интеллектуальный датчик, служащий для измерения абсолютного давления, а также реализующий измерение относительно величины абсолютного вакуума. Данное измерение наиболее часто применяется там, где необходимо произвести быстрый учет давления газа, пара или же тепловой энергии.

По конструкции элементов чувствительности датчики делятся на волоконно-оптические и оптоэлектронные. Первые включают оптический волновод и определяют давление в результате поляризации света. Вторые проводят свет через многослойную конструкцию, каждый слой которой меняет его свойства в зависимости от давления среды.

По виду измерений для датчиков давления принята следующая классификация:

1. Датчик дифференциального давления помогает удачно решать задачи по учету расходования замеряемой среды. Принцип его действия заключается в замере разностей давления между двумя находящимися рядом полостями – плюсовой и минусовой. Он применяется для успешного учета расходов. Узкое устройство в коммуникациях является местным сопротивлением. В процессе прохождения через него происходит изменение характера скорости потока. Перед данным сужающим устройством давление в атмосферах значительно возрастет, а после него – снижается. Чем более высокого коэффициента достигает разница, имеющаяся на входе, а далее и на выходе сужающего устройства, тем выше будет расход той среды, которая протекает по данной трубе. Подобный датчик без особых проблем позволит произвести учет объема данной жидкости не только в самой трубе, но и в данной емкости. Это можно осуществить при помощи измерения давления в столбе жидкости, которая воздействует на плюсовую мембрану. Кроме того, в некоторых случаях производится измерение результатов в минусовой полости давления, которая находится непосредственно под куполом данной емкости. Это необходимо для того, чтобы надежно произвести исключение чрезмерного влияния большинства насыщенных паров. Этот способ называется гидростатическим.

2. Датчик избыточного давления нужен для успешной регулировки и дальнейшего управления всеми техническими процессами. Он может применяться в составе большинства водяных систем, используемых для дальнейшего теплоснабжения; входит в необходимую комплектацию узлов, служащих для коммерческого и полноценного технологического учета всех требуемых жидкостей, газов и пара.

Комплексное исполнение датчика давления позволяет использовать его по назначению. Такое устройство применяется в условиях низких и высоких температур, а также в наиболее агрессивных средах.

В каждой из отраслей хозяйства необходимость того или иного датчика определяется сугубо индивидуальным способом, а также реальной надобностью. Выбор прибора зависит от того, какие перед ним поставлены задачи, а также от текущих условий эксплуатации. Заказчик самостоятельно выбирает материал, требующийся для изготовления мембраны разделения, а также корпуса электронного блока.

Технические характеристики и преимущества

К ключевым техническим опциям интеллектуальных датчиков давления можно отнести следующие:

Датчик давления имеет высокую точность измерений. Если осуществляется специальный заказ, погрешность не превышает 0,04%. Датчики хорошо показывают себя в широком диапазоне измерений, в процессе самодиагностики и перегрузки.

Интеллектуальный счётчик - это надежное средство измерения, которое отвечает заявленным метрологическим и технико-эксплуатационным параметрам, легко работает в агрессивной среде и при низких температурах. Дополнительные плюсы – высокий уровень визуализации, простота использования, комфортный вывод информации на дисплее. Своевременно узнав о превышении давления, можно спланировать действия для предотвращения серьезных проблем.

Устройство датчика давления

Датчик давления состоит из преобразующего элемента; элемента, воспринимающего давление; приемника давления; системы вторичной обработки цифрового сигнала и устройства вывода информации. Все это скрывается в общем корпусе, оснащенном цифровым дисплеем.

Методы измерения давления при помощи датчика:

  • тензометрический – чувствительные комплектующие измеряют давление за счет чуткости элементов, которые жестко припаиваются к мембране;
  • пьезорезистивный – основан на применении преобразователя давления (мембрана из монокристаллического кремния), находящегося в металло-стеклянном корпусе;
  • емкостные преобразователи применяют метод изменения емкости конденсатора;
  • резонансный – в основе лежат акустические или электромагнитные процессы;
  • индуктивный – основан на постоянных вихревых потоках.

Области применения

Датчики можно использовать в следующих областях:

  • медицинской сфере;
  • пищевой промышленности;
  • тепло- и водоснабжении;
  • машиностроительном производстве, а также автомобильной промышленности;
  • электронной промышленности, роботостроении.

Счетчики давления позволяют держать под контролем большинство производственных процессов, успешно применяются в важных социальных сферах. Без них невозможно представить нормальную жизнедеятельность.

Как выбрать

Для того чтобы избежать серьезных финансовых расходов и правильно подойти к выбору датчика давления, необходимо учесть несколько важных качественных характеристик:

  • диапазон давления – для разных целей использования диапазоны могут резко отличаться друг от друга;
  • точность осуществления измерений – в некоторых случаях требуется высочайший уровень точности, например, при разработке двигателей для гоночных автомобилей;
  • температура является крайне важным и серьезным показателем, ведь приборы широко востребованы для тех устройств, которые используются в различных температурных диапазонах;
  • качество выходного сигнала на данном приборе;
  • принцип передачи информации о текущем давлении;
  • удобство присоединения датчика давления к технологическому процессу;
  • материал изготовления датчика – это существенно, если планируется использовать его в условиях высоких нагрузок;
  • наличие сертификата качества, что делает применение датчика максимально безопасным;
  • сроки доставки.

Учитывая соответствующие факторы, можно найти подходящий датчик давления, который прослужит максимально долгое время без поломок и прочих проблем. Важно лишь подобрать достойного производителя, имеющего нужную документацию и положительные отзывы, а также правильно произвести установку и начальную настройку.

Цены, наличие и другие данные, указанные на сайте, не являются публичной офертой. Для уточнения информации свяжитесь с нашими специалистами любым удобным для Вас способом

Давление - одна из важных физических характеристик текучих сред - жидкостей, расплавленных металлов и газов. В машиностроении разнообразные жидкости и газы широко используются в качестве рабочих тел систем машин и механизмов, поэтому нередко возникает необходимость измерения и контроля над давлением в этих средах.

Конструкции современных автомобилей также используют большое число датчиков давления различных жидкостных и газообразных текучих сред, и их количество постоянно растет.
Независимо от метода измерения, датчики могут определять избыточное, абсолютное или дифференциальное давление. При этом могут использоваться разные единицы измерения давления.
Чтобы исключить возможную путаницу в этих единицах, в таблице 1 приведены соотношения между используемыми в различных технических источниках единицами измерения давления.

Таблица 1. Единицы измерения давления

* внесистемная единица измерения давления, иногда употребляемая в США и некоторых англоязычных странах.

В таблице 2 приведены некоторые узлы автомобиля, где имеется необходимость измерения давления с целью получения управляющих сигналов для ЭСАУ.

Таблица 2. Некоторые датчики давления, применяемые в автомобильной технике

Датчики барометрического и абсолютного давления во впускном коллекторе

Такие датчики используются в ЭСАУ автомобильных двигателей для определения объемного расхода воздуха, с целью регулирования количества впрыскиваемого за рабочий цикл топлива. Это регулирование необходимо для обеспечения заданного состава топливовоздушной смеси на различных режимах работы ДВС и при различных внешних условиях.

Этот способ измерения дешевле в реализации по сравнению с непосредственным измерением массового расхода воздуха, но менее точен и используется в бортовых диагностических системах второго поколения OBD-II.

В некоторых конструкциях ЭСАУ двигателей такой датчик давления используется совместно с расходомером воздуха, а в двигателях с наддувом могут использоваться несколько датчиков давления.

Датчики барометрического (атмосферного) давления адаптируют ЭБУ двигателя к перепадам высоты и изменениям атмосферного давления. Обычно применяются совместно с объемным расходомером воздуха в одном корпусе.

Измерение атмосферного давления производится при включении зажигании до запуска ДВС. Если автомобиль эксплуатируется в условиях больших перепадов высот (например, в горах), для адаптации подачи топлива к новой высоте необходимо останавливаться и перезапускать двигатель.

комбинированный датчик барометрического давления

Рис. 1. Комбинированный датчик барометрического давления и разрежения:
а) Ford, б) Chrysler; 1 – трубка соединения вакуумного шланга с впускным коллектором; 2 – трубка соединения с атмосферой

Часто в системах управления двигателем используются комбинированные датчики, измеряющие и атмосферное давление, и давление во впускном коллекторе (рис. 1). Такие датчики иногда называют MAP-сенсорами (Manifold Air Pressure) и крепят непосредственно к стенке впускного коллектора.

Датчики, применяемые для измерения разрежения во впускном трубопроводе, могут быть различных конструкций.

Датчики давления дискретного действия представляют собой устройство, где замыкание и размыкание контактов происходят под действием упругой мембраны, испытывающей измеряемое давление.

Датчики давления непрерывного действия представляют собой либо потенциометр, ползунок которого связан с мембраной, либо катушку индуктивности, в которую мембрана под действием давления вдвигает магнитный сердечник.

Интегральные датчики давления подключаются к ЭБУ через коммутатор и АЦП. В зависимости от разрядности контроллера шаг дискретизации показаний датчика может составлять до 4 мс (8-разрядный), до 2 мс (16-разрядный). Эти датчики отличаются небольшими размерами, высокой надежностью и унифицированным выходным сигналом, благодаря чему, они используются для подключения к аналоговым или импульсным входам микроконтроллера.

В современных ЭСАУ применяются микромеханические или толстопленочные датчики давления . Микромеханические датчики давления (рис. 2) имеют более прогрессивную конструкцию, и обеспечивает более высокую точность измерений. Большинство современных датчиков давления построены по микромеханической технологии.
Микромеханические датчики, это полупроводниковые датчики с преобразователем давления на кремниевом кристалле в работе которых используется пьезорезистивный эффект (рис. 2, 3).

На поверхности кремниевого кристалла сформирован мост из четырех тензорезисторов, ток через которые изменяется под действием прогиба чувствительной диафрагмы. С одной стороны диафрагмы расположена камера с вакуумом, с другой на диафрагму воздействует давление воздуха во впускном коллекторе.
В зависимости от конструкции датчика, давление воздействует непосредственно на диафрагму или через защитный слой.

микромеханические датчики давления

Рис. 2. Микромеханические пьезорезистивные датчики T-MAP BOSCH абсолютного давления до 400 кПа: а) типичный внешний вид датчика; б) конструкция сенсорной ячейки: 1-защитный гель; 2-давление; 3-сенсорный чип; 4-присоединяемые выводы; 5-керамическая подложка; 6-стеклянное основание; в) конструкция датчика давления: 1-присоединяемые выводы; 2-крышка; 3-сенсорный кристалл; 4-керамическая подложка; 5-корпус с фитингом измеряемого давления; 6-прокладка; 7-NTC-элемент

электрическая схема датчика абсолютного давления с цепями компенсации

Рис. 3. Упрощенная электрическая схема датчика абсолютного (атмосферного) давления с цепями компенсации:
А – цепь температурной компенсации, В – измерительный мост, С – подстройка нуля, D – коэффициент усиления, Е – термокомпенсация усилителя

В корпусе датчика также размещается независимый датчик температуры воздуха для температурной компенсации и усилитель мостового напряжения, на выходе которого формируется сигнал в пределах 0,5…5 В.
На основании выходного напряжения ЭБУ оценивает давление во впускном коллекторе, чем больше давление воздуха, тем выше напряжение (обычно зависимость давления и выходного напряжения является линейной, т. е. график представляет собой наклонную прямую линию).

Информацию о давлении в зависимости от конструкции датчика несет величина выходного напряжения или его частота.
Погрешность датчика абсолютного давления во впускном коллекторе обычно составляет порядка 1%, а датчика барометрического давления – около 1,5%, причем, по краям рабочего диапазона погрешность растет как по температуре, так и по давлению.

Датчики давления в жидкостных средах

Работа таких датчиков, как правило, основана на преобразовании перемещения упругой диафрагмы в положение переключателя или движка потенциометра. На таком принципе, например, в старых конструкциях, работали датчики давления масла в ДВС.

В современных автомобилях все больше используются кремниевые или керамические интегральные датчики. Непосредственно в корпусе датчика размещают унифицирующие преобразователи. Имеется защита от электромагнитных помех, микросхемы работают при температуре -40. +150 °С в условиях вибраций, при различных давлениях в агрессивных химических средах.

Датчик давления топлива в аккумуляторе системы Common Rail (рис. 4) вворачивается непосредственно в топливную рейку высокого давления. Топливо попадает в датчик через отверстие в аккумуляторе и канал в корпусе датчика и под давлением воздействует на диафрагму.
Чувствительный полупроводниковый элемент датчика, расположенный на диафрагме, преобразует давление в электрический сигнал, который усиливается в обрабатывающем контуре и поступает в ЭБУ.

датчик давления топлива в аккумуляторе системы Common Rail

Рис. 4. Датчик давления топлива в аккумуляторе системы Common Rail:
1 - электрические выводы; 2 - чип со схемой обработки сигнала; 3 - диафрагма с чувствительным элементом; 4 - топливный канал

В таких датчиках прогиб диафрагмы приблизительно на 1 мм при давлении 1500 бар, изменяет электрическое сопротивление чувствительного элемента и вызывает изменение напряжения в измери-тельном мосту, на который подается питание 5 В.
Первичный сигнал изменяется в диапазоне 0…70 мВ, в зависимости от прилагаемого давления, и затем усиливается в контуре обработки сигнала до 0,5…4,5 В.
Точность измерения давления датчиком в главном рабочем диапазоне составляет ±2% от полной шкалы.

В автомобилях с автоматической трансмиссией применяются датчики измеряющие давление масла в коробке передач.
Для работы антиблокировочной системы тормозов (ABS) необходимо измерять давление в тормозных контурах.
Давление жидкости в тормозной гидравлической системе выше, чем в коробке переключения передач. Например, в тормозной системе автомобиля оно составляет до 10…15 бар, а в контурах ABS оно может достигать 35 бар.
Конструкция и принцип работы таких датчиков подобен рассмотренным выше датчикам.

Датчики давления в газовых средах

Известно, что автомобиль производит токсичные отходы в процессе эксплуатации: 60% в виде выхлопных газов, 20% в виде картерных газов и 20% за счет испарений топлива. Со всеми этими выбросами успешно борются соответствующие системы в составе ЭСАУ двигателем.

Для уменьшения вредного влияния испарений топлива они из бака поступают в адсорбер с активированным углем, объемом 850. 1000 см 3 , где накапливаются и сжигаются в двигателе в определенное время. На рис. 5 показана система улавливания паров бензина из топливного бака, в которой для управления продувкой адсорбера используется клапан с дифференциальным датчиком давления между давлением в задроссельной зоне впускного коллектора и давлением паров топлива в баке с рабочим диапазоном ±3,5 кПа.

система улавливания паров бензина

Рис. 5. Система улавливания паров бензина

В современных двигателях для уменьшения содержания окислов азота (NOx) в выхлопных газах используется система EGR (exhaust gas recirculation) рециркуляции выхлопных газов. Это система является частью ЭСАУ двигателем.
Окислы азота возникают в камере сгорания при температуре выше 1370 °С. В присутствие солнечного света NOx вступает в реакцию с углеводородом, образуя канцерогенный фотохимический смог.

На частичных режимах работы двигателя ЭСАУ снижает температуру сгорания рабочей смеси, путем введением небольшого количества (6. 10%) выхлопных газов из выпускного во впускной коллектор. Так как выхлопные газы инертны, то они разбавляют топливовоздушную смесь, не изменяя соотношения воздух/топливо.
Регулирование количества подаваемых отработавших газов производится клапаном EGR, исправность работы которого постоянно контролируется ЭБУ.
Например, на некоторых автомобилях в трубе между EGR и впускным коллектором измеряется дифференциальное давление по обе стороны с помощью датчика дифференциального давления. Когда клапан EGR открывается, это давление убывает, когда клапан EGR закрыт, давление по обе стороны вставки становится одинаковым.

При сгорании топлива в дизеле образуются частицы сажи – микроскопические углеродистые частицы диаметром около 0,05 мкм на которых адсорбируются различные углеводородные соединения, оксиды металлов и сера. Состав частиц сажи зависит от параметров рабочего процесса, режимов работы двигателя и состава топлива. Некоторые углеводородные соединения опасны для здоровья человека.
Сажевый фильтр задерживает содержащиеся в газах частицы сажи. При заполнении фильтра сажей до определенной величины система управления двигателем запускает процесс активной регенерации. Степень заполнения фильтра сажей определяется блоком управления по его газодинамическому сопротивлению с помощью дифференциального датчика перепада давления до сажевого фильтра и после (рис. 6).

дифференциальный датчик давления перепада давления

Рис. 6. Дифференциальный датчик давления перепада давления

Мембранные потенциометрические датчики давления

В таких датчиках чувствительным элементом является гибкая диафрагма или мембрана. При изменении давления ее перемещение преобразуется в положение движка потенциометра.
Недостатки потенциометрических датчиков заключаются в износе, а также в статическом трении из-за чего затруднено регулирование в диапазоне менее 0,5% от номинала.

потенциометрический датчик давления

Рис. 7. Потенциометрический датчик давления:
1 – преобразователь; 2 – щетка; 3 – контакты разъема; 4 – щеткодержатель; 5 – ось поводка; 6 – поводок; 7 – возвратная пружина; 8 – рычаг; 9 – шток; 10,13 – корпус; 11 – мембрана; 12 – канал

Резистивный проволочный потенциометр со скользящим контактом – один из наиболее простых и эффективных преобразователей перемещения, в котором скользящий контакт (движок) соединен с перемещающейся под действием давления мембраной, а остальная часть потенциометра закреплена неподвижно.
Движок потенциометра контактирует с отдельными витками на катушке, поэтому выходной сигнал (напряжение) преобразователя изменяется не непрерывно, а в виде чередующихся малых и больших скачков. Малый скачок возникает, когда движок замыкает два соседних витка, большой – в момент перехода движка к следующему витку и размыкания контакта с предыдущим витком.
Следовательно, разрешение такого преобразователя зависит от диаметра провода и может быть повышено путем использования более тонкого провода. Потенциометр с плотностью намотки 50 витков на миллиметр имеет предельное разрешение 20 мкм, что близко к практическому пределу.

В современных автомобилях используются потенциометры, выполненные по пленочной технологии, где резистивный элемент представляет собой керамическое основание с нанесённой топологией проводникового, резистивного и защитного слоёв.
Такие датчики могут эксплуатироваться в достаточно жёстких условиях.

Датчики давления на основе линейных дифференциальных трансформаторов (ЛДТ)

Линейный дифференциальный трансформатор – это электромеханическое устройство, вырабатывающее выходной электрический сигнал, пропорциональный перемещению ферромагнитного сердечника под действием смещения диафрагмы. ЛДТ состоит из первичной и двух вторичных обмоток, симметрично расположенных на цилиндрическом каркасе. Свободно движущийся внутри обмоток ферромагнитный сердечник в форме стержня обеспечивает связь этих обмоток через магнитный поток (рис. 8 ).

принципиальная схема линейного дифференциального трансформатора

Рис. 8. Принципиальная схема линейного дифференциального трансформатора

При подаче переменного напряжения U1 на первичную обмотку (3. 15 В с частотой 2. 5 кГц) в двух вторичных обмотках наводятся ЭДС взаимной индукции.
Вторичные обмотки включены последовательно и встречно, поэтому результирующий выходной сигнал U0 преобразователя представляет собой разность этих напряжений и равен нулю, когда сердечник находится в центральной (нулевой) позиции.
При перемещении сердечника из нулевой позиции напряжение, индуцируемое во вторичной обмотке, к которой движется сердечник, возрастает, а напряжение, индуцируемое в другой вторичной обмотке, уменьшается.
В результате вырабатывается дифференциальный выходной сигнал, величина которого линейно зависит от положения сердечника. Фаза выходного напряжения изменяется скачком на 180° при переходе через нулевую позицию. Информацию о перемещении несет амплитуда и фаза выходного сигнала.
Погрешность подобного преобразования перемещения сердечника в напряжение составляет около 0,25%. Коэффициент трансформации дифференциального трансформатора 10:1. 2:1.

На автомобилях ЛДТ обычно не используются, но могут применяться, например, для измерения абсолютного давления во впускном коллекторе, давления масла, топлива и т.п. ЛДТ характеризуется отсутствием трения, стабильностью выходного сигнала и способностью работать в агрессивных средах.

Емкостные датчики давления

Емкостные датчики давления используют метод изменения емкости конденсатора при изменении расстояния между обкладками-электродами. Принципиально конструкция состоит из конденсатора, одна из обкладок которого закреплена на упругой металлической мембране (или выполнена в виде мембраны). При изменении давления мембрана с электродом деформируется, и расстояние между обкладками конденсатора изменяется.

емкостной датчик с кремниевым чувствительным элементом

Рис. 9. Емкостной датчик с кремниевым чувствительным элементом

На приведенном рисунке одна из обкладок конденсатора выполнена в виде упругой мембраны, которая прогибается при изменении действующего на нее давления. Мембраны для таких датчиков обычно выполняются из кремния (рис. 9) или керамики, при этом конструкции датчиков аналогичны независимо от материала мембраны.

На кремниевой подложке расположен твердый слой, являющийся нижней обкладкой конденсатора. В изолирующем слое стекла и кварца закрепляется кремниевая мембрана, являющаяся второй обкладкой конденсатора. В этом же изолирующем слое имеются токопроводящие электроды от обеих обкладок конденсатора. Между обкладками образуется герметичная полость или вакуум. Иногда пространство между обкладками заполняется маслом или какой-нибудь органической жидкостью.

Подобные датчики все чаще используются в различных системах автомобиля, например, для измерения давления в шинах, во впускном коллекторе двигателя и т.п. Например, емкость подобных конденсаторов применяемых для измерения давления впуска в двигатель и меняется линейно примерно от 32 до 39 пФ при изменении давления от 17 до 105 кПа. Размеры такого датчика 6,7×6,7 мм.

Читайте также: