Дайте понятие разрешающей способности оптического прибора кратко

Обновлено: 02.07.2024

Толковый словарь русского языка. Поиск по слову, типу, синониму, антониму и описанию. Словарь ударений.

Найдено определений: 6 разрешающая способность

РАЗРЕШАЮЩАЯ СПОСОБНОСТЬ - РАЗРЕША́ЮЩАЯ СПОСО́БНОСТЬ оптических приборов, характеризует их способность давать раздельные изображения двух близких друг к другу точек объекта. Из-за дифракции света изображение точки - кружок (светлое пятно, окруженное кольцами). Наименьшее линейное или угловое расстояние между двумя точками, начиная с которого их изображения сливаются, называется линейным или угловым пределом разрешения. Количественной мерой разрешающей способности обычно служит обратная величина. Разрешающая способность прибора может быть оценена по его аппаратной функции (см. АППАРАТНАЯ ФУНКЦИЯ).

РАЗРЕШАЮЩАЯ СПОСОБНОСТЬ оптических приборов - характеризует их способность давать раздельные изображения двух близких друг к другу точек объекта. Из-за дифракции света изображение точки - кружок (светлое пятно, окруженное кольцами). Наименьшее линейное или угловое расстояние между двумя точками, начиная с которого их изображения сливаются, называется линейным или угловым пределом разрешения. Количественной мерой разрешающей способности обычно служит обратная величина. Разрешающая способность прибора может быть оценена по его аппаратной функции.

РАЗРЕШАЮЩАЯ СПОСОБНОСТЬ оптических приборов, характеризует их способность давать раздельные изображения двух близко расположенных точек. Из-за дифракции света изображение точки представляет собой не строго точку, а кружок (светлое пятно, окруженное кольцами). Наименьшее угловое или линейное расстояние между двумя точками, при котором система дает их раздельное изображение, называется пределом разрешения и характеризует границы применимости геометрической оптики. Обратная величина есть разрешающая способность, которая прямо пропорциональна апертуре прибора; поэтому для повышения разрешающей способности оптические телескопы имеют большой диаметр объектива. Разрешающая способность зависит от длины волны, на которой работает прибор, поэтому разрешающая способность электронного микроскопа в 1000 раз больше разрешающей способности оптического микроскопа.

разрешающая способность оптических приборов

Разреша́ющая спосо́бность оптических приборов - характеризует их способность давать раздельные изображения двух близких друг к другу точек объекта. Из-за дифракции света изображение точки - кружок (светлое пятно, окружённое кольцами). Наименьшее линейное или угловое расстояние между двумя точками, начиная с которого их изображения сливаются, называется линейным или угловым пределом разрешения. Количественной мерой Разрешающей способности обычно служит обратная величина. Разрешающая способность прибора может быть оценена по его аппаратной функции.

разрешающая способность фотоматериала

Разреша́ющая спосо́бность фотоматериа́ла - его способность передавать в изображении мелкие детали объекта; измеряется наибольшим числом параллельных линий, различаемых под микроскопом на 1 мм изображения штриховой решётки (миры).

РАЗРЕШАЮЩАЯ СПОСОБНОСТЬ ФОТОМАТЕРИАЛА - РАЗРЕША́ЮЩАЯ СПОСО́БНОСТЬ ФОТОМАТЕРИА́ЛА, его способность передавать в изображении мелкие детали объекта; измеряется наибольшим числом параллельных линий, различаемых в микроскоп на 1 мм изображения штриховой решетки (миры (см. МИРА (в оптике))).

РАЗРЕШАЮЩАЯ СПОСОБНОСТЬ ФОТОМАТЕРИАЛА - его способность передавать в изображении мелкие детали объекта; измеряется наибольшим числом параллельных линий, различаемых в микроскоп на 1 мм изображения штриховой решетки (миры).

Разрешающая способность (в оптике) Разрешающая способность (разрешающая сила) оптических приборов, характеризует способность этих приборов давать раздельные изображения двух близких друг к другу точек объекта. Наименьшее линейное или угловое расстояние между двумя точками, начиная с которого их изображения сливаются, называется линейным или угловым пределом разрешения. Обратная ему величина обычно служит количественной мерой Р. с. Вследствие дифракции света на краях оптических деталей даже в идеальной оптической системе (т. е. безаберрационной; см. Аберрации оптических систем ) изображение точки есть не точка, а кружок с центральным светлым пятном, окруженным кольцами (попеременно тёмными и светлыми в монохроматическом свете , радужно окрашенными ≈ в белом свете ). Теория дифракции позволяет вычислить наименьшее расстояние, разрешаемое системой, если известно, при каких распределениях освещённости приёмник (глаз, фотослой) воспринимает изображения раздельно. Согласно Рэлею (1879), изображения двух точек одинаковой яркости ещё можно видеть раздельно, если центр дифракционного пятна каждого из них пересекается краем 1-го тёмного кольца другого ( рис. ). В случае самосветящихся точек, испускающих некогерентные лучи, при выполнении этого критерия Рэлея наименьшая освещённость между изображениями разрешаемых точек составит 74% своего максимального значения, а угловое расстояние между центрами дифракционных пятен (максимумами освещённости) Dj = 1,21 l ID, где l ≈ длина волны света, D ≈ диаметр входного зрачка оптической системы (см. Диафрагма в оптике). Если f ≈ фокусное расстояние оптической системы, то линейная величина рэлеевского предела разрешения s = 1,21 l flD. Предел разрешения телескопов и зрительных труб выражают в угловых секундах (см. Разрешающая сила телескопа ), для длины волны l @ 560 нм , соответствующей максимальной чувствительности человеческого глаза, он равен a" = 140/D ( D в мм ). Для фотообъективов Р. с. обычно определяют как максимальное количество раздельно видимых линий на 1 мм изображения стандартного тест-объекта (см. Мира ) и вычисляют по формуле N = 1470e, где e ≈ относительное отверстие объектива (см. также Разрешающая способность фотографирующей системы; о Р. с. микроскопов см. в ст. Микроскоп ). Приведённые соотношения справедливы лишь для точек, находящихся на оси идеальной оптической системы. Наличие аберраций и погрешностей изготовления увеличивает размеры дифракционных пятен и снижает Р. с. реальных систем, которая, кроме того, уменьшается по мере удаления от центра поля зрения . Р. с. оптического прибора R oп , в состав которого входят оптическая система с Р. с. R oc и приёмник света (фотослой, катод электроннооптического преобразователя и пр.) с Р. с. R п , определяется приближённой формулой 1 /R oп = 1 /R oc + 1 /R п , из неё следует, что целесообразно использовать лишь сочетания, в которых R oc и R п ≈ величины одного порядка. Р. с. прибора может быть оценена по его аппаратной функции , отражающей все факторы, влияющие на качество изображения (дифракцию, аберрации и т.д.). Наряду с оценкой качества изображения по Р. с. широко распространён метод его оценки с помощью частотно-контрастной характеристики . О Р. с. спектральных приборов см. в ст. Спектральные приборы .

═ Лит.: Тудоровский А. И., Теория оптических приборов, 2 изд., ч. 1, М. ≈ Л., 1948; Ландсберг Г. С., Оптика, 4 изд., М., 1957 (Общий курс физики, т. 3); Волосов Д. С., Фотографическая оптика, М., 1971.

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .

Полезное

Смотреть что такое "Разрешающая способность (в оптике)" в других словарях:

Разрешающая способность (в оптике) — Разрешение способность оптического прибора измерять линейное или угловое расстояние между близкими объектами, показывать раздельно близко расположенные объекты. Содержание 1 Угловое разрешение 2 Линейное разрешение 3 Общие сведения … Википедия

РАЗРЕШАЮЩАЯ СПОСОБНОСТЬ — (разрешающая сила) оптических приборов, характеризует способность этих приборов давать раздельное изображение двух близких друг к другу точек объекта. Наименьшее линейное (или угловое) расстояние между двумя точками, начиная с которого их… … Физическая энциклопедия

Разрешающая способность — I Разрешающая способность (разрешающая сила) оптических приборов, характеризует способность этих приборов давать раздельные изображения двух близких друг к другу точек объекта. Наименьшее линейное или угловое расстояние между двумя… … Большая советская энциклопедия

разрешающая способность фотоматериала — его способность передавать в изображении мелкие детали объекта; измеряется наибольшим числом параллельных линий, различаемых под микроскопом на 1 мм изображения штриховой решётки (миры). * * * РАЗРЕШАЮЩАЯ СПОСОБНОСТЬ ФОТОМАТЕРИАЛА РАЗРЕШАЮЩАЯ… … Энциклопедический словарь

РАЗРЕШАЮЩАЯ СПОСОБНОСТЬ — 1. Вообще в оптике способность линзы производить отдельные изображения различимых, но пространственно близких друг к другу объектов. 2. Специальное значение подобная способность глаза. 3. Метафорически познавательная способность проводить тонкое… … Толковый словарь по психологии

ЭЛЕКТРОННАЯ И ИОННАЯ ОПТИКА — раздел физики, в к ром изучают законы распространения пучков за ряж. частиц электронов и ионов в макроскопич. магн. и электрич. полях и вопросы их фокусировки, отклонения и формирования изображений. Развитие электронной оптики (ЭО) началось с… … Физическая энциклопедия

Объектив — обращенная к объекту часть оптической системы или самостоятельная оптическая система, формирующая действительное Изображение оптическое объекта. Это изображение либо рассматривают визуально в Окуляр, либо получают на плоской (реже… … Большая советская энциклопедия

ЭЛЕКТРОННЫЙ МИКРОСКОП — прибор для наблюдения и фотографирования многократно (до 106 раз) увеличенного изображения объекта, в к ром вместо световых лучей используются пучки электронов, ускоренных до больших энергий (30 1000 кэВ и более) в условиях глубокого вакуума. Физ … Физическая энциклопедия

Матрица (фото) — Матрица на печатной плате цифрового фотоаппарата У этого термина существуют и другие значения, см … Википедия

АКУСТООПТИКА — изучает вз ствие эл. магн. волн со звуковыми в тв. телах и жидкостях. На основе этих явлений в технике создаются разл. приборы. Вз ствие света со звуком широко используется в оптике, электронике, лазерной технике для управления когерентным… … Физическая энциклопедия

Оптические приборы- устройства, в которых излучение какой-либо области спектра(ультрафиолетовой, видимой, инфракрасной) преобразуется (пропускается, отражается, преломляется, поляризуется).

Отдавая дань исторической традиции,оптическими обычно называют приборы, работающие в видимом свете.

При первичной оценке качества прибора рассматриваются лишь основныеего характеристики:

· светосила- способность концентрировать излучение;

· разрешающая сила - способность различать соседние детали изображения;

· увеличение - соотношение размеров предмета и его изображения.

· Для многих приборов определяющей характеристикой оказывается поле зрения- угол, под которым из центра прибора видны крайние точки предмета.

Разрешающая сила (способность)- характеризует способность оптических приборов давать раздельные изображения двух близких друг к другу точек объекта.

Наименьшее линейное или угловое расстояние между двумя точками, начиная с которого их изображения сливаются, называется линейным или угловым пределом разрешения.

Увеличение. Если предмет длиной H перпендикулярен оптической оси системы, а длина его изображения h, то увеличение m определяется по формуле:

m = h/H.

Увеличение зависит от фокусных расстояний и взаимного расположения линз; для выражения этой зависимости существуют соответствующие формулы.

Важной характеристикой приборов для визуального наблюдения является видимое увеличение М. Оно определяется из отношения размеров изображений предмета, которые образуются на сетчатке глаза при непосредственном наблюдении предмета и рассматривании его через прибор. Обычно видимое увеличение М выражают отношением M = tgb /tga, где a - угол, под которым наблюдатель видит предмет невооруженным глазом, а b - угол, под которым глаз наблюдателя видит предмет через прибор.

Основной частью любой оптической системы является линза. Линзы входят в состав практически всех оптических приборов.

Линза – оптически прозрачное тело, ограниченное двумя сферическими поверхностями.


Если толщина самой линзы мала по сравнению с радиусами кривизны сферических поверхностей, то линзу называют тонкой.

Линзы бывают собирающими ирассеивающими. Собирающая линза в середине толще, чем у краев, рассеивающая линза, наоборот, в средней части тоньше.



· выпуклые:

o двояковыпуклые (1)

o плосковыпуклые (2)

o вогнуто-выпуклые (3)

· вогнутые:

o двояковогнутые (4)

o плосковогнутые (5)

o выпукло-вогнутые (6)

Основные обозначения в линзе:


Прямая, проходящая через центры кривизны O1 и O2 сферических поверхностей, называется главной оптической осью линзы.

В случае тонких линз приближенно можно считать, что главная оптическая ось пересекается с линзой в одной точке, которую принято называть оптическим центром линзыO. Луч света проходит через оптический центр линзы, не отклоняясь от первоначального направления.

Оптический центр линзы– точка, сквозь которую световые лучи проходят не преломляясь в линзе.

Главная оптическая ось – прямая, проходящая через оптический центр линзы, перпендикулярно линзе.

Все прямые, проходящие через оптический центр, называются побочными оптическими осями.

Пучки лучей, параллельных одной из побочных оптических осей, после прохождения через линзу также фокусируются в точку F', которая расположена при пересечении побочной оси с фокальной плоскостью Ф, то есть плоскостью, перпендикулярной главной оптической оси и проходящей через главный фокус.

Фокальная плоскость– прямая, перпендикулярная главной оптической оси линзы и проходящая через фокус линзы.

Расстояние между оптическим центром линзы O и главным фокусом F называется фокусным расстоянием. Оно обозначаетcя той же буквой F.

Преломление параллельного пучка лучей в собирающей линзе.


Преломление параллельного пучка лучей в рассеивающей линзе.


Точки O1 и O2 – центры сферических поверхностей, O1O2 – главная оптическая ось, O – оптический центр, F – главный фокус, F' – побочный фокус, OF' – побочная оптическая ось, Ф – фокальная плоскость.

На чертежах тонкие линзы изображают в виде отрезка со стрелками:

собирающая: рассеивающая:

Основное свойство линз– способность давать изображения предметов. Изображения бывают прямыми иперевернутыми, действительными и мнимыми, увеличенными и уменьшенными.

Положение изображения и его характер можно определить с помощью геометрических построений. Для этого используют свойства некоторых стандартных лучей, ход которых известен. Это лучи, проходящие через оптический центр или один из фокусов линзы, а также лучи, параллельные главной или одной из побочных оптических осей. Для построения изображения в линзе используют любые два из трех лучей:

· Луч, падающий на линзу параллельно оптической оси, после преломления идет через фокус линзы.

· Луч, проходящий через оптический центр линзы не преломляется.

· Луч, проходя через фокус линзы после преломления идет параллельно оптической оси.


Положение изображения и его характер (действительное или мнимое) можно также рассчитать с помощью формулы тонкой линзы. Если расстояние от предмета до линзы обозначить через d, а расстояние от линзы до изображения через f, то формулу тонкой линзы можно записать в виде:

Величину D, обратную фокусному расстоянию называют оптической силой линзы.

Единицей измерения оптической силы является диоптрия (дптр). Диоптрия – оптическая сила линзы с фокусным расстоянием 1 м: 1 дптр = м –1

Фокусным расстояниям линз принято приписывать определенные знаки: для собирающей линзы F > 0, для рассеивающей F 0 и f > 0 – для действительных предметов (то есть реальных источников света, а не продолжений лучей, сходящихся за линзой) и изображений;
d

РАЗРЕША́ЮЩАЯ СПОСО́БНОСТЬ, 1) оп­тич. при­бо­ров, ха­рак­те­ри­зу­ет их спо­соб­ность да­вать раз­дель­ное изо­бра­же­ние двух близ­ких друг к дру­гу то­чек объ­ек­та. Наи­мень­шее ли­ней­ное (или уг­ло­вое) рас­стоя­ние ме­ж­ду дву­мя точ­ка­ми, на­чи­ная с ко­то­ро­го эти изо­бра­же­ния сли­ва­ют­ся и пе­ре­ста­ют быть раз­ли­чи­мы­ми, назы­ва­ет­ся ли­ней­ным (или уг­ло­вым) пре­де­лом раз­ре­ше­ния δ (или про­сто раз­ре­ше­ни­ем). Об­рат­ная ему ве­ли­чи­на на­зы­ва­ет­ся Р. с. оп­тич. при­бо­ров.

Читайте также: