Дайте понятие ламинарного и турбулентного течений кратко

Обновлено: 03.05.2024

Под режимом течения жидкости понимают кинематику и динамику жидких макрочастиц, определяющую в совокупности структуру и свойства потока вцелом.

Режим движения определяется соотношением сил инерции и трения в потоке. Причем эти силы всегда действуют на жидкие макрочастицы при их движении в составе потока. Хотя это движение может быть вызвано различными внешними силами например силами гравитации и давления. Соотношение этих сил отражает критерий Рейнольдса, которое является критерием режима течения жидкости.

При низких скоростях движения частиц жидкости в потоке преобладают силы трения, числа Рейнольдса малы. Такое движение называется ламинарным.

При высоких скоростях движения частиц жидкости в потоке числа Рейнольдса велики, тогда в потоке преобладают силы инерции и эти силы определяют кинематику и динамику частиц, такой режим называется турбулентным

А если эти силы одного порядка (соизмеримы), то такую область называют - область перемежания.

Вид режима, в значительной мере, влияет на процессы происходящие в потоке, а значит и расчетные зависимости.

Ламинарный режим течения жидкости

Схема установки для иллюстрации режимов течения жидкости показана на рисунке.

Ламинарный режим течения жидкости

Жидкость из бака по прозрачному трубопроводу через кран поступает на слив. На входе в трубу установлена тонкая трубка по которой в центральную часть потока поступает красящее вещество.

Если немного приоткрыть кран, жидкость начнет протекать по трубопроводу с небольшой скоростью. При введении красящего вещество в поток можно будет увидеть как токая струйка красящего вещества в виде линии протекает от начала трубы до ее конца. Это свидетельствует о слоистом течении жидкости, без перемешивания и вихреообразования, и преобладании в потоке сил инерции.

Такой режим течения называется ламинарным.

Ламинарный режим - слоистое течение жидкости без перемешивания частиц,без пульсации скоростей и давлений, без перемешивания слоев и вихрей.

При ламинарном течении линии тока параллельны оси трубы, т.е. отсутствует поперечные потоку жидкости перемещения.

Турбулентый режим течения

При увеличении расхода через трубу в рассматриваемой установке скорость движения частиц жидкости будет увеличиваться. Струя красящей жидкости начнет колебаться.

Переход к турбулентному режиму течения

Если открыть кран сильнее, расход через трубу увеличится.

Развитый турбулентный режим

Поток красящей жидкости начнет смешиваться с основным потоком, будут заметны многочисленные зоны вихреообразования, перемешивания, в потоке будут преобладать силы инерции. Такой режим течения называется турбулентным.

Турбулентый режим - течение, сопровождающееся интенсивным перемешиванием, смещением слоев друг относительно друга и пульсациями скоростей и давлений.

При турбулентном течении векторы скоростей имеют не только осевые, но и нормальные к оси русла составляющие.

От чего зависит режим течения жидкости

Режим течения зависит от скорости движения частиц жидкости в трубопроводах, геометрии трубопровода.

Как было отмечено ранее, О режиме течения жидкости в трубопроводе позволяет судить критерий Рейнольдса, отражающий отношение сил инерции к силам вязкого трения.

Ламинарное течение
(от лат. lamina - пластинка) , упорядоченное течение жидкости или газа, при котором жидкость (газ) перемещается как бы слоями, параллельными направлению течения. Л. т. наблюдаются или у очень вязких жидкостей, или при течениях, происходящих с достаточно малыми скоростями, а также при медленном обтекании жидкостью тел малых размеров. В частности, Л. т. имеют место в узких (капиллярных) трубках, в слое смазки в подшипниках, в тонком пограничном слое, который образуется вблизи поверхности тел при обтекании их жидкостью или газом, и др. С увеличением скорости движения данной жидкости Л. т. может в некоторый момент перейти в неупорядоченное турбулентное течение. При этом резко изменяется сила сопротивления движению. Режим течения жидкости характеризуется т. н. Рейнольдса числом Re. Когда значение Re меньше некоторого критического числа Rekp, имеет место Л. т. жидкости; если Re > Rekp, режим течения может стать турбулентным. Расход жидкости при Л. т. в трубе определяется Пуазёйля законом.

Турбулентное течение
(от лат. turbulentus - бурный, беспорядочный) , форма течения жидкости или газа, при которой их элементы совершают неупорядоченные, неустановившиеся движения по сложным траекториям, что приводит к интенсивному перемешиванию между слоями движущихся жидкости или газа (см. Турбулентность) . Наиболее детально изучены Т. т. в трубах, каналах, пограничных слоях около обтекаемых жидкостью или газом твёрдых тел, а также так называемых свободные Т. т. - струи, следы за движущимися относительно жидкости или газа твёрдыми телами и зоны перемешивания между потоками разной скорости, не разделёнными какими-либо твёрдыми стенками. Т. т. отличаются от соответствующих ламинарных течений как своей сложной внутренней структурой, так и распределением осреднённой скорости по сечению потока и интегральными характеристиками - зависимостью средней по сечению или максимальной скорости, расхода, а также коэффициента сопротивления от Рейнольдса числа Re. В отличие от ламинарных пограничных слоев, турбулентный пограничный слой обычно имеет отчётливую границу, беспорядочно колеблющуюся со временем (в пределах 0,4 d - 1,2 d, где d - расстояние от стенки, на котором осреднённая скорость равна 0,99 v, a v - скорость вне пограничного слоя).

Изучение свойств потоков жидкостей и газов очень важно для промышленности и коммунального хозяйства. Ламинарное и турбулентное течение сказывается на скорости транспортировки воды, нефти, природного газа по трубопроводам различного назначения, влияет на другие параметры. Этими проблемами занимается наука гидродинамика.

Ламинарное и турбулентное течение

Классификация

В научной среде режимы течения жидкости и газов разделяют на два совершенно разных класса:

Число Рейнольдса формула

История вопроса

Еще Менделеевым в 1880 году была высказана идея о существовании двух противоположных режимов течений. Более подробно этот вопрос изучил британский физик и инженер Осборн Рейнольдс, завершив исследования в 1883 году. Сначала практически, а затем с помощью формул он установил, что при невысокой скорости течения перемещение жидкостей приобретает ламинарную форму: слои (потоки частиц) почти не перемешиваются и движутся по параллельным траекториям. Однако после преодоления некоего критического значения (для различных условий оно разное), названного числом Рейнольдса, режимы течения жидкости меняются: струйный поток становится хаотичным, вихревым – то есть, турбулентным. Как оказалось, эти параметры в определенной степени свойственны и газам.

Практические расчеты английского ученого показали, что поведение, например, воды, сильно зависит от формы и размеров резервуара (трубы, русла, капилляра и т.д.), по которому она течет. В трубах, имеющих круглое сечение (такие используют для монтажа напорных трубопроводов), свое число Рейнольдса – формула критического состояния описывается так: Re = 2300. Для течения по открытому руслу число Рейнольдса другое: Re = 900. При меньших значениях Re течение будет упорядоченным, при больших – хаотичным.

Ламинарное течение жидкости

Ламинарное течение

Отличие ламинарного течения от турбулентного состоит в характере и направлении водных (газовых) потоков. Они перемещаются слоями, не смешиваясь и без пульсаций. Другими словами, движение проходит равномерно, без беспорядочных скачков давления, направления и скорости.

Ламинарное течение жидкости образуется, например, в узких кровеносных сосудах живых существ, капиллярах растений и в сопоставимых условиях, при течении очень вязких жидкостей (мазута по трубопроводу). Чтобы наглядно увидеть струйный поток, достаточно немного приоткрыть водопроводный кран – вода будет течь спокойно, равномерно, не смешиваясь. Если краник отвернуть до конца, давление в системе повысится и течение приобретет хаотичный характер.

Турбулентный режим течения

Турбулентное течение

В отличие от ламинарного, в котором близлежащие частицы движутся по практически параллельным траекториям, турбулентное течение жидкости носит неупорядоченный характер. Если использовать подход Лагранжа, то траектории частиц могут произвольно пересекаться и вести себя достаточно непредсказуемо. Движения жидкостей и газов в этих условиях всегда нестационарные, причем параметры этих нестационарностей могут иметь весьма широкий диапазон.

Как ламинарный режим течения газа переходит в турбулентный, можно отследить на примере струйки дыма горящей сигареты в неподвижном воздухе. Вначале частицы движутся практически параллельно по неизменяемым во времени траекториям. Дым кажется неподвижным. Потом в каком-то месте вдруг возникают крупные вихри, которые движутся совершенно хаотически. Эти вихри распадаются на более мелкие, те – на еще более мелкие и так далее. В конце концов, дым практически смешивается с окружающим воздухом.

Циклы турбулентности

Вышеописанный пример является хрестоматийным, и из его наблюдения ученые сделали следующие выводы:

  1. Ламинарное и турбулентное течение имеют вероятностный характер: переход от одного режима к другому происходит не в точно заданном месте, а в достаточно произвольном, случайном месте.
  2. Сначала возникают крупные вихри, размер которых больше, чем размер струйки дыма. Движение становится нестационарным и сильно анизотропным. Крупные потоки теряют устойчивость и распадаются на все более мелкие. Таким образом, возникает целая иерархия вихрей. Энергия их движения передается от крупных к мелким, и в конце этого процесса исчезает – происходит диссипация энергии при мелких масштабах.
  3. Турбулентный режим течения носит случайный характер: тот или иной вихрь может оказаться в совершенно произвольном, непредсказуемом месте.
  4. Смешение дыма с окружающим воздухом практически не происходит при ламинарном режиме, а при турбулентном – носит очень интенсивный характер.
  5. Несмотря на то, что граничные условия стационарны, сама турбулентность носит ярко выраженный нестационарный характер – все газодинамические параметры меняются во времени.

Есть и еще одно важное свойство турбулентности: оно всегда трехмерно. Даже если рассматривать одномерное течение в трубе или двумерный пограничный слой, все равно движение турбулентных вихрей происходит в направлениях всех трех координатных осей.

Ламинарное и турбулентное течение жидкости

Число Рейнольдса: формула

Переход от ламинарности к турбулентности характеризуется так называемым критическим числом Рейнольдса:

где ρ – плотность потока, u – характерная скорость потока; L – характерный размер потока, µ – коэффициент динамической вязкости, cr – течение по трубе с круглым сечением.

Например, для течения со скоростью u в трубе в качестве L используется диаметр трубы. Осборн Рейнольдс показал, что в этом случае 2300 5 4 . Если же L определяется как толщина пограничного слоя, то 2700 2 /(µ×(u/L)).

В числителе стоит удвоенный скоростной напор, а в знаменателе – величина, имеющая порядок напряжения трения, если в качестве L берется толщина пограничного слоя. Скоростной напор стремится разрушить равновесие, а силы трения противодействуют этому. Впрочем, неясно, почему силы инерции (или скоростной напор) приводят к изменениям только тогда, когда они в 1000 раз больше сил вязкости.

Расчеты и факты

Вероятно, более удобно было бы использовать в качестве характерной скорости в Recr не абсолютную скорость потока u, а возмущение скорости. В этом случае критическое число Рейнольдса составит порядка 10, то есть при превышении возмущения скоростного напора над вязкими напряжениями в 5 раз ламинарное течение жидкости перетекает в турбулентное. Данное определение Re по мнению ряда ученых хорошо объясняет следующие экспериментально подтвержденные факты.

Для идеально равномерного профиля скорости на идеально гладкой поверхности традиционно определяемое число Recr стремится к бесконечности, то есть перехода к турбулентности фактически не наблюдается. А вот число Рейнольдса, определяемое по величине возмущения скорости меньше критического, которое равно 10.

При наличии искусственных турбулизаторов, вызывающих всплеск скорости, сравнимый с основной скоростью, поток становится турбулентным при гораздо более низких значениях числа Рейнольдса, чем Recr, определенное по абсолютному значению скорости. Это позволяет использовать значение коэффициента Recr = 10, где в качестве характерной скорости используется абсолютное значение возмущения скорости, вызываемое указанными выше причинами.

Отличие ламинарного течения от турбулентного

Устойчивость режима ламинарного течения в трубопроводе

Ламинарное и турбулентное течение свойственно всем видам жидкостей и газов в разных условиях. В природе ламинарные течения встречаются редко и характерны, например, для узких подземных потоков в равнинных условиях. Гораздо больше этот вопрос волнует ученых в контексте практического применения для транспортировки по трубопроводам воды, нефти, газа и других технических жидкостей.

Вопрос устойчивости ламинарного течения тесно связан с исследованием возмущенного движения основного течения. Установлено, что оно подвергается воздействию так называемых малых возмущений. В зависимости от того, угасают или растут они со временем, основное течение считается устойчивым либо неустойчивым.

Течение сжимаемых и не сжимаемых жидкостей

Одним из факторов, влияющих на ламинарное и турбулентное течение жидкости, является ее сжимаемость. Это свойство жидкости особенно важно при изучении устойчивости нестационарных процессов при быстром изменении основного течения.

Исследования показывают, что ламинарное течение несжимаемой жидкости в трубах цилиндрического сечения устойчиво к относительно малым осесимметричным и неосесимметричным возмущениям во времени и пространстве.

В последнее время проводятся расчеты по влиянию осесимметричных возмущений на устойчивость течения во входной части цилиндрической трубы, где основное течение находится в зависимости от двух координат. При этом координата по оси трубы рассматривается как параметр, от которого зависит профиль скоростей по радиусу трубы основного течения.

Режимы течения жидкости

Вывод

Несмотря на столетия изучения, нельзя сказать, что и ламинарное, и турбулентное течение досконально изучены. Экспериментальные исследования на микроуровне ставят новые вопросы, требующие аргументированного расчетного обоснования. Характер исследований носит и прикладную пользу: в мире проложены тысячи километров водо-, нефте-, газо-, продуктопроводов. Чем больше будет внедряться технических решений по уменьшению турбулентности при транспортировке, тем более эффективной она будет.

Динамика жидкостей является важной частью классической физики. Она применяется в авиационно-космической, сельскохозяйственной, морской и других отраслях. В силу того, что свойства жидкости сильно зависят от многих параметров, существует несколько основных типов течения. Ламинарный и турбулентный потоки представляют собой два основных типа движения жидкостей.

Содержание статьи

Жидкость

  • Чем отличается турбулентный режим течения жидкости от ламинарного
  • Что такое вязкость жидкости
  • Как уменьшить вязкость

Что такое ламинарный поток?

Когда частицы жидкости перемещаются, не пересекая траектории друг друга, и вектор скорости становится касательной к траектории, то такой поток называется направленным. При его возникновении слои жидкости, как правило, скользят относительно друг друга. Такой поток известен как ламинарный поток. Важным условием его существования является относительно небольшая средняя скорость движения частиц.

В ламинарном потоке, слой, который соприкасается с неподвижной поверхностью, имеет нулевую скорость. В направлении, перпендикулярном к поверхности, скорость слоев постепенно возрастает. Кроме того, давление, плотность и другие динамические свойства жидкости остаются неизменными в каждой точке пространства внутри потока.

Число Рейнольдса является количественным показателем характера течения жидкости. Когда оно небольшое (меньше 1000) – поток является ламинарным. В этом случае взаимодействие происходит посредством силы инерции. При значениях от 1000 до 2000 поток ни турбулентный, ни ламинарный. Другими словами, происходит переход от одного типа движения к другому. Число Рейнольдса является безразмерной величиной.

Что такое турбулентное течение?

Когда свойства жидкости в потоке быстро меняются со временем, то он называется турбулентным. Скорость, давление, плотность и другие показатели, при этом, принимают совершенно случайные значения.

Жидкость, двигающаяся в однородной цилиндрической трубе конечной длины, также известной как пуазейлевская, будет турбулентной, когда число Рейнольдса достигнет критического значения (около 2000). Тем не менее, поток не может быть турбулентным в явном виде, когда число Рейнольдса больше 10000.

Турбулентный поток характеризуется случайной природой характеристик, диффузией и завихрениями. Единственным методом их изучения будет эксперимент.

В чем разница между ламинарным и турбулентным потоками?

• В ламинарном потоке течение происходит при малых скоростях с низким числом Рейнольдса, а турбулентным он становится при высоких скоростях и больших числах Рейнольдса.

• В ламинарном потоке параметры жидкости прогнозируемы и практически не изменяются. В этом случае нет нарушений движения слоев и их перемешивания. В турбулентном потоке, картина течения хаотична. Здесь есть завихрения, водовороты, и поперечные течения.

• Внутри ламинарного потока, свойства жидкости в любой точке пространства остаются неизменными с течением времени. В случае турбулентного потока они стохастические.

Читайте также: