Дайте определение цепи переменного тока с последовательным соединением резисторов кратко

Обновлено: 07.07.2024

1. Приобретение навыков определения параметров цепей переменного тока с последовательным соединением элементов.

2. Изучение амплитудно-фазовых соотношений в последовательных цепях синусоидально изменяющегося тока.

3. Измерение активной, реактивной и полной мощностей в цепях синусоидального тока.

4. Изучение явления резонанса в последовательных электрических цепях синусоидального тока.

Приборы и элементы

  1. Вольтметры.
  2. Амперметры.
  3. Осциллограф.
  4. Ваттметр.
  5. Источник синусоидальной ЭДС.
  6. Резисторы.
  7. Катушка индуктивности.
  8. Конденсаторы.
  9. Выключатель.

Краткие теоретические сведения

Электрическая цепь синусоидально изменяющегося тока, содержащая последовательно соединенные резистор c сопротивлением R, реальную катушку индуктивности, имеющую полное сопротивление Z, включающее в себя ее активное сопротивление Rк и индуктивное сопротивление Хк , и конденсатор с емкостным сопротивлением Хс, изображена на рис. 4. 4.


Рис. 4. 4. Схема электрической цепи синусоидального тока при последовательном соединении элементов

По второму закону Кирхгофа в комплексной форме для падений напряжения на элементах данной цепи при приложенном к ее выводам напряжении U можно записать

С учетом того, что, как следует из экспериментов, проведенных в разделе 4.1, комплексный вектор падения напряжения на резистивном элементе цепи совпадает по направлению с вектором тока через него, вектор падения напряжения на идеальной катушке индуктивности опережает на 90 0 , а вектор падения напряжения на емкости отстает на 90 0 от вектора этого тока, для модулей всех этих напряжений можно записать:


U =

где модули падения напряжений на активном и индуктивном сопротивлении катушки.

Представив модули падения напряжений на элементах цепи в виде произведений модуля тока на модули сопротивлений, имеем

U = = I .

Отсюда закон Ома для последовательной цепи синусоидального тока:


I = U/ = U / Z,

где Z – модуль полного сопротивления цепи.

Угол сдвига фаз между приложенным к цепи напряжением и протекающим по ней током определится выражением

= arctg( .

Если то реактивное сопротивление цепи Х = и = 0, а ток в цепи будет ограничен только активным сопротивлением. Такой режим цепи называют резонансом напряжений. При этом ток в цепи будет максимальным, а напряжения на катушке и конденсаторе на практике увеличиваются в несколько раз. Резонансную частоту цепи находят из равенства ω0 * L = 1 / (ω0 * C):


Цель

1. Приобретение навыков определения параметров цепей переменного тока с последовательным соединением элементов.

2. Изучение амплитудно-фазовых соотношений в последовательных цепях синусоидально изменяющегося тока.

3. Измерение активной, реактивной и полной мощностей в цепях синусоидального тока.

4. Изучение явления резонанса в последовательных электрических цепях синусоидального тока.

Приборы и элементы

  1. Вольтметры.
  2. Амперметры.
  3. Осциллограф.
  4. Ваттметр.
  5. Источник синусоидальной ЭДС.
  6. Резисторы.
  7. Катушка индуктивности.
  8. Конденсаторы.
  9. Выключатель.

Краткие теоретические сведения

Электрическая цепь синусоидально изменяющегося тока, содержащая последовательно соединенные резистор c сопротивлением R, реальную катушку индуктивности, имеющую полное сопротивление Z, включающее в себя ее активное сопротивление Rк и индуктивное сопротивление Хк , и конденсатор с емкостным сопротивлением Хс, изображена на рис. 4. 4.


Рис. 4. 4. Схема электрической цепи синусоидального тока при последовательном соединении элементов

По второму закону Кирхгофа в комплексной форме для падений напряжения на элементах данной цепи при приложенном к ее выводам напряжении U можно записать

С учетом того, что, как следует из экспериментов, проведенных в разделе 4.1, комплексный вектор падения напряжения на резистивном элементе цепи совпадает по направлению с вектором тока через него, вектор падения напряжения на идеальной катушке индуктивности опережает на 90 0 , а вектор падения напряжения на емкости отстает на 90 0 от вектора этого тока, для модулей всех этих напряжений можно записать:


U =

где модули падения напряжений на активном и индуктивном сопротивлении катушки.

Представив модули падения напряжений на элементах цепи в виде произведений модуля тока на модули сопротивлений, имеем




U = = I .

Отсюда закон Ома для последовательной цепи синусоидального тока:


I = U/ = U / Z,

где Z – модуль полного сопротивления цепи.

Угол сдвига фаз между приложенным к цепи напряжением и протекающим по ней током определится выражением

= arctg( .

Если то реактивное сопротивление цепи Х = и = 0, а ток в цепи будет ограничен только активным сопротивлением. Такой режим цепи называют резонансом напряжений. При этом ток в цепи будет максимальным, а напряжения на катушке и конденсаторе на практике увеличиваются в несколько раз. Резонансную частоту цепи находят из равенства ω0 * L = 1 / (ω0 * C):


Как я и обещал в статье про переменные резисторы (ссылка), сегодня речь пойдет о возможных способах соединения, в частности о последовательном соединении резисторов и о параллельном.

Последовательное соединение резисторов.

Давайте начнем с рассмотрения цепей, элементы которой соединены последовательно. И хоть мы и будем рассматривать только резисторы в качестве элементов цепи в данной статье, но правила, касающиеся напряжений и токов при разных соединениях, будут справедливы и для других элементов. Итак, первая цепь, которую мы будем разбирать выглядит следующим образом:

Последовательное соединение резисторов.

Здесь у нас классический случай последовательного соединения - два последовательно включенных резистора. Но не будем забегать вперед и рассчитывать общее сопротивление цепи, а для начала рассмотрим все напряжения и токи. Итак, первое правило заключается в том, что протекающие по всем проводникам токи при последовательном соединении равны между собой:

А для определения общего напряжения при последовательном соединении, напряжения на отдельных элементах необходимо просуммировать:

В то же время, по закону Ома для напряжений, сопротивлений и токов в данной цепи справедливы следующие соотношения:

Тогда для вычисления общего напряжения можно использовать следующее выражение:

Но для общего напряжения также справедлив закон Ома:

Здесь R_0 - это общее сопротивление цепи, которое исходя из двух формул для общего напряжения равно:

Таким образом, при последовательном соединении резисторов общее сопротивление цепи будет равно сумме сопротивлений всех проводников.

Например, для следующей цепи:

Пример цепи.

Общее сопротивление будет равно:

Количество элементов значения не имеет, правило, по которому мы определяем общее сопротивление, будет работать в любом случае. А если при последовательном соединении все сопротивления равны ( R_1 = R_2 = . = R ), то общее сопротивление цепи составит:

В данной формуле n равно количеству элементов. С последовательным соединением резисторов разобрались, логичным образом переходим к параллельному.

Параллельное соединение резисторов.

Параллельное соединение резисторов.

При параллельном соединении напряжения на проводниках равны:

А для токов справедливо следующее выражение:

То есть общий ток разветвляется на две составляющие, а его значение равно сумме всех составляющих. По закону Ома:

Подставим эти выражения в формулу общего тока:

А по закону Ома:

Приравниваем эти выражения и получаем формулу для общего сопротивления цепи:

Данную формулу можно записать и несколько иначе:

Таким образом, при параллельном соединении проводников величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.

Аналогичная ситуация будет наблюдаться и при большем количестве проводников, соединенных параллельно:

Пример цепи.

Смешанное соединение резисторов.

Помимо параллельного и последовательного соединений резисторов существует еще смешанное соединение. Из названия уже понятно, что при таком соединении в цепи присутствуют резисторы, соединенные как параллельно, так и последовательно. Вот пример такой цепи:

Смешанное соединение резисторов.

Давайте рассчитаем общее сопротивление. Начнем с резисторов R_1 и R_2 - они соединены параллельно. Мы можем рассчитать общее сопротивление для этих резисторов и заменить их в схеме одним единственным резистором R_ :

Теперь у нас образовались две группы последовательно соединенных резисторов:

Упрощенная схема.

Заменим эти две группы двумя резисторами, сопротивление которых равно:

Упрощенная схема 2.

Как видите, схема стала уже совсем простой. Заменим группу параллельно соединенных резисторов R_ и R_ одним резистором R_ :

И в итоге у нас на схеме осталось только два резистора соединенных последовательно:

Финальная цепь.

Общее сопротивление цепи получилось равным:

Таким вот образом достаточно большая схема свелась к банальнейшему последовательному соединению двух резисторов. Тут стоит отметить, что некоторые схемы невозможно так просто преобразовать и определить общее сопротивление - для таких схем нужно использовать правила Кирхгофа, о которых мы обязательно поговорим в будущих статьях. А сегодняшняя статья на этом подошла к концу, до скорых встреч на нашем сайте 🤝

Значительное число приемников, включенных в электрическую цепь (электрические лампы, электронагревательные приборы и др.), можно рассматривать как некоторые элементы, имеющие определенное сопротивление.

Это обстоятельство дает нам возможность при составлении и изучении электрических схем заменять конкретные приемники резисторами с определенными сопротивлениями. Различают следующие способы соединения резисторов (приемников электрической энергии): последовательное, параллельное и смешанное.

Последовательное соединение резисторов.

При последовательном соединении нескольких резисторов конец первого резистора соединяют с началом второго, конец второго — с началом третьего и т. д. При таком соединении по всем элементам последовательной цепи проходит один и тот же ток I.

Заменяя лампы резисторами с сопротивлениями R1, R2 и R3, получим схему, показанную на рис. 25. Если принять, что в источнике Ro = 0, то для трех последовательно соединенных резисторов согласно второму закону Кирхгофа можно написать:

Следовательно, эквивалентное сопротивление последовательной цепи равно сумме сопротивлений всех последовательно соединенных резисторов. Так как напряжения на отдельных участках цепи согласно закону Ома: U1=IR1; U2 = IR2, U3 = IRз и в данном случае E = U, то для рассматриваемой цепи:

U = U1 + U2 +U3 (20)

Следовательно, напряжение U на зажимах источника равно сумме напряжений на каждом из последовательно включенных резисторов.
Из указанных формул следует также, что напряжения распределяются между последовательно соединенными резисторами пропорционально их сопротивлениям:

т. е. чем больше сопротивление какого-либо приемника в последовательной цепи, тем больше приложенное к нему напряжение.

В случае если последовательно соединяются несколько, например п, резисторов с одинаковым сопротивлением R1, эквивалентное сопротивление цепи Rэк будет в п раз больше сопротивления R1, т. е. Rэк = nR1. Напряжение U1 на каждом резисторе в этом случае в п раз меньше общего напряжения U:

При последовательном соединении приемников изменение сопротивления одного из них тотчас же влечет за собой изменение напряжения на других связанных с ним приемниках. При выключении или обрыве электрической цепи в одном из приемников и в остальных приемниках прекращается ток.

Поэтому последовательное соединение приемников применяют редко — только в том случае, когда напряжение источника электрической энергии больше номинального напряжения, на которое рассчитан потребитель. Например, напряжение в электрической сети, от которой питаются вагоны метрополитена, составляет 825 В, номинальное же напряжение электрических ламп, применяемых в этих вагонах, 55 В. Поэтому в вагонах метрополитена электрические лампы включают последовательно по 15 ламп в каждой цепи.

Параллельное соединение резисторов.


При параллельном соединении нескольких приемников они включаются между двумя точками электрической цепи, образуя параллельные ветви (рис. 26, а).

Рис. 26. Схемы параллельного соединения приемников

Рис. 26. Схемы параллельного соединения приемников

Заменяя лампы резисторами с сопротивлениями R1, R2, R3, получим схему, показанную на рис. 26, б.
При параллельном соединении ко всем резисторам приложено одинаковое напряжение U. Поэтому согласно закону Ома:

Ток в неразветвленной части цепи согласно первому закону Кирхгофа I = I1+I2+I3, или:

Следовательно, эквивалентное сопротивление рассматриваемой цепи при параллельном соединении трех резисторов определяется формулой:

1/Rэк = 1/R1 + 1/R2 + 1/R3 (24)

Вводя в формулу (24) вместо значений 1/Rэк, 1/R1, 1/R2 и 1/R3 соответствующие проводимости Gэк, G1, G2 и G3, получим: эквивалентная проводимость параллельной цепи равна сумме проводимостей параллельно соединенных резисторов:

Таким образом, при увеличении числа параллельно включаемых резисторов результирующая проводимость электрической цепи увеличивается, а результирующее сопротивление уменьшается.

Из приведенных формул следует, что токи распределяются между параллельными ветвями обратно пропорционально их электрическим сопротивлениям или прямо пропорционально их проводимостям. Например, при трех ветвях:

В этом отношении имеет место полная аналогия между распределением токов по отдельным ветвям и распределением потоков воды по трубам.

Приведенные формулы дают возможность определить эквивалентное сопротивление цепи для различных конкретных случаев. Например, при двух параллельно включенных резисторах результирующее сопротивление цепи:

при трех параллельно включенных резисторах:

При параллельном соединении нескольких, например n, резисторов с одинаковым сопротивлением R1 результирующее сопротивление цепи Rэк будет в n раз меньше сопротивления R1, т.е.:

Rэк = R1 / n (27)

Проходящий по каждой ветви ток I1, в этом случае будет в п раз меньше общего тока:

I1 = I / n (28)

При параллельном соединении приемников, все они находятся под одним и тем же напряжением, и режим работы каждого из них не зависит от остальных. Это означает, что ток, проходящий по какому-либо из приемников, не будет оказывать существенного влияния на другие приемники. При всяком выключении или выходе из строя любого приемника остальные приемники остаются включенными.

Поэтому параллельное соединение имеет существенные преимущества перед последовательным, вследствие чего оно получило наиболее широкое распространение. В частности, электрические лампы и двигатели, предназначенные для работы при определенном (номинальном) напряжении, всегда включают параллельно.

На электровозах постоянного тока и некоторых тепловозах тяговые двигатели в процессе регулирования скорости движения нужно включать под различные напряжения, поэтому они в процессе разгона переключаются с последовательного соединения на параллельное.

Смешанное соединение резисторов.

Смешанным соединением называется такое соединение, при котором часть резисторов включается последовательно, а часть — параллельно.

Например, в схеме рис. 27, а имеются два последовательно включенных резистора сопротивлениями R1 и R2, параллельно им включен резистор сопротивлением Rз, а резистор сопротивлением R4 включен последовательно с группой резисторов сопротивлениями R1, R2 и R3.

Рис. 27. Схемы смешанного соединения приемников

Рис. 27. Схемы смешанного соединения приемников

Эквивалентное сопротивление цепи при смешанном соединении обычно определяют методом преобразования, при котором сложную цепь последовательными этапами преобразовывают в простейшую.

Например, для схемы рис. 27, а вначале определяют эквивалентное сопротивление R12 последовательно включенных резисторов с сопротивлениями R1 и R2: R12 = R1 + R2. При этом схема рис. 27, а заменяется эквивалентной схемой рис. 27, б. Затем определяют эквивалентное сопротивление R123 параллельно включенных сопротивлений и R3 по формуле:

При этом схема рис. 27, б заменяется эквивалентной схемой рис. 27, в. После этого находят эквивалентное сопротивление всей цепи суммированием сопротивления R123 и последовательно включенного с ним сопротивления R4:

Последовательное, параллельное и смешанное соединения широко применяют для изменения сопротивления пусковых реостатов при пуске э. п. с. постоянного тока.

Читайте также: