Бег по прямой с различной скоростью 4 400 м основные признаки утомления кратко

Обновлено: 30.06.2024

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Утомление, переутомление. Причины возникновения, основные проявления, профилактика.

Актуальность данной темы обуславливается тем, что, по некоторым данным, от синдрома хронической усталости в мире страдают около двух десятков миллионов человек. При этом ученые отмечают, что у еще примерно такого же количества оно просто не диагностировано.

Впервые о синдроме хронической усталости заговорили в 1988 году, и именно с этого времени он стал расцениваться как заболевание, которое к тому же чревато осложнениями.

Утомление - физиологическое состояние организма, возникающее в результате деятельности и проявляющееся временным снижением работоспособности. Нередко как синоним утомления употребляется термин "усталость", хотя это не равнозначные понятия: усталость - субъективное переживание, чувство, обычно отражающее утомление, хотя иногда чувство усталости может возникать и без предшествующей нагрузки, т.е. без реального утомления. Утомление может появляться как при умственной, так и при физической работе. Умственное утомление характеризуется снижением продуктивности интеллектуального труда, ослаблением внимания, скорости мышления и др. Физическое утомление проявляется нарушением функций мышц: снижением силы, скорости сокращений, точности, согласованности и ритмичности движений.

Утомление может быть острым, т.е. проявляться в короткий промежуток времени, и хроническим, т.е. носить длительный характер (вплоть до нескольких месяцев); общим, т.е. характеризующим изменение функций организма в целом, и локальным, затрагивающим какую-либо ограниченную группу мышц, орган, анализатор.

Различают две фазы утомления: компенсированную (когда нет явно выраженного снижения работоспособности из-за того, что включаются резервные возможности организма) и некомпенсированную (когда резервные мощности организма исчерпаны и работоспособность явно снижается).

Различают умственное и физическое утомление, но это деление условно, так как в трудовых процессах умственный труд сочетается с физическим. Оба вида утомления - следствие изменений функций центральной нервной системы, а при физическом труде - и функций двигательного аппарата. Утомление - это снижение или потеря работоспособности.

Умственное утомление проявляется в ослаблении внимания, двигательном беспокойстве, вялости, сонливости. После интенсивного умственного труда значительно понижаются мышечные усилия и динамическая работа.

Умственное и физическое утомление зависит от здоровья, гигиенических условий труда, характера и продолжительности нагрузки.

Переутомление - это патологическое состояние, развивающееся у человека вследствие хронического физического или психологического перенапряжения, клиническую картину которого определяют функциональные нарушения в центральной нервной системе.

В основе заболевания лежит перенапряжение возбудительного или тормозного процессов, нарушение их соотношения в коре больших полушарий головного мозга.

Систематическое выполнение работы на фоне недовосстановления, непродуманная организация труда, чрезмерное нервно-психическое и физическое напряжение могут привести к переутомлению, а, следовательно, к перенапряжению нервной системы, обострениям сердечно-сосудистых заболеваний, гипертонической и язвенным болезням, снижению защитных свойств организма. Физиологической основой всех этих явлений является нарушение баланса возбудительно-тормозных нервных процессов. Умственное переутомление особенно опасно для психического здоровья человека, оно связано со способностью центральной нервной системы долго работать с перегрузками, а это в конечном итоге может привести к развитию запредельного торможения, к нарушению слаженности взаимодействия вегетативных функций.

В состоянии переутомления у человека повышается основной обмен и часто нарушается углеводный обмен. Нарушение углеводного обмена проявляется в ухудшении всасывания и утилизации глюкозы. Количество сахара в крови в покое уменьшается. Нарушается также течение окислительных процессов в организме. На это может указывать резкое понижение в тканях содержания аскорбиновой кислоты.

Переутомление - не нормальное физиологическое явление, а нарушение функций организма. Оно возникает при многократном повторении умственной и физической работы без достаточного интервала для восстановления работоспособности, когда наступающее утомление суммируется с остатком утомления от предшествовавшей работы. Оно результат нарушения смены работы и отдыха, чрезмерной сложности и передозировки умственного и физического труда, его однообразия, монотонности или, наоборот, чрезмерного насыщения эмоциями.

Признаки утомления и переутомления

Если причиной дискомфортного состояния стало умственное перенапряжение, то ранний признак утомления сводится к:

- проблемам к скорости переработки информации;

- появлению ощущения пустоты и тумана в голове.

Появление данной симптоматики связано с длительным и интенсивным умственным трудом, например, подготовка студента к экзамену, работа связана с постоянным решением умственных задач.

Если профессиональная деятельность человека связана с физическими нагрузками, это может быть тяжелая физическая работа или монотонный труд даже с небольшой нагрузкой. Например, такое состояние может наблюдаться у человека, работающего на конвейере, у спортсмена после изнурительной тренировки, у дальнобойщика после продолжительной езды и так далее. Ранний признак утомления такого характера проявляются следующим образом:

- возникает желание поспать;

- автоматизм в действиях;

- сбой в координации движения;

Как результат - такая ситуация может привести к несчастному случаю.

Признаки утомления и переутомления достаточно очевидны и знакомы практически каждому. Такого человека преследует постоянная сонливость, его могут одолевать постоянные, практически не прекращающиеся головные боли, интенсивность которых на протяжении дня меняется, несмотря на постоянное желание поспать, долго не получается заснуть.

Не проходит бесследно переутомление и для нервной системы, возникают нервные срывы, резкая смена настроения, истерики, ощущение тревоги и повышенная раздражительность.

Опытно-экспериментальная часть

Выборка составила 30 человек.

Можно сделать вывод о том, что проблема усталости и переутомления действительно актуальна на сегодняшний момент. Темп жизни на столько стремительный, что человек не успевает полноценно отдохнуть, в следствие чего, возникают негативные последствия для организма.

Профилактика утомления и переутомления

Профилактика утомления и переутомления строится на устранении вызывающих ее причин. Поэтому интенсивные нагрузки должны применяться только при достаточной предварительной подготовке. В состоянии повышенной нагрузки интенсивные умственные занятия следует чередовать с физическими нагрузками, особенно в дни после экзаменов или зачетов.

Для предупреждения переутомления необходимо нормализовать режим дня: исключить недосыпание, умело подбирать нагрузку, правильно чередовать занятия и отдых.

Важной мерой профилактики утомления является обоснование и внедрение наиболее целесообразного режима труда и отдыха, т. е. рациональной системы чередования периодов работы и перерывов между ними. Следует учитывать также, что длительность перерывов при выполнении одинаковой работы должна соответствовать возрастным особенностям организма.

Большое значение в профилактике утомления имеет активный отдых, а также санитарное благоустройство помещений (кубатура, микроклиматические условия, вентиляция, освещенность, эстетическое оформление).

Список источников:

1. Бодров В.А. Психолого-физиологические механизмы развития функциональной напряженности, перенапряжения, утомления // Человеческий фактор: проблемы психологии и эргономики. - 2012. - №1 (61). - С. 12-19.

2. Грицаенко А.О Влияние переутомления на здоровье человека // Эволюция современной науки. - Уфа: Общество с ограниченной ответственностью "Аэтерна", 2016. - С. 125-127.

3. Николаев Д.А. Виды утомления и профилактика утомления // Актуальные проблемы физического воспитания студентов . - 2018. - С. 63-65.

4. Семизоров Е.А. Причины возникновения утомления при физической и умственной работе и методы восстановления функций организма человека // Агропродовольственная политика России. - 2014. - №10 (34). - С. 71-122.

5. Олейник А.А., Соловейченко Е.Г. Особенности и профилактика утомления // Сборник научных трудов по материалам международной научно-практической конференции . - 2010. - №2. - С. 74-76.

Профессор Е.Е. Аракелян, профессор Ю.Н. Примаков, кандидат педагогических наук, доцент В.В. Тюпа, кандидаты педагогических наук Д.Д. Умаров, Ф.Д. Гусейнов, Российская государственная академия физической культуры

Обширный материал, накопленный по биомеханике бега, позволяет достоверно оценивать связь скорости передвижения с рядом показателей техники бега в неутомленном состоянии. В то же время почти не изучен вопрос влияния утомления на изменение техники бега на финише. В частности, здесь актуально выявление специфического влияния утомления. До настоящего времени выделен пока один такой признак - постановка более выпрямленной ноги на опору при беге на 200 и 400 м [4, 7, 13-15]. Изменение других показателей техники бега под влиянием утомления специфическим не является и соответствует общим закономерностям бега. Например, при беге на финише, когда скорость передвижения снижена, растут вертикальные колебания общего центра масс тела (ОЦМ), уменьшаются длина и частота шагов, понижается беговая посадка, нога ставится на опору дальше, а угол вылета ОЦМ растет [4, 7, 13-16]. Однако точно такие же изменения происходят и при беге в неутомленном состоянии, при переходе на более низкую скорость [4, 12-15]. Понятно, что факт повышенной вертикальной механической работы при беге на выносливость вряд ли правомерно считать признаком менее техничного бега у спортсменов низкой квалификации, бегущих с низкой скоростью [21].

Таблица 1. Скорость бега

Примечание: n - количество испытуемых, и G - среднеарифметическое и средиеквадратическое отклонения (м/с).

Очевидно, что указанные зависимости являются отражением общей закономерности бега независимо от того, в каком состоянии он проводится [4, 15]. Другими словами - кинематический рисунок бега соответствует лишь скорости передвижения, за редкими исключениями. Именно поэтому в нашей работе была поставлена задача: выявить специфичное влияние утомления на технику бега.

Методика. В исследовании приняли участие 115 бегунов квалификации от II разряда до мастера спорта, специализирующихся в беге на короткие, средние и длинные дистанции.

Регистрировались биомеханические показатели бега с установкой на максимально лучший результат на дистанциях 100, 200, 400, 800, 5000 и 15 000 м. Скорость бега определялась фотодиодными датчиками, динамические показатели - с помощью тензоплатформы ПД-3 с собственной частотой не менее 300 Гц, установленной за 5 м до финиша. По опорным реакциям методом двойного интегрирования определялись перемещение и скорость ОЦМ бегуна, по которым по общепринятой методике рассчитывались механическая энергия, работа и мощность [4, б, 18, 19]. Более подробно расчет этих данных приводится в [14].

Показатели техники бега на финише сравнивались с такими же, полученными при беге в неутомленном состоянии, перед забегами на дистанцию. Для спринтеров это был бег с ходу на 30 м с максимальной скоростью, для средневиков и стайеров - бег с индивидуальной "крейсерской" скоростью, характерной для начала дистанции. Таким способом моделировался бег в "начале" дистанции.

Основным показателем, анализируемым в нашей работе, является мощность взаимодействия ноги с опорой - отрицательная в фазе торможения и положительная в фазе отталкивания. При этом изменение механической энергии делится на время соответствующей фазы и на массу бегуна [18]. Рассчитанный таким образом показатель ценен тем, что дает опосредованное представление о мощности, развиваемой мышцами при их принудительном растяжении в фазе торможения и мощности сокращения в фазе разгона ОЦМ.

Таблица 2. Отрицательная мощность при беге в утомленном состоянии

Реальные

Результаты и их обсуждение.

Поиск специфики утомления проводился следующим образом. Если имелась высокая корреляционная связь показателей техники и скорости бега всех 115 испытуемых в "начале" забе гов, то выводились линейные уравнения регрессии. Затем в уравнение подстав лялись величины скорости бега на фи нише и находилась расчетная величина показателя. Сравнение расчетных и реальных величин показателя техники бега на финише позволяло выявить те, которые не укладывались в общую закономерность бега. В этом случае реальные показатели по величине должны быть больше или меньше тех, которые соответствовали бы бегу в неутомленном состоянии, но с той же скоростью бега, как на финише.

Для начала приведем данные о скорости бега на всех дистанциях, поскольку ее величины необходимы для расчетов (табл. 1).

Затем приведем уравнение:

Рторм. = -5,288 + 4,38V (±5,б2), г = 0,75, где Рторм. - продольная слагаемая отрицательной мощности (Вт/кг), V - скорость бега (м/с), r - коэффициент корреляции. Теперь, подставляя в уравнение значения скорости бега на финише каждой дистанции, получим расчетную отрицательную мощность (табл. 2).

Сопоставим расчетные и реальные значения. Видно, что на дистанции 400 м реальная мощность не соответствует скорости бега на финише, превышая ту мощность, которая должна бы быть показана (различие выходит за пределы стандартной ошибки оценки уравнения, равной 5,62). Это несколько неожиданный факт, поскольку утомленные мышцы смогли развить более значительную мощность в уступающем режиме работы. Видимо, это стало возможным при более жесткой постановке ноги, как было зафиксировано при беге на 200 и 800 м за счет ее выпрямления в дистапьных суставах [4, 7, 13, 15]. Такой способ позволяет снизить диссипативные потери механической энергии в фазе торможения, поскольку переход энергии по ноге к голеностопному суставу производится с большим использованием костей [5]. Кроме того, этот прием помогает несколько снизить потери скорости ОЦМ в фазе торможения. Однако радикально повлиять на мощность сокращения мышц опорной ноги в фазе отталкивания это уже не может, что и видно из анализа положительной мощности. Ее связь с отрицательной мощностью выражается следующим образом:

Рот. = 1,801 + 1,288 Рторм. (±9,06), г=0,76, где Рот. - продольная слагаемая положительной мощности (Вт/кг). Подставляя в уравнение значение отрицательной мощности, реально показанной на финише дистанции 400 м (табл. 1), находим, что положительная мощность соответственно должна быть равной 34,1 Вт/кг. На самом же деле реальная величина меньше на 38% и равна 21,2 ± 7,2 Вт/кг.

Из вышеизложенных фактов следует, что при беге на 400 м в фазе декомпенсированного утомления, когда скорость бега необратимо упала, нарушается зависимость между принудительным растяжением и последующим сокращением мышц. Мало того, что утомленная мышца сокращается с низкой мощностью, при таком нарушении неизбежно ухудшается и механизм рекуперации энергии, что дополнительно снижает мощность отталкивания и скорость бега. Известно, что этот механизм повышает эффективность движений [8, 5, 6, 19, 20]. Его проявление связано с биомеханическими свойствами мышц - чем выше жесткость и сила мышц и меньше время их растяжения, тем больше может утилизоваться накопленной механической энергии [2, 5, 6, 20]. Бег на высокой скорости с укороченной фазой торможения более выгоден для проявления механизма рекуперации с использованием других свойств мышц. Усиление этого механизма удачно демонстрируется с применением резиновых рекуператоров, повышающих упругие свойства мышц - подошвенных сгибателей стопы, основного движителя при беге [10]. И наоборот, при заземлении бега, когда увеличивается время растяжения мышц, накопленная механическая энергия в значительной мере рассеивается в мышцах.

Тогда встает вопрос: может быть, нарушение зависимости "скорость - растяжение" мышц при беге на 400 м связано с чрезмерным ростом фазы торможения? Обратимся к фактам. На финише время торможения выросло на 31%, до 80 ± 15 мс. Однако сравнение расчетных и реальных величин показывает, что они не имеют существенных различий и соответственно равны 0,073 и 0,080 с. Это рассчитано по уравнению:

t0торм. = 0,126 - 0,009V (±0,009), r = -0.83,

Итак, выявленные зависимости позволяют количественно оценить соотношение мощности растяжения и сокращения мышц опорной ноги при беге в состоянии острого утомления. Но, что нам представляется не менее существенным, эти данные подтверждают идею о необходимости повышения. локальной мышечной выносливости. То, что она имеет высокую связь с результатом в беге на средние дистанции, установлено экспериментально [8]. Повышение этого качества неизбежно приведет к улучшению биомеханических свойств мышц, что позволит на более качественном уровне использовать их упругие свойства и успешнее противодействовать падению скорости бега на финише в состоянии острого утомления.

1. Специфика утомления в беге проявляется на дистанции 400 м, выражаясь в нарушении соотношения мощности растяжения и сокращения мышц.

2. Подтверждается идея о повышении локальной мышечной выносливости, что позволит увеличить эффективность бега в состоянии острого утомления.

1. Батунвр Л.С. "Физиологический журнал СССР". 1979, т. 65, № 1, с. 128.

2. Верхошанский Ю.В. //Теор. и практ. физ. культ. 1970, № 12, с. 8.

3. Волков Н.И. Физиологические основы современных методов развития выносливости. М., 1962.

4. Гусейнов Ф.А. Канд. дисс. М., 1982.

5. Зациорский В.М., Аруин А.С., Селуянов В.Н. Биомеханика двигательного аппарата человека. - М.: ФиС, 1981.

6. Зациорский В.М., Алешинский С.Ю., Якунин Н.А. Биомеханические основы выносливости. - М.: ФиС, 1982.

7. Комаров А.И. Автореф. канд. дисс. М., 1974.

8. Нурмекиви А., Лемберг X. //Легкая атлетика. 1990, № 7, с. 27.

9. Озолин Н.Г., Чхаидзе Л.В. //Теор. и практ. физ. культ. 1951, № 5, с. 339.

10. Попов Г., Чапайкин В. //Легкая атлетика. 1991, № 6, с. 15.

11. Розенблат В.В. //Теор. и практ. физ. культ. 1958, т. 21, вып. 3,с.195.

12. Степанов В.В. Автореф. канд. дисс. М., 1982.

13. Тюпа В., Чистяков В., Алешинский С. и др. //Легкая атлетика. 1981, № 9, с. 10.

14. Тюпа В.В., Травин Ю.Г., Гусейнов Ф.А. и др. //Теор. и практ. физ. культ. 1982, № 4, с. 11.

15. Тюпа В.В., Гусейнов Ф.А., Мироненко И.Н. //Теор. и практ. физ. культ. 1989, № 2, с. 33.

16. Чхаидзе Л.В. //Теор. и практ. физ. культ. 1948, № 10, с. 457.

17. Яковлев Н.Н., Александрова Г.В, Батунер Л.С. и др. //Физиологический журнал СССР. 1978, т. 64, № 11, с. 1510.

18. Fukunaga Т., Matsuo A., Yuasa К. а.о. //Ergonomics, 1980, vol. 23, N 2, р. 123.

19. Cavagna G.A. //J. Physiol., Paris, Sept. 1969, N 61, р. 4.

20. Cavagna G.A., Thys H., Zamboni A. //J. Physiol. 1976, 262, р. 639.

21. Miura M., Kobayashi К., Miyashita М. а.о. In: Review of our researches. 1970-1973 (ed. H. Matsui). Univ. of Nagoya, 1973, p.

Раздел: Физкультура и спорт
Количество знаков с пробелами: 11510
Количество таблиц: 2
Количество изображений: 0

Профессор Е.Е. Аракелян,
профессор Ю.Н. Примаков,
кандидат педагогических наук, доцент В.В. Тюпа
кандидаты педагогических наук Д.Д. Умаров, Ф.Д. Гусейнов
Российская государственная академия физической культуры
Наманганский государственный университет, Наманган
Азербайджанский институт физической культуры, Баку


Ключевые слова: бег на 400 м, выносливость, биомеханические особенности, мышечные сокращения.

Обширный материал, накопленный по биомеханике бега, позволяет достоверно оценивать связь скорости передвижения с рядом показателей техники бега в неутомленном состоянии. В то же время почти не изучен вопрос влияния утомления на изменение техники бега на финише. В частности, здесь актуально выявление специфического влияния утомления. До настоящего времени выделен пока один такой признак - постановка более выпрямленной ноги на опору при беге на 200 и 400 м [4, 7, 13-15]. Изменение других показателей техники бега под влиянием утомления специфическим не является и соответствует общим закономерностям бега. Например, при беге на финише, когда скорость передвижения снижена, растут вертикальные колебания общего центра масс тела (ОЦМ), уменьшаются длина и частота шагов, понижается беговая посадка, нога ставится на опору дальше, а угол вылета ОЦМ растет [4, 7, 13-16]. Однако точно такие же изменения происходят и при беге в неутомленном состоянии, при переходе на более низкую скорость [4, 12-15]. Понятно, что факт повышенной вертикальной механической работы при беге на выносливость вряд ли правомерно считать признаком менее техничного бега у спортсменов низкой квалификации, бегущих с низкой скоростью [21].

Таблица 1. Скорость бега

Показатели Дистанция, м
Усл. обозн. 100 200 400 800 15000
п=20 n=20 n=25 n=23 n=27
Начало бега 8,93 8,80 7,42 6,75 5,50
G 0,81 0,73 0,85 0,49 0,40
Финиш 8,42 7,42 5,87 6,31 4,95
G 0,76 0.88 0,71 0,49 0,44
Разность, % -5,7 -15,7 -20,9 -6,4 -9,9

Примечание: n - количество испытуемых, и G - среднеарифметическое и средиеквадратическое отклонения (м/с).

Очевидно, что указанные зависимости являются отражением общей закономерности бега независимо от того, в каком состоянии он проводится [4, 15]. Другими словами - кинематический рисунок бега соответствует лишь скорости передвижения, за редкими исключениями. Именно поэтому в нашей работе была поставлена задача: выявить специфичное влияние утомления на технику бега.

Методика. В исследовании приняли участие 115 бегунов квалификации от II разряда до мастера спорта, специализирующихся в беге на короткие, средние и длинные дистанции.

Регистрировались биомеханические показатели бега с установкой на максимально лучший результат на дистанциях 100, 200, 400, 800, 5000 и 15 000 м. Скорость бега определялась фотодиодными датчиками, динамические показатели - с помощью тензоплатформы ПД-3 с собственной частотой не менее 300 Гц, установленной за 5 м до финиша. По опорным реакциям методом двойного интегрирования определялись перемещение и скорость ОЦМ бегуна, по которым по общепринятой методике рассчитывались механическая энергия, работа и мощность [4, б, 18, 19]. Более подробно расчет этих данных приводится в [14].

Показатели техники бега на финише сравнивались с такими же, полученными при беге в неутомленном состоянии, перед забегами на дистанцию. Для спринтеров это был бег с ходу на 30 м с максимальной скоростью, для средневиков и стайеров - бег с индивидуальной "крейсерской" скоростью, характерной для начала дистанции. Таким способом моделировался бег в "начале" дистанции.

Основным показателем, анализируемым в нашей работе, является мощность взаимодействия ноги с опорой - отрицательная в фазе торможения и положительная в фазе отталкивания. При этом изменение механической энергии делится на время соответствующей фазы и на массу бегуна [18]. Рассчитанный таким образом показатель ценен тем, что дает опосредованное представление о мощности, развиваемой мышцами при их принудительном растяжении в фазе торможения и мощности сокращения в фазе разгона ОЦМ.

Таблица 2. Отрицательная мощность при беге в утомленном состоянии

Показатели Дистанция, м
100 200 400 800 15000
Реальные 34,8 30.5 26,3 24,1 16,2
Расчетные 31,6 27,2 20,4 22,3 16,4
Разность, Вт/кг 3,2 3,3 5i9 1.8 -0,2


Результаты и их обсуждение.

Поиск специфики утомления проводился следующим образом. Если имелась высокая корреляционная связь показателей техники и скорости бега всех 115 испытуемых в "начале" забе гов, то выводились линейные уравнения регрессии. Затем в уравнение подстав лялись величины скорости бега на фи нише и находилась расчетная величина показателя. Сравнение расчетных и реальных величин показателя техники бега на финише позволяло выявить те, которые не укладывались в общую закономерность бега. В этом случае реальные показатели по величине должны быть больше или меньше тех, которые соответствовали бы бегу в неутомленном состоянии, но с той же скоростью бега, как на финише.

Для начала приведем данные о скорости бега на всех дистанциях, поскольку ее величины необходимы для расчетов (табл. 1).

Затем приведем уравнение:

Рторм. = -5,288 + 4,38V (±5,б2), г = 0,75, где Рторм. - продольная слагаемая отрицательной мощности (Вт/кг), V - скорость бега (м/с), r - коэффициент корреляции. Теперь, подставляя в уравнение значения скорости бега на финише каждой дистанции, получим расчетную отрицательную мощность (табл. 2).

Сопоставим расчетные и реальные значения. Видно, что на дистанции 400 м реальная мощность не соответствует скорости бега на финише, превышая ту мощность, которая должна бы быть показана (различие выходит за пределы стандартной ошибки оценки уравнения, равной 5,62). Это несколько неожиданный факт, поскольку утомленные мышцы смогли развить более значительную мощность в уступающем режиме работы. Видимо, это стало возможным при более жесткой постановке ноги, как было зафиксировано при беге на 200 и 800 м за счет ее выпрямления в дистапьных суставах [4, 7, 13, 15]. Такой способ позволяет снизить диссипативные потери механической энергии в фазе торможения, поскольку переход энергии по ноге к голеностопному суставу производится с большим использованием костей [5]. Кроме того, этот прием помогает несколько снизить потери скорости ОЦМ в фазе торможения. Однако радикально повлиять на мощность сокращения мышц опорной ноги в фазе отталкивания это уже не может, что и видно из анализа положительной мощности. Ее связь с отрицательной мощностью выражается следующим образом:

Рот. = 1,801 + 1,288 Рторм. (±9,06), г=0,76, где Рот. - продольная слагаемая положительной мощности (Вт/кг). Подставляя в уравнение значение отрицательной мощности, реально показанной на финише дистанции 400 м (табл. 1), находим, что положительная мощность соответственно должна быть равной 34,1 Вт/кг. На самом же деле реальная величина меньше на 38% и равна 21,2 ± 7,2 Вт/кг.

Из вышеизложенных фактов следует, что при беге на 400 м в фазе декомпенсированного утомления, когда скорость бега необратимо упала, нарушается зависимость между принудительным растяжением и последующим сокращением мышц. Мало того, что утомленная мышца сокращается с низкой мощностью, при таком нарушении неизбежно ухудшается и механизм рекуперации энергии, что дополнительно снижает мощность отталкивания и скорость бега. Известно, что этот механизм повышает эффективность движений [8, 5, 6, 19, 20]. Его проявление связано с биомеханическими свойствами мышц - чем выше жесткость и сила мышц и меньше время их растяжения, тем больше может утилизоваться накопленной механической энергии [2, 5, 6, 20]. Бег на высокой скорости с укороченной фазой торможения более выгоден для проявления механизма рекуперации с использованием других свойств мышц. Усиление этого механизма удачно демонстрируется с применением резиновых рекуператоров, повышающих упругие свойства мышц - подошвенных сгибателей стопы, основного движителя при беге [10]. И наоборот, при заземлении бега, когда увеличивается время растяжения мышц, накопленная механическая энергия в значительной мере рассеивается в мышцах.

Тогда встает вопрос: может быть, нарушение зависимости "скорость - растяжение" мышц при беге на 400 м связано с чрезмерным ростом фазы торможения? Обратимся к фактам. На финише время торможения выросло на 31%, до 80 ± 15 мс. Однако сравнение расчетных и реальных величин показывает, что они не имеют существенных различий и соответственно равны 0,073 и 0,080 с. Это рассчитано по уравнению:

t0торм. = 0,126 - 0,009V (±0,009), r = -0.83,

Итак, выявленные зависимости позволяют количественно оценить соотношение мощности растяжения и сокращения мышц опорной ноги при беге в состоянии острого утомления. Но, что нам представляется не менее существенным, эти данные подтверждают идею о необходимости повышения. локальной мышечной выносливости. То, что она имеет высокую связь с результатом в беге на средние дистанции, установлено экспериментально [8]. Повышение этого качества неизбежно приведет к улучшению биомеханических свойств мышц, что позволит на более качественном уровне использовать их упругие свойства и успешнее противодействовать падению скорости бега на финише в состоянии острого утомления.

1. Специфика утомления в беге проявляется на дистанции 400 м, выражаясь в нарушении соотношения мощности растяжения и сокращения мышц.
2. Подтверждается идея о повышении локальной мышечной выносливости, что позволит увеличить эффективность бега в состоянии острого утомления.

Поступила в редакцию 14.05.96

Помимо статей, в нашей спортивной библиотеке вы можете найти много других полезных материалов: спортивную периодику (газеты и журналы), книги о спорте, биографию интересующего вас спортсмена или тренера, словарь спортивных терминов, а также многое другое.

Проблема утомления считается актуальной общебиологической проблемой, представляет большой теоретический интерес и имеет важное практическое значение для деятельности человека, занимающегося легкой атлетикой. Вопрос о правильной трактовке процесса утомления долгое время оставался дискуссионным. Ныне оно рассматривается как состояние организма, возникающее вследствие выполнения физической работы и проявляющееся во временном снижении работоспособности, в ухудшении двигательных и вегетативных функций, их дискоординации и появлении чувства усталости.

В работающих мышцах бегуна при утомлении происходит исчерпание запасов энергетических субстратов (АТФ, КФ, гликоген), накапливаются продукты распада (молочная кислота, кетоновые тела) и отмечаются резкие сдвиги внутренней среды организма. При этом нарушается регуляция процессов, связанных с энергетическим обеспечением мышечного сокращения, появляются выраженные изменения в деятельности систем легочного дыхания и кровообращения (Меньшиков В.В., Волков Н.И., 1986).

В состоянии утомления у спортсмена-бегуна снижается концентрация АТФ в нервных клетках и нарушается синтез ацетилхолина в синаптических образованиях, в результате чего нарушается деятельность ЦНС по формированию двигательных импульсов и передаче их к работающим мышцам; замедляется скорость переработки сигналов, поступающих от проприо- и хеморецепторов; в моторных центрах развивается охранительное торможение, связанное с образованием гамма-аминомасляной кислоты (Меньшиков В.В., Волков Н.И., 1986; Мищенко B.C., 1990).

При утомлении в процессе выполнения физических нагрузок угнетается деятельность желез внутренней секреции бегуна, что ведёт к уменьшению выработки гормонов и снижению активности ряда ферментов. Прежде всего, это сказывается на миофибриллярной АТФ-фазе, контролирующей преобразование химической энергии в механическую работу. При снижении скорости расщепления АТФ в миофибриллах автоматически уменьшается и мощность выполняемой работы. В состоянии утомления уменьшается активность ферментов аэробного окисления и нарушается сопряжение реакций окисления с ресинтезом АТФ. Для поддержания необходимого уровня АТФ происходит вторичное усиление гликолиза, сопровождающееся за-кислением внутренних сред и нарушением гомеостаза. Усиливающийся катаболизм белковых соединений сопровождается повышением содержания мочевины в крови.

Молочная кислота вырабатывается мышцами и затем выделяется в кровь, где можно измерить ее концентрацию. Она присутствует как в мышечных волокнах, так и в крови в виде двух ионов, соответственно одной молекулы и одного электрически заряженного атома. Первый ион — это отрицательно заряженный ион лактата (LА-). Уровень этой субстанции в крови может быть, в частности, измерен. Второй ион — это положительно заряженный ион водорода (Н+). Именно второй ион вызывает большой дискомфорт, т.к. повышает уровень молочной кислоты в мышцах. Более того, он даже может нарушить надлежащую работу мышц.

Особенности восстановления в беге

Тренировочные занятия являются основной структурной единицей тренировочного процесса. Рациональное планирование их на основе научных знаний о механизмах развития и компенсации утомления, а также динамики протекания восстановления при выполнении различных тренировочных нагрузок во многом определяет эффективность всего процесса тренировки.

Ещё И. П. Павловым были вскрыты ряд закономерностей течения восстановительных процессов, не потерявших значения в настоящее время.

1. В работающем органе наряду с процессами разрушения и истощения происходит процесс восстановления, он наблюдается не только после окончания работы, но уже и в процессе деятельности.

2. Взаимоотношения истощения и восстановления определяются интенсивностью работы; во время интенсивной работы восстановительный процесс не в состоянии полностью компенсировать расход, поэтому полное возмещение потерь наступает позднее, во время отдыха.

3. Восстановление израсходованных ресурсов происходит не до исходного уровня, а с некоторым избытком (явление избыточных компенсаций).

Отличительной особенностью протекания восстановительных процессов у спортсменов-бегунов после тренировочных и соревновательных нагрузок является неодновременное (гетерохронное) возвращение после проделанной тренировочной нагрузки различных показателей к исходному уровню. Установлено, что после выполнения тренировочных упражнений продолжительностью 30 с с интенсивностью 90% от максимальной восстановление работоспособности обычно происходит в течение 90-120 с. Отдельные показатели вегетативных функций возвращаются к дорабочему уровню через 30-60 с, восстановление других может затянуться до 3-4 мин и более.

Большое значение имеют медико-биологические средства восстановления, Использование электросна, франклинизации, углекислых и хвойную ванну способствует нормализации деятельности центральной нервной системы бегунов. Применение гаммалона (аминаглона) и ноотропила, восстанавливающих обмен веществ и улучшающих трофику клеток головного мозга, способствует ускоренному усвоению и лучшему закреплению двигательных навыков.

Следует также серьезно относиться к такому восстановительному фактору, как питание бегунов-спортсменов. Прежде всего, оно должно быть сбалансировано по калорийности, о чем можно судить по динамике веса: прибавка в весе указывает на избыток калорий, похудение — на их недостаток. Кроме того, спринтерам и барьеристам, как и представителям других скоростно-силовых видов спорта, необходимо, особенно в периоды работы над скоростью и силой, стремиться к относительному преобладанию в пищевом рационе белков, которые содержатся в таких продуктах, как мясо, рыба, творог, сыр. В то же время следует несколько ограничивать себя в потреблении продуктов, содержащих жиры (сливочное и растительное масло, сметана, жирный творог, мясо и т. п.) и углеводы (конфеты, сахар, мучные изделия, пирожные и т. п.).

Список используемой литературы

1. Арселли Э., Канова Р. Тренировка в марафонском беге: научный подход. – М.: Терра-Спорт, 2000. – 211с.

2. Бондарчук А.П. Тренировка легкоатлета. -К,: Здоров’я, 1986, — 160с.

3. Волков В.М. К проблеме развития двигательных способностей // Теория и практика физической культуры. — 1993.- №5-6. — с.41.

4. Динамика тренировочных нагрузок и показателей специальной работоспособности юных бегунов на средние дистанции. Н. И. Волков, Г. А. Алексеев // ТиПФК — №6 – 1980 – с.17-21.

5. Железняк Ю.Д., Петров П.К. Основы научно-методической деятельности в физической культуре и спорте. — М.: Издательский центр “Академия”, 2001. — 264 с.

7. Книга тренера по лёгкой атлетике. — Изд.3-е, перераб. / Под ред. Хоменкова Л.С. — М.: Физкультура и спорт, 1987. — 399 с.: ил.

8. Коновалов В. Изучение адаптационных реакций организма спортсменов, специализирующихся в легкоатлетических видах на выносливость // Человек в мире спорта: новые идеи, технологии, перспективы/Тез. докл. Междунар. конгр. Т.1. — Москва, 24-28 мая 1998 года. — с.84-85.

Читайте также: