Закон смещения вина закон стефана больцмана доклад

Обновлено: 05.07.2024

Из закона Кирхгофа (см. (198.1)) следует, что спектральная плотность энергетической светимости черного тела является универсальной функцией, поэтому нахождение ее явной зависимости от частоты и температуры является важной задачей теории теплового излучения.

Австрийский физик И. Стефан (183S-1893), анализируя экспериментальные данные (1879), и Л. Больцман, применяя термодинамический метод (1884), решили эту задачу лишь частично, установив зависимость энергетической светимости Л, от температуры. Согласно закону Стефана - Больцмана,

т. е. энергетическая светимость черного тела пропорциональна четвертой степени его термодинамической температуры; s - постоянная Стефана - Больцмана: ее экспериментальное значение равно 5,67×10 -8 Вт/(м 2 ×К 4 ).

Закон Стефана - Больцмана, определяя зависимость Re от температуры, не дает ответа относительно спектрального состава излучения черного тела. Из экспериментальных кривых зависимости функции rl,T от длины волны l при различных температурах (рис. 287) следует, что распределение энергии в спектре черного тела является неравномерным. Все кривые имеют явно выраженный максимум, который по мере повышения температуры смещается в сторону более коротких волн. Площадь, ограниченная кривой зависимости rl,T от l и осью абсцисс, пропорциональна энергетической светимости Re, черного тела и, следовательно, по закону Стефана - Больцмана, четвертой степени температуры.

Немецкий физик В. Вин (1864-1928), опираясь на законы термо- и электродинамики, установил зависимость длины волны lmax, соответствующей максимуму функции rl,T от температуры Т. Согласно закону смещения Вина,

т. е. длина волны lmax, соответствующая максимальному значению спектральной плотности энергетической светимости rl,T черного тела, обратно пропорциональна его термодинамической температуре, b - постоянная Вина; ее экспериментальное значение равно 2,9×10 -3 м×К. Выражение (199.2) потому называют законом смещения Вина, что оно показывает смещение положения максимума функции rl,T по мере возрастания' температуры в область коротких длин волн. Закон Вина объясняет, почему при понижении температуры нагретых тел в их спектре все сильнее преобладает длинноволновое излучение (например, переход белого каления в красное при остывании металла).

ФОРМУЛЫ РЭЛЕЯ - ДЖИНСА И ПЛАНКА

Из рассмотрения законов Стефана - Больцмана и Вина следует, что термодинамический подход к решению задачи о нахождении универсальной функции Кирхгофа rv,T не дал желаемых результатов. Следующая строгая попытка теоретического вывода зависимости rv,T принадлежит английским ученым Д. Рэлею и Д. Джинсу (1877-1946), которые применили к тепловому излучению методы статистической физики, воспользовавшись классическим законом равномерного распределения энергии по степеням свободы.

Формула Рэлея - Джннса для спектральной плотности энергетической светимости черного тела имеет вид

где áeñ = kT-средняя энергия осциллятора с собственной частотой v. Для осциллятора, совершающего колебания, средние значения кинетической и потенциальной энергий одинаковы (см. § 50), поэтому средняя энергия каждой колебательной степени свободы áeñ = kT.

Как показал опыт, выражение (200.1) согласуется с экспериментальными данными только в области достаточно малых частот и больших температур. В области больших частот формула Рэлея - Джинса резко расходится с экспериментом, а также с законом смещения Вина (рис. 288). Кроме того, оказалось, что попытка получить закон Стефана - Больцмана (см. (199.1)) из формулы Рэлея - Джинса приводит к абсурду. Действительно, вычисленная с использованием (200.1) энергетическая светимость черного тела (см. (198.3))

В области больших частот хорошее согласие с опытом дает формула Вина (закон излучения Вина), полученная им из общих теоретических соображений:

где rv1,T - спектральная плотность энергетической светимости черного тела, С и А - постоянные величины. В современных обозначениях с использованием постоянной Планка, которая в то время еще не была известна, закон излучения Вина может быть записан в виде

Правильное, согласующееся с опытными данными выражение для спектральной плотности энергетической светимости черного тела было найдено в 1900 г. немецким физиком М. Планком. Для этого ему пришлось отказаться от установившегося положения классической физики, согласно которому энергия любой системы может изменяться непрерывно, т. е. может принимать любые сколь угодно близкие значения. Согласно выдвинутой Планком квантовой гипотезе,атомные осцилляторы излучают энергию не непрерывно, а определенными порциями - квантами,причем энергия кванта пропорциональна частоте колебания (см. (170.3)):

где h=6,625×10 -34 Дж×с - постоянная Планка.Так как излучение испускается порциями, то энергия осциллятора е может принимать лишь определенныедискретные значения, кратные целому числу элементарных порций энергии e0:

В данном случае среднюю энергию áeñ осциллятора нельзя принимать равной kT. В приближении, что распределение осцилляторов по возможным дискретным состояниям подчиняется распределению Больцмана (§ 45), средняя энергия осциллятора

а спектральная плотность энергетической светимости черного тела

Таким образом, Планк вывел для универсальной функции Кирхгофа формулу

которая блестяще согласуется с экспериментальными данными по распределению энергии в спектрах излучения черного тела во всем интервале частот и температур. Теоретический вывод этой формулы М. Планк изложил 14 декабря 1900 г. на заседании Немецкого физического общества. Этот день стал датой рождения квантовой физики.

§ 4 Энергетическая светимость. Закон Стефана-Больцмана.

Закон смещения Вина

R Э (интегральная энергетическая светимость) - энергетическая светимость определяет количество энергии, излучаемой с единичной поверхности за единицу времени во всем интервале частот от 0 до ∞ при данной температуре Т.



- связь энергетической светимости и лу­чеиспускательной способности

[ R Э ] =Дж/(м 2 ·с) = Вт/м 2

Закон Й. Стефана (австрийский ученый) и Л. Больцмана (немецкий ученый)


σ = 5.67·10 -8 Вт/(м 2 · К 4 ) - постоянная Стефа­на-Больцмана.

Энергетическая светимость абсолютно черного тела пропорциональна четвертой степени термодинамической температуры.

Закон Стефана-Больцмана, определяя зависимость R Э от температуры, не даёт ответа относительно спектрального состава излучения абсолютно черного тела. Из экспериментальных кривых зависимости r λ от λ при различных Т следует, что распределение энергии в спектре абсолютно черного тела являет­ся неравномерным. Все кривые имеют максимум, который с увеличением Т смещается в сторону коротких длин волн. Площадь, ограниченная кривой за­висимости r λ от λ, равна R Э (это следует из геометрического смысла интегра­ла) и пропорциональна Т 4 .

Закон смещения Вина (1864 - 1928): Длина, волны (λmax), на которую приходится максимум лучеиспускательной способности а.ч.т. при данной тем­пературе, обратно пропорциональна температуре Т.


b = 2,9· 10 -3 м·К - постоянная Вина.

Смещение Вина происходит потому, что с ростом температуры максимум излучательной способности смещается в сторону коротких длин волн.

§ 5 Формула Рэлея-Джинса, формула Вина и ультрафиолетовая катастрофа

Закон Стефана-Больцмана позволяет определять энергетическую свети­мость R Э а.ч.т. по его температуре. Закон смещения Вина связывает темпера­туру тела с длиной волны, на которую приходятся максимальная лучеиспуска­тельная способность. Но ни тот, ни другой закон не решают основной задачи о том, как велика лучеиспускательная, способность, приходящаяся на каждую λ в спектре а.ч.т. при температуре Т. Для этого надо установить функциональ­ную зависимость r λ от λ и Т.

Основываясь на представлении о непрерывном характере испускания электромагнитных волн в законе равномерного распределения энергий по сте­пеням свободы, были получены две формулы для лучеиспускательной способ­ности а.ч.т.:



k = 1,38·10 -23 Дж/K - постоянная Больцмана.

Опытная проверка показала, что для данной температуры формула Вина верна для коротких волн и даёт резкие расхождения с опытом в области длин­ных волн. Формула Рэлея-Джинса оказалась верна для длинных волн и не применима для коротких.


Исследование теплового излучения с помощью формулы Рэлея-Джинса показало, что в рамках классической физики нельзя решить вопрос о функции, характеризующей излучательную способность а.ч.т. Эта неудачная попытка объяснения законов излучения а.ч.т. с помощью аппарата классической физи­ки получила название “ультрафиолетовой катастрофы”.

Если попытаться вычислить R Э с помощью формулы Рэлея-Джинса, то


§6 Квантовая гипотеза и формула Планка.

В 1900 году М. Планк (немецкий ученый) выдвинул гипотезу, согласно которой испускание и поглощение энергии происходит не непрерывно, а оп­ределенными малыми порциями - квантами, причем энергия кванта пропор­циональна частоте колебаний (формула Планка):


h = 6,625·10 -34 Дж·с - постоянная Планка или



где

Так как излучение происходит порциями, то энергия осциллятора (колеб­лющегося атома, электрона) Е принимает лишь значения кратные целому чис­лу элементарных порций энергии, то есть только дискретные значения

Впервые влияние света на ход электрических процессов было изучено Герцем в 1887 году. Он проводил опыты с электрическим разрядником и об­наружил, что при облучении ультрафиолетовым излучением разряд происхо­дит при значительно меньшем напряжении.


В 1889-1895 гг. А.Г. Столетов изучал воздействие света на металлы, ис­пользуя следующую схему. Два электрода: катод К из исследуемого металла и анод А (в схеме Столетова – металлическая сетка, пропускающая свет) в ваку­умной трубке подключены к батарее так, что с помощью сопротивления R можно изменять значение и знак подаваемого на них напряжения. При облу­чении цинкового катода в цепи протекал ток, регистрируемый миллиамперметром. Облучая катод светом различных длин волн, Столетов установил сле­дующие основные закономерности:

  • Наиболее сильное действие оказывает ультрафиолетовое излучение;
  • Под действием света из катода вырываются отрицательные заряды;
  • Сила тока, возникающего под действием света, прямо пропорциональна его интенсивности.

Ленард и Томсон в 1898 году измерили удельный заряд (е/ m ), вырывае­мых частиц, и оказалось, что он равняется удельному заряду электрона, следо­вательно, из катода вырываются электроны.

Внешним фотоэффектом называется испускание электронов веществом под действием света. Электроны, вылетающие из вещества при внешнем фо­тоэффекте, называются фотоэлектронами, а образуемый ими ток называется фототоком.


С помощью схемы Столетова была получена следующая зависимость фото­тока от приложенного напряжения при неизменном световом потоке Ф (то есть была получена ВАХ – вольт- амперная характеристика):

При некотором напряжении U Н фототок достигает насыщения I н – все электроны, испускаемые катодом, достигают анода, следовательно, сила тока насыщения I н определяется количеством электронов, испускаемых катодом в единицу времени под действием света. Число высвобождаемых фотоэлектро­нов пропорционально числу падающих на поверхность катода квантов света. А количество квантов света определяется световым потоком Ф, падающим на катод. Число фотонов N , падающих за время t на поверхность определяется по формуле:


где W – энергия излучения, получаемая поверхностью за время Δ t ,


- энергия фотона,

Фе световой поток (мощность излучения).

1-й закон внешнего фотоэффекта (закон Столетова):

При фиксированной частоте падающего света фототок насыщения пропорционален падающему световому потоку:


I нас ~ Ф, ν = const

U з - задерживающее напряжение - напряжение, при котором ни одному электрону не удается долететь до анода. Следовательно, закон сохранения энергии в этом случае можно записать: энергия вылетающих электронов равна задерживающей энергии электрического поля


следовательно, можно найти максимальную скорость вылетающих фотоэлектронов Vmax



2- й закон фотоэффекта : максимальная начальная скорость Vmax фото­электронов не зависит от интенсивности падающего света (от Ф), а определя­ется только его частотой ν

3- й закон фотоэффекта : для каждого вещества существует "красная граница'' фотоэффекта, то есть минимальная частота νкp, зависящая от химической природы вещества и состояния его поверхности, при которой ещё возможен внешний фотоэффект.

Второй и третий законы фотоэффекта нельзя объяснить с помощью вол­новой природы света (или классической электромагнитной теории света). Со­гласно этой теории вырывание электронов проводимости из металла является результатом их "раскачивания" электромагнитным полем световой волны. При увеличении интенсивности света (Ф) должна увеличиваться энергия, переда­ваемая электроном металла, следовательно, должна увеличиваться Vmax , а это противоречат 2-му закону фотоэффекта.

Так как по волновой теории энергия, передаваемая электромагнитным полем пропорциональна интенсивности света (Ф), то свет любой; частоты, но достаточно большой интенсивности должен был бы вырывать электроны из металла, то есть красной границы фотоэффекта не существовало бы, что про­тиворечит 3-му закону фотоэффекта. Внешний фотоэффект является безынерционным. А волновая теория не может объяснить его безынерционность.

§ 3 Уравнение Эйнштейна для внешнего фотоэффекта.

Работа выхода

В 1905 году А. Эйнштейн объяснил фотоэффект на основании квантовых представлений. Согласно Эйнштейну, свет не только испускается квантами в соответствии с гипотезой Планка, но распространяется в пространстве и поглощается веществом отдельными порциями - квантами с энергией E0 = hv. Кванты электромагнитного излучения называются фотонами.

Уравнение Эйнштейна (закон сохранения энергии для внешнего фото­эффекта):



Наименьшая энергия, которую необходимо сообщить электрону для того, чтобы удалить его из твердого тела в вакуум называется работой выхода.

Так как энергия Ферм к Е F зависит от температуры и Е F , также изменяется при изменении температуры, то, следовательно, Авых зависит от температуры.

Кроме того, работа выхода очень чувствительна к чистоте поверхности. Нанеся на поверхность пленку (Са, S г , Ва) на W Авых уменьшается с 4,5 эВ для чистого W до 1,5 ÷ 2 эВ для примесного W .

Уравнение Эйнштейна позволяет объяснить в c е три закона внешнего фо­тоэффекта,

1-й закон: каждый квант поглощается только одним электроном. Поэтому число вырванных фотоэлектронов должно быть пропорционально интен­сивности (Ф) света




3-й закон: При уменьшении ν уменьшается Vmax и при ν = ν0 Vmax = 0, следовательно, 0 = Авых, следовательно, т.е. существует минимальная частота, начиная с которой возможен внешний фотоэффект.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Закон смещения Вина. Закон Стефана-Больцмана.

Описание презентации по отдельным слайдам:

Закон смещения Вина. Закон Стефана-Больцмана.

Закон смещения Вина. Закон Стефана-Больцмана.

Тело, которое при любой неразрушающей его температуре полностью поглощает всю.

Тело, которое при любой неразрушающей его температуре полностью поглощает всю энергию падающего на него света любой частоты, называют абсолютно черным телом (АЧТ). Поглощательная способность АЧТ =1

Хорошим приближением к АЧТ является устройство, состоящее из замкнутой полост.

Хорошим приближением к АЧТ является устройство, состоящее из замкнутой полости, внутренняя поверхность которой нагрета до температуры Т, с отверстием, малым по сравнению с размерами полости. Внутри полости устанавливается практически полное равновесие излучения с веществом, и плотность энергии выходящего из отверстия излучения очень мало отличается от равновесной.

Законы теплового излучения АЧТ Австрийские физики Иозеф Стефан(эксперименталь.

Законы теплового излучения АЧТ Австрийские физики Иозеф Стефан(экспериментально) и Людвиг Больцман(теоретически) установили, что энергия, излучаемая АЧТ за 1с с единицы поверхности пропорциональна Закон Стефана-Больцмана

Законы Вина Законы Вина — законы излучения абсолютно чёрного тела, выведенные.

Законы Вина Законы Вина — законы излучения абсолютно чёрного тела, выведенные Вильгельмом Вином в 1893—1896 годах (Нобелевская премия по физике 1911).

Законы теплового излучения АЧТ Закон смещения: Длина волны, на которую приход.

Законы теплового излучения АЧТ Закон смещения: Длина волны, на которую приходится максимум спектральной плотности энергетической светимости АЧТ, обратно пропорциональна абсолютной температуре.


Законы теплового излучения АЧТ Закон излучения: Максимальное значение испуска.

Законы теплового излучения АЧТ Закон излучения: Максимальное значение испускательной способности АЧТ прямопропорционально абсолютной температуре в пятой степени.

  • подготовка к ЕГЭ/ОГЭ и ВПР
  • по всем предметам 1-11 классов
  • ЗП до 91 000 руб.
  • Гибкий график
  • Удаленная работа

Дистанционные курсы для педагогов

Свидетельство и скидка на обучение каждому участнику

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 608 407 материалов в базе

Материал подходит для УМК

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

Свидетельство и скидка на обучение каждому участнику

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

  • 03.03.2019 3209
  • PPTX 1.4 мбайт
  • 141 скачивание
  • Рейтинг: 5 из 5
  • Оцените материал:

Настоящий материал опубликован пользователем Соловьёва Анастасия Александровна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

40%

  • Подготовка к ЕГЭ/ОГЭ и ВПР
  • Для учеников 1-11 классов

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Время чтения: 2 минуты

Минпросвещения России подготовит учителей для обучения детей из Донбасса

Время чтения: 1 минута

Отчисленные за рубежом студенты смогут бесплатно учиться в России

Время чтения: 1 минута

Минобрнауки и Минпросвещения запустили горячие линии по оказанию психологической помощи

Время чтения: 1 минута

Минтруд предложил упростить направление маткапитала на образование

Время чтения: 1 минута

В Россию приехали 10 тысяч детей из Луганской и Донецкой Народных республик

Время чтения: 2 минуты

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.


Как вы измеряете температуру своего тела? Самый простой ответ - "с помощью термометра". Но так ли это и со звездами? Ответ - большое НЕТ. Как известно, температура звезды может достигать нескольких тысяч Кельвинов. Но на сегодняшний день нет такого термометра, который выдерживал бы такие высокие температуры. Более того, даже если такой термометр со сверхмощными способностями существует, кто будет использовать его на звездах в миллионы световых лет от нас? Итак, как мы измеряем температуру звезд?

Здесь нам на помощь приходят косвенные методы. Чтобы преодолеть вышеупомянутые проблемы, астрофизики используют ряд косвенных методов измерения температуры. Давайте посмотрим на некоторые из них по очереди!

Закон смещения Вина


Закон смещения Вина касается спектра излучения черного тела. В соответствии с этим кривая излучения черного тела для разных температур будет иметь пик на разных длинах волн, которые обратно пропорциональны температуре. Используя эту обратную зависимость между длиной волны и температурой, можно оценить температуры звезд.

Однако это применимо только к звездам, у которых спектр очень близок к спектру черного тела. Более того, должны быть доступны также спектры, откалиброванные по потоку рассматриваемой звезды. Однако этот метод не дает очень точных результатов, поскольку звезды, как правило, не являются черными телами.

Закон Стефана — Больцмана

Еще один закон, который можно использовать для измерения температуры звезд, - это закон Стефана — Больцмана. Закон Стефана – Больцмана описывает мощность, излучаемую черным телом, с точки зрения его температуры. Согласно этому закону, общая лучистая тепловая мощность, излучаемая поверхностью, пропорциональна четвертой степени ее абсолютной температуры. L = 4πR 2 σT 4 . Здесь σ - постоянная Стефана-Больцмана, L - светимость, R и T - радиус и температура рассматриваемой звезды.

Сначала мы измеряем полный поток света, исходящего от звезды. Объединив эти факторы, ученые оценивают светимость. А с помощью интерферометров можно определить радиус звезды. В конце концов, температура измеряется путем включения всех этих членов в формулу Стефана — Больцмана. Ограничивающим фактором здесь является сложность измерения радиусов самых больших или ближайших звезд. Таким образом, измерения существуют только для нескольких гигантов и нескольких десятков ближайших звезд главной последовательности. Однако они действуют как фундаментальные калибраторы, с которыми астрофизики сравнивают и калибруют другие методы.

По спектральному анализу звезды


Мы знаем, что атомы/ионы имеют разные уровни энергии. И численность этих уровней зависит от температуры. И население этих уровней зависит от температуры. Более высокие уровни заняты при более высоких температурах и наоборот - при более низких. Переходы между уровнями могут привести к излучению или поглощению света на определенной длине волны в зависимости от разницы в энергии между соответствующими уровнями. Как правило, звезда горячее внутри и холоднее снаружи. Более холодные вышележащие слои поглощают излучение, исходящее из центра звезды. Это приводит к появлению линий поглощения в полученном нами спектре.

Спектральный анализ состоит из измерения силы этих линий поглощения для различных химических элементов и разных длин волн. Сила линии поглощения зависит в первую очередь от температуры звезды и количества конкретного химического элемента. Однако на нее могут влиять и некоторые другие параметры, такие как гравитация, турбулентность, структура атмосферы и т.д. Этот метод дает температурные измерения с точностью до +/-50 Кельвинов.

Взаимосвязь цвета и температуры

Еще один метод измерения температуры звезд - анализ их цвета. Хотя все звезды кажутся белыми, при внимательном рассмотрении они имеют разные цвета. Вариации являются результатом их температуры. Холодные звезды кажутся красными, а горячие - синими. Мы измеряем цвет звезды с помощью прибора, называемого фотоэлектрическим фотометром.

Это включает в себя пропускание света через различные фильтры и определение количества, которое проходит через каждый фильтр. Измерения фотометра преобразуются в температуру с использованием стандартных шкал. Этот метод очень полезен, когда хороший спектр звезды недоступен. Результаты, полученные этим методом, имеют точность до +/- 100-200 К. Однако этот метод дает плохие результаты для более холодных звезд.

Каждый из вышеупомянутых методов имеет свои преимущества и недостатки. Тем не менее астрофизики во всем мире широко используют эти методы, и в конечном итоге дают удовлетворительные результаты.

Читайте также: