Виды и характеристики современных процессоров доклад

Обновлено: 18.05.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Муниципальное автономное общеобразовательное учреждение города Калининграда средняя образовательная школа №25 с углубленным изучением отдельных предметов им. И.В. Грачева

Ученик 10Б класса

Содержание Стр.

1 История развития процессоров…………………….………………. 4

2 Алгоритм работы процессора……………………….……………. 10

2.1 Устройство процессора…………………….……………………. 10

2.2 Алгоритм работы процессора. 11

2.3 Прерывание процессора. 12

3 Моделирование работы процессора. 15

Список источников……………. 18

За три десятка лет, прошедших с этого знаменательного дня, процессоры сильно изменились. Современный процессор - это не просто набор транзисторов, а целая система множества важных устройств.

1 История развития процессоров

В настоящее время существуют много фирм по производству процессоров для персональных компьютеров. Это Intel , AMD , Cyrix , VIA , Centaur / IDT , NexGen , и многие другие . Однако наиболее популярными являются Intel и AMD . Развитие процессоров этих ведущих фирм мы и постараемся рассмотреть.

Однако прежде чем углубляться в историю производства процессоров необходимо дать характеристику некоторым техническим терминам характеризующих процессор.

Тактовая частота – это скорость работы процессора, а именно количество операций выполненных на протяжении 1 секунды.

Поколения – поколения процессоров отличаются друг от друга скоростью работы, архитектурой, исполнением и внешним видом. Если просмотреть поколения процессоров фирмы Intel то их было 8 (8088, 286, 386, 486, Pentium , PentiumII , PentiumIII , PentiumIV ).

Модификация –у ведущих и постоянно конкурирующих фирм Intel и AMD есть две модификации процессоров. У Intel это Pentium и Celeron , у AMD это Athlon и Duron . Pentium и Athlon это дорогие процессоры для графических станций или серверов, а Celeron и Duron это процессоры для домашних компьютеров.

Технология производства – под технологией производства в данном случае понимают размер минимальных элементов процессора. Так в 1999 году фирмы перешли на новую, 0,13 – микронную технологию.

КЭШ-память первого уровня – небольшая (несколько десятков килобайт) сверхбыстрая память, предназначенная для хранения промежуточных результатов вычислений.

КЭШ-память второго уровня – эта память более медленная, но она больше от 128 до 512 кбайт.

Центральный процессор (ЦП; также центра́льное процессорное устройство — ЦПУ; англ. centralprocessingunit, CPU, дословно — центральное обрабатывающее устройство, часто просто процессор) — электронный блок либо интегральная схема, исполняющая машинные инструкции (код программ), главная часть аппаратного обеспечения компьютера или программируемого логического контроллера. Иногда называют микропроцессором или просто процессором.

Изначально термин центральное процессорное устройство описывал специализированный класс логических машин, предназначенных для выполнения сложных компьютерных программ. Вследствие довольно точного соответствия этого назначения функциям существовавших в то время компьютерных процессоров он естественным образом был перенесён на сами компьютеры. Начало применения термина и его аббревиатуры по отношению к компьютерным системам было положено в 1960-е годы. Устройство, архитектура и реализация процессоров с тех пор неоднократно менялись, однако их основные исполняемые функции остались теми же, что и прежде.

Главными характеристиками ЦПУ являются: тактовая частота, производительность, энергопотребление, нормы литографического процесса, используемого при производстве (для микропроцессоров), и архитектура.

Ранние ЦП создавались в виде уникальных составных частей для уникальных и даже единственных в своём роде компьютерных систем. Позднее от дорогостоящего способа разработки процессоров, предназначенных для выполнения одной единственной или нескольких узкоспециализированных программ, производители компьютеров перешли к серийному изготовлению типовых классов многоцелевых процессорных устройств. Тенденция к стандартизации компьютерных комплектующих зародилась в эпоху бурного развития полупроводниковых элементов, мейнфреймов и мини-компьютеров, а с появлением интегральных схем она стала ещё более популярной. Создание микросхем позволило ещё больше увеличить сложность ЦП с одновременным уменьшением их физических размеров. Стандартизация и миниатюризация процессоров привели к глубокому проникновению основанных на них цифровых устройств в повседневную жизнь человека. Современные процессоры можно найти не только в таких высокотехнологичных устройствах, как компьютеры, но и в автомобилях, калькуляторах, мобильных телефонах и даже в детских игрушках. Чаще всего они представлены микроконтроллерами, где, помимо вычислительного устройства, на кристалле расположены дополнительные компоненты (память программ и данных, интерфейсы, порты ввода-вывода, таймеры и др.). Современные вычислительные возможности микроконтроллера сравнимы с процессорами персональных ЭВМ десятилетней давности, а чаще даже значительно превосходят их показатели.

История развития производства процессоров полностью соответствует истории развития технологии производства прочих электронных компонентов и схем.

Первым этапом, затронувшим период с 1940-х по конец 1950-х годов, было создание процессоров с использованием электромеханических реле, ферритовых сердечников (устройств памяти) и вакуумных ламп. Они устанавливались в специальные разъёмы на модулях, собранных в стойки. Большое количество таких стоек, соединённых проводниками, в сумме представляло процессор. Отличительными особенностями были низкая надёжность, низкое быстродействие и большое тепловыделение.

Вторым этапом, с середины 1950-х до середины 1960-х, стало внедрение транзисторов. Транзисторы монтировались уже на близкие к современным по виду платы, устанавливавшиеся в стойки. Как и ранее, в среднем процессор состоял из нескольких таких стоек. Возросло быстродействие, повысилась надёжность, уменьшилось энергопотребление.

Третьим этапом, наступившим в середине 1960-х годов, стало использование микросхем. Первоначально использовались микросхемы низкой степени интеграции, содержавшие простые транзисторные и резисторные сборки, затем, по мере развития технологии, стали использоваться микросхемы, реализующие отдельные элементы цифровой схемотехники (сначала элементарные ключи и логические элементы, затем более сложные элементы — элементарные регистры, счётчики, сумматоры), позднее появились микросхемы, содержащие функциональные блоки процессора — микропрограммное устройство, арифметическо-логическое устройство, регистры, устройства работы с шинами данных и команд.

Четвёртым этапом, в начале 1970-х годов, стало создание, благодаря прорыву в технологии, БИС и СБИС (больших и сверхбольших интегральных схем, соответственно), микропроцессора — микросхемы, на кристалле которой физически были расположены все основные элементы и блоки процессора. Фирма Intel в 1971 году создала первый в мире 4-разрядный микропроцессор 4004, предназначенный для использования в микрокалькуляторах. Постепенно практически все процессоры стали выпускаться в формате микропроцессоров. Исключением долгое время оставались только малосерийные процессоры, аппаратно оптимизированные для решения специальных задач (например, суперкомпьютеры или процессоры для решения ряда военных задач) либо процессоры, к которым предъявлялись особые требования по надёжности, быстродействию или защите от электромагнитных импульсов и ионизирующей радиации. Постепенно, с удешевлением и распространением современных технологий, эти процессоры также начинают изготавливаться в формате микропроцессора.

Переход к микропроцессорам позволил потом создать персональные компьютеры, которые проникли почти в каждый дом.

Первым общедоступным микропроцессором был 4-разрядный Intel 4004, представленный 15 ноября 1971 года корпорацией Intel. Он содержал 2300 транзисторов, работал на тактовой частоте 92,6 кГц и стоил 300 долларов.

Затем последовала его модификация, 80186.

В процессоре 80286 появился защищённый режим с 24-битной адресацией, позволявший использовать до 16 Мб памяти.

Процессор Intel 80386 появился в 1985 году и привнёс улучшенный защищённый режим, 32-битную адресацию, позволившую использовать до 4 Гб оперативной памяти и поддержку механизма виртуальной памяти. Эта линейка процессоров построена на регистровой вычислительной модели.

Параллельно развиваются микропроцессоры, взявшие за основу стековую вычислительную модель.

За годы существования микропроцессоров было разработано множество различных их архитектур. Многие из них (в дополненном и усовершенствованном виде) используются и поныне. Например, Intel x86, развившаяся вначале в 32-битную IA-32, а позже в 64-битную x86-64 (которая у Intel называется EM64T). Процессоры архитектуры x86 вначале использовались только в персональных компьютерах компании IBM (IBM PC), но в настоящее время всё более активно используются во всех областях компьютерной индустрии, от суперкомпьютеров до встраиваемых решений. Также можно перечислить такие архитектуры, как Alpha, POWER, SPARC, PA-RISC, MIPS (RISC-архитектуры) и IA-64 (EPIC-архитектура).

В современных компьютерах процессоры выполнены в виде компактного модуля (размерами около 5×5×0,3 см), вставляющегося в ZIF-сокет (AMD) или на подпружинивающую конструкцию — LGA (Intel). Особенностью разъёма LGA является то, что выводы перенесены с корпуса процессора на сам разъём — socket, находящийся на материнской плате. Большая часть современных процессоров реализована в виде одного полупроводникового кристалла, содержащего миллионы, а с недавнего времени даже миллиарды транзисторов.

2 Алгоритм работы процессора

2.1 Устройство процессора

Основные функциональные компоненты процессора

Ядро: Сердце современного процессора - исполняющий модуль. Pentium имеет два параллельных целочисленных потока, позволяющих читать, интерпретировать, выполнять и отправлять две инструкции одновременно.

Предсказатель ветвлений: Модуль предсказания ветвлений пытается угадать, какая последовательность будет выполняться каждый раз когда программа содержит условный переход, так чтобы устройства предварительной выборки и декодирования получали бы инструкции готовыми предварительно.

Блок плавающей точки. Третий выполняющий модуль внутри Pentium, выполняющий нецелочисленные вычисления

Первичный кэш: Pentium имеет два внутричиповых кэша по 8kb, по одному для данных и инструкций, которые намного быстрее большего внешнего вторичного кэша.

Шинный интерфейс: принимает смесь кода и данных в CPU, разделяет их до готовности к использованию, и вновь соединяет, отправляя наружу.

hello_html_m3207279f.jpg

Рис. 1 Внутреннее строение процессора

Все элементы процессора синхронизируются с использованием частоты часов, которые определяют скорость выполнения операций. Самые первые процессоры работали на частоте 100kHz, сегодня рядовая частота процессора - 2000MHz, иначе говоря, часики тикают 2000 миллионов раз в секунду, а каждый тик влечет за собой выполнение многих действий. Счетчик Команд (PC) - внутренний указатель, содержащий адрес следующей выполняемой команды. Когда приходит время для ее исполнения, Управляющий Модуль помещает инструкцию из памяти в регистр инструкций (IR). В то же самое время Счетчик команд увеличивается, так чтобы указывать на последующую инструкцию, а процессор выполняет инструкцию в IR. Некоторые инструкции управляют самим Управляющим Модулем, так если инструкция гласит 'перейти на адрес 2749', величина 2749 записывается в Счетчик Команд, чтобы процессор выполнял эту инструкцию следующей.

Многие инструкции задействуют Арифметико-логическое Устройство (АЛУ), работающее совместно с Регистрами Общего Назначения - место для временного хранения, которое может загружать и выгружать данные из памяти. Типичной инструкцией АЛУ может служить добавление содержимого ячейки памяти к регистру общего назначения. АЛУ также устанавливает биты Регистра Состояний (Statusregister - SR) при выполнении инструкций для хранения информации о ее результате. Например, SR имеет биты, указывающие на нулевой результат, переполнение, перенос и так далее. Модуль Управления использует информацию в SR для выполнения условных операций, таких как 'перейти по адресу 7410 если выполнение предыдущей инструкции вызвало переполнение'.

Это почти все что касается самого общего рассказа о процессорах - почти любая операция может быть выполнена последовательностью простых инструкций, подобных описанным.

2.2 Алгоритм работы процессора

Весь алгоритм работы процессора можно описать в трех строчках

| чтение команды из памяти по адресу, записанному в СК

| увеличение СК на длину прочитанной команды

| выполнение прочитанной команды

Однако для полного представления необходимо определить логические схемы выполнения тех или иных команд, вычисления величин, а это уже функции Арифметико-логического Устройства.

Арифметико-логическое устройство (АЛУ)— блок процессора , который под управлением устройства управления (УУ) служит для выполнения арифметических и логических преобразований (начиная от элементарных ) над данными, называемыми в этом случае операндами . Разрядность операндов обычно называют размером или длиной машинного слова .

2.3 Прерывания процессора

При работе процессорной системы могут возникать особые случаи, когда процессор вынужден прерывать работу текущей программы и переходить к обработке этого особого случая, более срочного и важного. Причинами прерывания текущей программы может быть:

внешний сигнал по шине управления - маскируемых прерываний и немаскируемого прерывания;

аномальная ситуация, сложившаяся при выполнении команды программы и препятствующую ее дальнейшему выполнению;

находящаяся в программе команда прерывания.

Первая из указанных выше причин относится к аппаратным прерываниям, а две другие - к программным прерываниям. Отметим, что аппаратные прерывания непредсказуемы и могут возникать в любые моменты времени.

С помощью аппаратных прерываний осуществляется взаимодействие процессора с устройствами ввода-вывода ( клавиатурой, диском, модемом и т.п.), таймером и внутренними часами, сообщается о возникновении ошибки на шине или в памяти, об аварийном выключении сети и т.п. При возникновении аппаратного прерывания процессор выявляет его источник, сохраняет минимальный контекст текущей программы (включая адрес возврата), и переключается на специальную программу -- обработчик прерывания ( interrupthandler) . Эта программа правильно реагирует на возникшую ситуацию (например, помещает символ с клавиатуры в буфер, считывает сектор с диска и т.п.), что называется 1обслуживанием прерывания . После обслуживания прерывания процессор возвращается к прерванной программе, как будто прерываний не было.

Программные прерывания обычно называются особыми случаями , или исключениями (exception) . Особые случаи возникают, например, при делении на ноль, нарушения при защите по привилегиям, превышении длины сегмента, выходе за границу массива. Как правило, предсказать эти исключения невозможно. Однако встречающаяся в программе 1команда прерывания вполне предсказуема и находится под управлением программиста. Реакция процессора на программное прерывание такое же, как и на аппаратное прерывание, однако его обработка производится 1обработчиком особого случая (exceptionhandler).

Все особые случаи квалифицируются на:

Нарушение (fault) . Особый случай, который процессор может обнаружить до возникновения фактической ошибки (например -- нарушение правил привилегий). После обработки нарушения можно продолжить программу, осуществив повторное выполнение ( рестарт ) виноватой команды. Иногда это исключение называют отказом.

Ловушка (trap) . Особый случай, который возникает после окончания виноватой программы. После обслуживания ловушки процессор продолжает выполнение программы с команды, находящейся после виноватой. Типичный пример -- команда прерывания INT n в процессорах семейства x86 или прерывание при переполнении.

Авария (abort) -- возникает при столь серьезной ошибке, что контекст программы теряется и продолжать ее невозможно. Причину аварии установить нельзя, поэтому рестарт невозможен и ее необходимо прекратить. Иногда авария называется выходом из процесса.

Обработка всех прерывания и особых случаев происходит, в общем, одинаково и состоит из двух основных этапов. На первом этапе процессор выполняет некоторые "рефлексивные" операции, которые одинаковы для всех прерываний и исключений, и которыми программист управлять не может. На втором этапе запускается созданный программистом обработчик прерывания или исключения. Все служебные действия процессор производит автоматически.

3 Моделирование работы процессора

Разгон компьютеров - процесс увеличения тактовой частоты (и напряжения) компонента компьютера сверх штатных режимов с целью увеличения скорости его работы. Повышение частоты может достигать максимального значения, при котором сохраняется стабильность работы системы в необходимом для пользователя режиме. При разгоне повышается тепловыделение, энергопотребление, шум, уменьшается рабочий ресурс.

Конечная цель разгона — повышение производительности оборудования. Побочными эффектами могут быть повышение шума и тепловыделения, нестабильности, особенно при условии несоблюдения правил, подразумевающих усиление охлаждающего оборудования, улучшения питания компонентов, тонкой настройки разгона.

Противоположную цель ставит андерклокинг — снизить частоту работы оборудования (и, иногда, необходимого для неё напряжения) и этим достичь снижения тепловыделения, шума, а иногда и нестабильности. Может быть особенно актуальным для тихих помещений, экономии энергии или заряда батареи.

Могут быть разогнана центральные процессоры, память, видеокарты, матплаты, роутеры и прочее.

Классическим методом разгона может быть задание параметров через интерфейс BIOS оборудования и установку там более высоких значений частот работы компонентов системы, нежели штатные. Другой метод — перепрошивка BIOS'а альтернативной от штатной микропрограммой, имеющей уже другие параметры частот и напряжения по умолчанию. Третий метод — повышение частот через операционную систему с помощью специального разгонного программного обеспечения.

Для тестов стабильности компонентов компьютеров используются программное обеспечение такое как: Prime95, AIDA64, Super PI, LINPACK, SiSoft Sandra, BOINC, Memtest86+, OCCT.

Переход на новые технологии изготовления процессоров, разработка новых алгоритмов их работы является перспективным продвижением данной отрасли. По прогнозам ученых скорость процессоров через 10 лет может достичь 20-ти кратного увеличения по сравнению с современными процессорами.

Автоматизм работы процессора, возможность выполнения длинных последовательных команд без участия человека – одна из основных отличительных особенностей ЭВМ как универсальной машины по обработке информации.

Список источников


Для более высокого понимания что такое процессор поймём, что это значит с технической точки зрения и узнаем его главные характеристики:

Центральный процессор – это электронный блок или интегрированная схема, выполняющая машинные задачи, важная часть аппаратного обеспечения ПК или программируемого логического контроллера. Редко называют процессором или микропроцессором.

Главными характеристиками ЦПУ являются: тактовая частота, производительность, энергопотребление, архитектура.

Раньше ЦП сделались в виде уникальных составных частей для уникальных, и даже единственных в мире, ПК систем. Позднее от дорого способа производства процессоров, предназначенных для выполнения одной или нескольких узкоспециализированных программ, создатели компьютеров перешли к массовому производству типовых классов многоцелевых процессорных устройств.

Идея к стандартизации компьютерных деталей появилась в эпоху бурного развития полупроводниковых элементов, мейнфреймов и мини-систем , а с появлением интегральных схем она стала ещё более известной. Создание микросхем позволило ещё больше увеличить сложность ЦП с одновременным уменьшением их физических размеров.

Массовое производство и миниатюризация процессоров привели к высокому проникновению основанных на них цифровых устройств в обычную жизнь человека.

Новые процессоры можно найти не только в таких новейших устройствах, как ПК, но и в машинах , калькуляторах , телефонах и даже в игрушках . В основном они представлены микроконтроллерами , где, кроме вычислительного кампонента, на кристалле расположены дополнительные компоненты. Когда говорят о процессорах, то чаще всего в виду имеют процессоры либо Intel, либо AMD. Другие процессоры не рассматриваются в виде своей не распространённости. Собственно, именно их конкуренция и является тем самым двигателем прогресса, который позволяет производить более новые процессоры.

Одним из важных факторов процессоров является их производительность. Под производительностью процессора имеется в виду его скорость выполнения задачи, то есть чем меньше времени он на выполнение той или иной задачи, тем больше его производительность. На его производительность оказывают непосредственное воздействие его микро архитектура, размер кэша, тактовая частота и кол-во ядер процессора.

Именно, переход от одноядерных процессоров к многоядерным – это современный вклад в развитии процессоров. Цель перехода к многоядерности вполне понятна. Ведь на протяжении их всей истории развития одним из самых производительных способов увеличения производительности было принято увеличение тактовой частоты.

При этом, при увеличение тактовой частоты привело к нелинейному росту потребляемой процессором энергии со всеми появившимися отсюда последствиями. Именно, энергопотребление процессоров на данный момент достигло критической точки, когда следующие увеличение тактовой частоты стало невыполнимым, поскольку процессоры больше нечем будет охлаждать. Следовательно, возникла необходимость в поиске иных способов увеличения производительности процессоров, один из которых – это переход к двухъядерным и многоядерным.

Также на процессоры влияет их энергопотребление. Уровень нагрева процессоров зависит от потребляемой ими энергии, что определяет его рабочую температуру – фактор, от которого зависят многие утилиты и механизмы.

Уровень энергопотребления влияет и на экономические показатели использования процессора - чем выше электропотребление устройства, тем больше придется платить за электричество. Воздействие на силовую подсистему материнской платы и блока питания – это ещё одна часть, определяющая удобство эксплуатации процессора, и зависящая от уровня энергопотребления конкретной модели.

Самые первые процессоры архитектуры x86 тратили очень маленькое количество энергии, составляющее около доли ватта . Увеличение кол-ва транзисторов и увеличение тактовой частоты процессоров привело к явному росту данного параметра. Производительные модели потребляют 130 и более ватт. Энергопотребление , несущественный фактор на первых этапах, теперь оказывает серьёзное влияние на появление новых моделей процессоров.

И наконец, многоядерные процессоры ,как уже было указано выше, – это процессоры содержащие несколько кристалликов ядер на одной плате.

Процессоры, цель которых это выполнение работы одной копии операционной системы на нескольких ядрах, представляют собой реализацию мультипроцессорности.

В заключении стоит отметить, что в наше время современные процессоры являющиеся мозгом всей системы играют важную роль, выполняя все вычислительные действия и чем быстрее работает процессор, тем быстрее работает компьютер. Практически каждый год выходит, что то новое и заменяет более устаревшее старое и когда-то наступит тот момент, когда все нами узнаваемые процессоры устареют и их заменят на что-то новое более не известное нам.

Содержание

Введение ………………………….…………………………………
3
Процессоры. Назначение. Основные характеристики.
4
2. Многоядерные процессоры…………..……………………….
10
3. Поколение процессора ……………..………………………….
13
4. Память процессора………….……….………………………….
15
5. Маркировка. Основные проектировщики и производители….
17
Заключение ………………………………………………………….
23
Список использованной литературы.……………………………..
23

Прикрепленные файлы: 1 файл

процессоры.doc

2. Многоядерные процессоры…………..……………………….

5. Маркировка. Основные проектировщики и производители….

Список использованной литературы.……………………………..

В настоящее время микропроцессоры и процессоры вмещают в себе миллионы транзисторов и других элементов электронной логики и представляют сложнейшие высокотехнологичные электронные устройства. Персональный компьютер содержи т в своем составе довольно много различных процессоров. Они входят в состав систем ввода/вывода контроллеров устройств.

За годы существования микропроцессоров было разработано множество различных их архитектур. Многие из них (в дополненном и усовершенствованном виде) используются и поныне.

Каждое устройство, будь то видеокарта, системная шина или еще что-либо, обслужизается своим собственным процессором или процессорами. Однако архитектуру и конструктивное исполнение персонального компьютера определяет процессор или процессоры, контролирующие и обслуживающие системную шину и оперативную память, а также, что более важно, выполняющие объектный код программ.

1. Процессоры. Назначение. Основные характеристики.

Центра́льный проце́ссор (ЦП; также центральное процессорное устройство — ЦПУ; англ. centra l processing unit, CPU, дословно —центральное обрабатывающее устройство) — электронный блок либо интегральная схема (микропроцессор), исполняющая машинные инструкции (код программ), главная часть аппаратного обеспечения компьютера или про граммируемого логического контроллера. Иногда называют микропроцессором или просто процессором.

• Суперскалярная архитектура. Способность выполнения нескольких машинных инструкций за один такт процессора путем увеличения числа исполнительных устройств. Появление этой технологии привело к существенному увеличению производительности, в то же время существует определенный предел роста числа исполнительных устройств, при превышении которого производительность практически перестает расти, а исполнительные устройства простаивают. Частичным решением этой проблемы являются, например, технология Hyper-threading.

• CISC-процессоры. Complex instruction set computer — вычисления со сложным набором команд. Процессорная архитектура, основанная на усложнённом наборе команд. Типичными представителями CISC являются микропроцессоры семейства x86 (хотя уже много лет эти процессоры являются CISC только по внешней системе команд: в начале процесса исполнения сложные команды разбиваются на более простые микрооперации (МОП), исполняемые RISC-ядром).

• MISC-процессоры. Minimum instruction set computer — вычисления с минимальным набором команд. Дальнейшее развитие идей команды Чака Мура, который полагает, что принцип простоты, изначальный для RISC-процессоров, слишком быстро отошёл на задний план. В пылу борьбы за максимальное быстродействие, RISC догнал и перегнал многие CISC процессоры по сложности. Архитектура MISC строится на стековой вычислительной модели с ограниченным числом команд (примерно 20-30ком.)

В современных персональных компьютерах разных фирм применяются процессоры двух основных архитектур:

  • Полная система команд переменной длины – Complex Instruction Set Computer (CISC);
  • Сокращенный набор команд фиксированной длины - Reduced Instruction Set Computer (RISC).

Весь ряд процессоров фирмы Intel, устанавливаемых в персональные компьютеры IBM, имеют архитектуру CISC, а процессоры Motorola, используемые фирмой Apple для своих персональных компьютеров, имеют архитектуру RISC. Обе архитектуры имеют свои преимущества и недостатки. Так CISC – процессоры имеют обширный набор команд (до 400), из которых программист может выбрать команду, наиболее подходящую ему данном случае. Недостатком этой архитектуры является то, что большой набор команд усложняет внутреннее устройство управления процессором, увеличивает время исполнения команды микропрограммном уровне. Команды имеют различную длину и время исполнения.

RISC – архитектура имеет ограниченный набор команд и каждая команда выполняется за один такт работы процессора. Небольшое число команд упрощает устройство управления процессора. К недостаткам RISC – архитектуры можно отнести то, что если требуемой команды в наборе нет, программист вынужден реализовать ее с помощью нескольких команд из имеющегося набора, увеличивая размер программного кода.

. Наиболее сложным функциональным устройством процессора является устройство управления выполнением команд. Оно содержит

  • Буфер команд, который хранит одну или несколько очередных команд программы; читает следующие команды из запоминающего устройства, пока выполняется очередная команда, уменьшая время ее выборки из памяти;
  • Дешифратор команд расшифровывает код операции очередной команды и преобразует его в адрес начала микропрограммы, которая реализует исполнение команды;
  • Управление выборкой очередной микрокоманды представляет собой небольшой процессор, работающий по принципу фон Неймана, имеет свой счетчик микрокоманд, который автоматически выбирает очередную микрокоманду из ПЗУ микрокоманд;
  • Постоянное запоминающее устройство (ПЗУ) микрокоманд – это запоминающее устройство, в которое информация записывается однократно и затем может только считываться; отличительной особенностью ПЗУ является то., что записанная в него информация сохраняется сколько угодно долго и не требует постоянного питающего напряжения.

Выборка очередной микрокоманды осуществляется через определенный интервал времени, который, в свою очередь, зависит от времени выполнения предыдущей микрокоманды. Частота, с которой осуществляется выборка микрокоманд, называется тактовой частотой процессора. Тактовая частота является важной характеристикой процессора, так как определяет скорость выполнения процессором команд, и, в конечном итоге, быстродействие процессора.

Арифметико-логическое устройство (АЛУ) предназначено для выполнения арифметических и логических операций преобразования информации. Функционально АЛУ состоит из нескольких специальных регистров, полноразрядного суммарного и схем местного управления.

Регистры общего назначения (РОН) используются для временного хранения операндов исполняемой команды и результатов вычислений, а также хранят адреса ячеек памяти или портов ввода-вывода для команд, обращающихся к памяти и внешним устройствам. Необходимо отметить, что если операнды команды хранятся в РОН, то время выполнения команды значительно сокращается. Одна из причин, почему программисты иногда обращаются к программированию на языке машинных команд, это наиболее полное использование РОН для получения максимального быстродействия при выполнение программ, критичных по времени.

Рассмотрим кратко характеристики процессоров, используемых в современных ПК типа IBM PC. Процессоры для этих ПК выпускают многие фирмы, но законодателем моды здесь является фирма Intel. Ее последней разработкой является процессор Intel Core, выпуск которого начат в начале 2006 г.. К основным особенностям архитектуры Intel Core можно отнести следующие:

  • Имеет специальный внутренний КЭШ размером 2 Мбайта;
  • Добавлена арбитражная шина, которая уменьшает нагрузку системной шины;
  • Внутренняя микроархитектура процессора базируется на двух ядрах – параллельно работающих конвейерах команд (суперскалярная архитектура), которые исполняют сразу несколько команд в 12 разных фазах обработки(чтение, дешифрация, загрузка операндов, исполнение и т.д.). Конвейеры заканчиваются двумя АЛУ:АЛУ, работающим на удвоенной частоте процессора для коротких арифметических и логических команд, и АЛУ для выполнения медленных команд;
  • Введено управление питанием ядра, которое включает в себя блок температурного контроля, способный управлять отдельно питанием каждого ядра.

Фирма AMD (Advanced Micro Devices) выпускает процессоры, совместимые по системе команд с Intel Pentium 4 – Athlon (К7). Этот процессор выполнен по суперскалярной архитектуре с тремя конвейерами команд, работающими параллельно и способными обрабатывать до девяти инструкции за один цикл работы процессора. Тестирование процессора К7 и его сравнение с Pentium 4показывает, что К7 не уступает ему и даже превосходит его в некоторых случаях. Стоимость процессора Athlon на 20 – 30% дешевле процессора Intel. Процессор К7 требует для своей работы собственной шины, несовместимой с шиной процессора Pentium 4. Поэтому замена одного типа процессора другим требует и замены системной платы, на которой расположен набор микросхем основных функциональных устройств ПК.

1. Процессоры. Назначение. Основные характеристики.

Центральный процессор.

Центральный процессор (ЦП) – функционально-законченное программно - управляемое устройство обработки информации, выполненное на одной или нескольких СБИС. В современных персональных компьютерах разных фирм применяются процессоры двух основных архитектур:

· Полная система команд переменной длины – ComplexInstructionSetComputer (CISC);

· Сокращенный набор команд фиксированной длины - ReducedInstructionSetComputer (RISC).

Весь ряд процессоров фирмы Intel, устанавливаемых в персональные компьютеры IBM, имеют архитектуру CISC, а процессоры Motorola, используемые фирмой Apple для своих персональных компьютеров, имеют архитектуру RISC. Обе архитектуры имеют свои преимущества и недостатки. Так CISC – процессоры имеют обширный набор команд (до 400), из которых программист может выбрать команду, наиболее подходящую ему данном случае. Недостатком этой архитектуры является то, что большой набор команд усложняет внутреннее устройство управления процессором, увеличивает время исполнения команды микропрограммном уровне. Команды имеют различную длину и время исполнения.

RISC – архитектура имеет ограниченный набор команд и каждая команда выполняется за один такт работы процессора. Небольшое число команд упрощает устройство управления процессора. К недостаткам RISC – архитектуры можно отнести то, что если требуемой команды в наборе нет, программист вынужден реализовать ее с помощью нескольких команд из имеющегося набора, увеличивая размер программного кода.

Упрощенная схема процессора, отражающая основные особенности архитектуры микроуровня, приведена на рис.1. Наиболее сложным функциональным устройством процессора является устройство управления выполнением команд. Оно содержит

Регистр общего назначения
Управление выборкой очередной микрокоманды

Адреса данных управ-

· Буфер команд , который хранит одну или несколько очередных команд программы; читает следующие команды из запоминающего устройства, пока выполняется очередная команда, уменьшая время ее выборки из памяти;

· Дешифратор команд расшифровывает код операции очередной команды и преобразует его в адрес начала микропрограммы, которая реализует исполнение команды;

· Управление выборкой очередной микрокоманды представляет собой небольшой процессор, работающий по принципу фон Неймана, имеет свой счетчик микрокоманд, который автоматически выбирает очередную микрокоманду из ПЗУ микрокоманд;

· Постоянное запоминающее устройство (ПЗУ) микрокоманд – это запоминающее устройство, в которое информация записывается однократно и затем может только считываться; отличительной особенностью ПЗУ является то., что записанная в него информация сохраняется сколько угодно долго и не требует постоянного питающего напряжения.

Выборка очередной микрокоманды осуществляется через определенный интервал времени, который, в свою очередь, зависит от времени выполнения предыдущей микрокоманды. Частота, с которой осуществляется выборка микрокоманд, называется тактовой частотой процессора. Тактовая частота является важной характеристикой процессора, так как определяет скорость выполнения процессором команд, и, в конечном итоге, быстродействие процессора.

Арифметико-логическое устройство (АЛУ) предназначено для выполнения арифметических и логических операций преобразования информации. Функционально АЛУ состоит из нескольких специальных регистров, полноразрядного суммарного и схем местного управления.

Регистры общего назначения (РОН) используются для временного хранения операндов исполняемой команды и результатов вычислений, а также хранят адреса ячеек памяти или портов ввода-вывода для команд, обращающихся к памяти и внешним устройствам. Необходимо отметить, что если операнды команды хранятся в РОН, то время выполнения команды значительно сокращается. Одна из причин, почему программисты иногда обращаются к программированию на языке машинных команд, это наиболее полное использование РОН для получения максимального быстродействия при выполнение программ, критичных по времени.

Рассмотрим кратко характеристики процессоров, используемых в современных ПК типа IBMPC. Процессоры для этих ПК выпускают многие фирмы, но законодателем моды здесь является фирма Intel. Ее последней разработкой является процессор IntelCore, выпуск которого начат в начале 2006 г.. К основным особенностям архитектуры IntelCore можно отнести следующие:

-Имеет специальный внутренний КЭШ размером 2 Мбайта;

-Добавлена арбитражная шина, которая уменьшает нагрузку системной шины;

-Внутренняя микроархитектура процессора базируется на двух ядрах – параллельно работающих конвейерах команд (суперскалярная архитектура), которые исполняют сразу несколько команд в 12 разных фазах обработки(чтение, дешифрация, загрузка операндов, исполнение и т.д.). Конвейеры заканчиваются двумя АЛУ:АЛУ, работающим на удвоенной частоте процессора для коротких арифметических и логических команд, и АЛУ для выполнения медленных команд;

-Введено управление питанием ядра, которое включает в себя блок температурного контроля, способный управлять отдельно питанием каждого ядра.

Фирма AMD( Advanced Micro Devices ) выпускает процессоры, совместимые по системе команд с IntelPentium 4 – Athlon (К7). Этот процессор выполнен по суперскалярной архитектуре с тремя конвейерами команд, работающими параллельно и способными обрабатывать до девяти инструкции за один цикл работы процессора. Тестирование процессора К7 и его сравнение с Pentium4показывает, что К7 не уступает ему и даже превосходит его в некоторых случаях. Стоимость процессора Athlon на 20 – 30% дешевле процессора Intel. Процессор К7 требует для своей работы собственной шины, несовместимой с шиной процессора Pentium4. Поэтому замена одного типа процессора другим требует и замены системной платы, на которой расположен набор микросхем основных функциональных устройств ПК.

2. Поколение процессора .

Процессоры от 8088 до Pentium, применяемые в PC, являются однокристальными микропроцессорами – собственно процессор располагается на одном кристалле в одном корпусе (микросхеме). Процессор Pentium2,строго говоря, однокристальным не является – здесь кристалл процессора и несколько кристаллов вторичного кэша собраны на общем картридже, хотя для потребителей это не так и существенно – все функции выполняют одно изделие. В зависимости от сложности процессора (числа выводов), его рассеиваемой мощности и назначения применяются различные типы корпусов:

-DIP – DualIn- linePackage, керамический корпус с двухрядным расположением штырьковых выводов;

-PGA – PinGridArray, керамический корпус с матрицей штырьковых выводов;

-PQFP – PlasticQuadFlatPack, пластиковый корпус с выводами по сторонам квадрата;

-SPGA – StaggeredPGA, корпус с шахматным расположением выводов;

-SQFP – SmallQuadFlatPack, миниатюрный корпус с выводами по сторонам квадрата

-PPGA – PlasticPinGridArray, термоустойчивый пластмассовый корпус SPGA;

-TCP – TapeCarrierPackage, миниатюрный корпус с расположенными по периметру ленточными выводами;

-S.E.C.C. – SingleEdgeConnectorCartridge, картридж процессора Pentium 2 – печатная плата с краевым разъездом, на котором смонтированы кристаллы процессора, кэш-памяти, охлаждающий радиатор и вентилятор.

Процессоры в корпусах DIP занимали много места, на их смену пришли компактные корпуса PGA, PPGAи SPGA, которые обычно устанавливаются в ZIFsocket (ZeroInsertionForce) – колодка (сокет) с нулевым усилием вставки. Корпуса PQFP, SQFP предназначены для установки в специальные колодки или припаивания к плате. Самые компактные из многоконтактных, корпусах ТСР предназначены для припаивания к системной плате портативных систем.

3.Память процессоров.

· Внутренняя память – электронная (полупроводниковая) память, устанавливаемая на системной плате или на платах расширения;

· Внешняя память – память, реализованная в виде устройств с различными принципами хранения информации и обычно с подвижным носителями. В настоящее время сюда входят устройства магнитной (дисковой и ленточной) памяти, оптической и магнитооптической памяти. Устройства внешней памяти могут размещаться как в системном блоке компьютера, так и в отдельных корпусах, достигающих иногда и размеров небольшого шкафа.

Для процессора непосредственно доступной является внутренняя память, доступ к которой осуществляется по адресу, заданному программой. Для внутренней памяти характерен одномерный (линейный) адрес, который представляет собой одно двоичное число определенной разрядности. Внутренняя память подразделяется на оперативную, информация в которой может изменятся процессором в любой момент времени, и постоянную, информацию которой процессор может только считывать. Обращение к ячейкам оперативной памяти может происходить в любом порядке, причем как по чтению, так и по записи, и оперативную память называют памятью с произвольным доступом – RandomAccessMemory (RAM) – в отличие от постоянной памяти (ReadOnlyMemory,ROM). Внешняя память адресуется более сложным образом – каждая ее ячейка имеет свой адрес внутри некоторого блока, который, в свою очередь, имеет многомерный адрес. Во время физических операций обмена данными блок может быть считан или записан только целиком.

4. Маркировка. Основные проектировщики и производители.

Процессоры фирм AMD, IBM, Cyrix и Texas Instruments.

Фирма AMD традиционно выпускает процессоры, совместимые с передовыми моделями от Intel. Эти процессоры обычно появляются несколько позже, но вбирают в себя достижения, реализованные Intel в более поздних моделях. Процессоры класса 486 фирмы AMD совместимы с моделями Intel.Наибольший интерес представляют процессоры семейства EnhancedAm486® и Am5X86 тм , представляющие вершину достижений, реализованных в рамках шины 486 процессора (PentiumOverDrive, конечно, их несколько превосходит, но его цена менее привлекательна). Их отличие экономичность потребления – питание пониженным напряжением, наличие развитых средств SMM и управления потреблением, более широкое применение политики обратной записи первичного кэша.

Процессоры используют умножение частоты на коэффициент 2,3 и даже 4, который может снижаться заземлением вывода CLKMUL.

В состояние пониженного потребления AutoHALTPowerDowen процессор переходит при исполнении инструкции HALT. В этом состояние процессор реагирует на все прерывания и также продолжает слежение за шиной.

Из состояния StopGrant остановкой внешней синхронизации процессор можно перевести в режим StopClok, в котором он потребляет минимальную мощность. В этом режиме он не выполняет никаких функций, но при возобновление синхронизации вернется в состояние StopGrant, из которого можно выйти в нормальный режим работы.

Расширенные средства SMM, реализованные в процессоре, поддерживают рестарт инструкций ввода/вывода и изменение базового адреса SMRAM.

Процессоры EnhancedAm486 имеют обозначения вида

A80486 DX4 – 120 ля названия (слева направо) расшифровываются следующим образом:

-Типакорпуса: A=PGA-186, S=SQFP-208.

-Типа устройства: 80486 Am486.

-Версия: DX4 = с устроением частоты и FPU, DX2 = с удвоением частоты и FPU.

-Частота (внутренняя), МГц: 120, 100, 80, 75 или 66.

-Семейство: S = ENHANCED(с расширенными возможностями).

-Напряжение питания: V = питание 3,3 В, входы допускают уровень сигнала 5 В.

-Размер кэша: 8 = 8 Кбайт.

-Типкэша: В = Write Back.

Эти процессоры могут устанавливать практически в любые системные платы с сокетами 1, 2 или 3, имеющими регулятор напряжения питания процессора, обеспечивающий номинальное напряжение 3,3 В. Платы, не поддерживающие расширенный режим шины, будут использовать процессоры только в режиме сквозной записи кэша. Более современные платы реализуют все преимущества данных процессоров.

Процессоры Am5x86-P75, они же AMD-X5-133 – самые высокопроизводительные процессоры класса 486 – имеют иную систему обозначения. Здесь надпись вида AMD-X5 – 133 ADWрасшифровывается следующим образом:

- AMD-X5 – обозначение процессора с учетверением частоты.

-Частота (внутренняя) - 133 МГц.

-Типкорпуса: A=PGA-168, S=SQFP-208.

-Напряжение питания: D = 3,45 B, F = 3,3 B.

-Допустимая температура корпуса: W=55 o C, Z=85 o C.

Хотя эти процессоры по интерфейсу идентичны процессорам EnhancedAm486, их удается использовать далеко не на всех системных платежах 486. Иногда причина кроется в версии BIOS, замена которой приводит к желаемому результату. Иногда приходится снижать коэффициент умножения (если на плате есть джампер, позволяющий подать низкий уровень на вывод CLIKMUL). Правда, при этом процессор становится аналогом DX-100 или DX4-120 в зависимости от выбранной входной частоты.

Кроме процессоров Intelи AMD, с шиной 486процессора имеются продукты и других фирм. К ним относятся следующие:

Процессоры фирмы Cyrix :

-Cx486DX имеет по сравнению с другими более эффективный FPU.Процессоры Cx486DX2-66 и Cx486DX4-100 имеют кэш с обратной записью (WB), по параметрам близки к соответствующим моделям AMD.

Процессоры фирмы IBM .

-486BL2, 486Bl3 (BlueLighting- молния) – вариант 486SX с 2-3-кратным умножением частоты без BurstMode, питание 3,3 В и пониженное потребление. За звучным названием не стоят какие-либо серьезные преимущества.

Несмотря на обозначение, процессоры 486SLCи 486DLC предназначены для замены 386SX и 386DX соответственно – их корпус и интерфейс к стандартной шине 486 процессоров отношения не имеют.

Процессоры фирмы Texas Instruments .

-TIDX2-80 и TIDX4-100 близки к аналогичным 486-м процессорам AMD.

Центральный процессор (ЦП) – функционально-законченное программно - управляемое устройство обработки информации, выполненное на одной или нескольких СБИС. . Процессор в определённой последовательности выбирает из памяти инструкции и исполняет их

. В многопроцессорной системе функции центрального процессора распределяются между несколькими обычно идентичными процессорами для повышения общей производительности системы, а один из них назначается главным.Характеристика процессоров, используемых в современных ПК типа IBMPC, процессоры для этих ПК выпускают многие фирмы, но законодателем моды здесь является фирма Intel. Ее последней разработкой является процессор IntelCore, выпуск которого начат в начале 2006 г.

Процессоры имеют возможность снижения энергопотребления в нерабочем режиме (аналогичные средства появились в процессорах Pentium начиная только со 2-го поколения).

Список использованной литературы.

1. Воройский Ф. С. Информатика. Энциклопедия словарь справочник: введение в современные информационные и телекоммуникационные технологии в терминах и фактах. – М.: ФИЗМАТЛИТ, 2006. – 768 с.

2. Гридина Е. А. Современный русский язык. Словообразование: теория, алгоритмы анализа, тренинг. Учебное пособие/ Т. А. Гридина, Н. И. Коновалова. – 2-е изд. – М.: Наука: Флинта, 2008. – 160 с.

3. Магилев П. К. Практикум по информатике,-Изд. 2-е,2005

5. Макарова, Информатика. Практикум по технологии работы на компьютере.- Под редакцией/ Макаровой,-Изд. 3-е, 2005.

6. Соболь Б. В. Информатика : учебник / Б. В. Соболь и др.-Изд. 3-е, допол. и перераб. – Ростов н/Д: Феникс, 2007. – 446 с.

7. Этимологический словарь русского языка для школьников и студентов. Более 1000 слов/ Сост. Е. Грубен. – М.: ЛОКИД – пресс, 2007. – 576 с.

8. Ягудин Р. М. Русский язык. Грамматика. Орфография. Пунктуация. : Справ. – 4-е издание, стер. – Уфа: Башкортостан, 2005. -280 с.

Информация о процессоре компьютера, его значении, технологии изготовления, а также о характеристиках, которые необходимо учитывать при его выборе и приобретении.

Содержание:

Что такое процессор и как он устроен

Центральный процессор (микропроцессор, центральное процессорное устройство, CPU, разг. – "проц", "камень") – сложная микросхема, являющаяся главной составной частью любого компьютера. Именно это устройство осуществляет обработку информации, выполняет команды пользователя и руководит другими частями компьютера.

Уже много лет основными производителями процессоров являются американские компании Intel и AMD (Advanced Micro Devices). Есть, конечно, и другие производители, но до уровня указанных лидеров им далеко.

Intel и AMD постоянно борются за первенство в изготовлении все более производительных и доступных процессоров, вкладывая в разработки огромные средства и много сил. Их конкуренция - важный фактор, содействующий быстрому развитию этой отрасли.

Внешне центральный процессор не представляет собой ничего выдающегося – небольшая прямоугольная плата с множеством контактов с одной стороны и плоской металлической коробочкой с другой. Но внутри этой коробочки хранится сложнейшая микроструктура из миллионов транзисторов.

Как выглядит процессор компьютера

Как изготавливают процессоры. Что такое техпроцесс.

Основным материалом при производстве процессоров является самый обычный песок, а точнее сказать кремний, коего в составе земной коры около 30%. Из очищенного кремния сначала изготавливают большой монокристалл цилиндрической формы, который разрезают на "блины" толщиной около 1 мм.

Затем с использованием технологии фотолитографии в них создаются полупроводниковые структуры будущих процессоров.

Фотолитография чем-то напоминает еще не полностью забытый процесс печати фотографий с пленки, когда свет, проходя через негатив, действует на поверхность фотобумаги и проецирует на ней изображение.

При изготовлении процессоров своеобразной фотобумагой выступают упомянутые выше кремниевые "блины". Роль света играют ионы бора, разогнанные до огромной скорости высоковольтным ускорителем. Они пропускаются через специальные "трафареты" - системы высокоточных линз и зеркал, вкрапливаются в кремний и создают в нем микроскопическую структуру из множества транзисторов.

Сегодняшние технологии позволяют создавать транзисторы размером всего 5-6 нанометров (толщина человеческого волоса около 50000 нм). Со временем техпроцесс изготовления процессоров станет еще совершеннее. По прогнозам, транзисторы уменьшатся как минимум до 3 нм.

Чем тоньше техпроцесс – тем больше транзисторов можно поместить в один процессор, тем он будет производительнее и энергоэффективнее.

Созданная таким образом полупроводниковая структура вырезается из кварцевого "блина" и помещается на текстолит. На обратную его сторону выводятся контакты для обеспечения подсоединения к материнской плате. Сверху кристал защищается от повреждения металлической крышкой (см. рис. выше).

Понятие архитектуры, ядра, ревизии процессора

Процессоры прошли сложную эволюцию и сейчас продолжают развиваться. Производители совершенствуют не только техпроцесс изготовления, но и внутреннюю их структуру. Каждое новое поколение процессоров отличается от предыдущего строением, количеством и характеристиками входящих в их состав элементов.

Процессоры, в которых используются те же базовые принципы строения, называют процессорами одной архитектуры, а эти принципы - архитектурой (микроархитектурой) процессора.

В пределах одной архитектуры процессоры могут существенно отличаться - частотами системной шины, техпроцессом изготовления, размером и структурой внутренней памяти и некоторыми другими особенностями. О таких процессорах говорят, что они имеют разные ядра.

В рамках доработки одного ядра производители могут делать небольшие изменения с целью устранения мелких недочетов. Такие усовершенствования, которые "не тянут" на звание самостоятельных ядер, называют ревизиями.

Архитектурам, ядрам и ревизиям разработчики дают определенные названия. Например, компания Intel архитектурам и ядрам присваивает определенные имена, а их ревизиям – цифробуквенные обозначения. Так, все модели Intel Core 2 Duo являются процессорами микроархитектуры Intel Core и производились с ядрами Allendale, Conroe, Merom, Kentsfield, Wolfdale, Yorkfield. У каждого из этих ядер были еще и разные ревизии.

Основные характеристики процессора

Количество вычислительных ядер.

Многоядерные процессоры – это процессоры, содержащие на одном процессорном кристалле или в одном корпусе два и более вычислительных ядра. Все современные процессоры являются многоядерными.

Эффективность вычислительных ядер разных архитектур заметно отличается. Но если сравнивать процессоры одной архитектуры, чем их (ядер) больше, тем процессор производительнее.

Количество потоков.

Чем больше потоков – тем лучше. Количество потоков не всегда совпадает с количеством ядер процессора. Например, благодаря технологиям Hyper-Threading (у Intel) и Simultaneous MultiThreading (у AMD), 4-ядерный процессор может работать в 8 потоков и во многом опережать 6-тиядерных конкурентов.

Размер кеша 2 и 3 уровней.

Кеш - это очень быстрая внутренняя память процессора, которая используется им как буфер для временного хранения информации, обрабатываемой в конкретный момент времени. Подробнее об этом можно узнать здесь. Чем кеш больше – тем лучше.

Структура не всех современных процессоров предусматривает наличие кеша 3 уровня, хотя критичным моментом это не является. Так, по результатам многих тестов производительность процессоров Intel Core 2 Quadro, выпускавшихся с 2007 г. по 2011 г. и не имеющих кеша 3 уровня, даже сейчас выглядит достойно. Правда, кеш 2 уровня у них достаточно большой.

Частота процессора.

Здесь все просто – чем выше частота процессора, тем он производительнее. Но это справедливо, если речь идет о процессорах одной архитектуры. Этот показатель отображает количество операций (тактов), осуществляемых процессором за единицу времени. Однако, процессор с более совершенной архитектурой за один такт обрабатывает больше информации. Как результат, новый низкочастотный процессор может оказаться значительно быстрее старого высокочастотного.

Техпроцесс.

Понятие техпроцесса рассматривалось в предыдущем пункте этой статьи. Чем тоньше используемый техпроцесс, тем больше процессор может содержать транзисторов, меньше потребляет электроэнергии и меньше греется. От техпроцесса во многом зависит еще одна важная характеристика процессора - TDP.

Termal Design Point - показатель, отображающий энергопотребление процессора, а также количество тепла, выделяемого им в процессе работы. Единицы измерения - Ватты (Вт). TDP зависит от многих факторов, среди которых главными являются количество ядер, техпроцесс изготовления и частота работы процессора.

Кроме прочих преимуществ, "холодные" процессоры (с TDP до 100 Вт) лучше поддаются "разгону", когда пользователь изменяет некоторые настройки системы, вследствие чего увеличивается частота процессора. Разгон позволяет без дополнительных финансовых вложений увеличить производительность процессора (идогда на целых 20-25 %), но это уже отдельная тема.

В то же время, проблему с высоким TDP всегда можно решить приобретением эффективной системы охлаждения (см. последний пункт этой статьи).

Наличие и производительность видеоядра.

Помимо вычислительных ядер, производители часто включают в состав процессоров еще и ядра графические. Такие процессоры, кроме решения своих основных задач, могут выполнять роль видеокарты. Возможностей некоторых из них вполне достаточно для игры в компьютерные игры, не говоря уже о просмотре фильмов, работе с текстом и решении остальных задач.

Если видеоигры - не главное предназначение компьютера, процессор со встроенным графическим ядром позволит сэкономить на приобретении отдельного графического адаптера.

Тип и максимальная скорость поддерживаемой оперативной памяти.

Эти характеристики процессора необходимо учитывать при выборе оперативной памяти, с которой он будет использоваться. Нет смысла переплачивать за быстрые модули ОЗУ, если процессор не сможет реализовать все их преимущества.

Что такое сокет

Важным моментом, который нужно учитывать при выборе процессора, является то, для установки в сокет какого типа он предназначен.

Сокет (socket, разъем центрального процессора) – это щелевой или гнездовой разъём на материнской плате, в который устанавливается процессор. Каждый процессор можно установить только на материнскую плату с подходящим разъемом, имеющим соответствующие размеры, необходимое количество и структуру контактных элементов.

Каждый новый сокет разрабатывается производителями процессоров, когда возможности старых разъемов уже не могут обеспечить нормальную работу новых изделий. Для процессоров Intel длительное время использовался сокет LGA775 (процессоры Pentium 4, Pentium D, Celeron D, Pentium EE, Core 2 Duo, Core 2 Extreme, Celeron, Xeon серии 3000, Core 2 Quad). Затем были введены сокеты LGA1366, LGA1156, LGA1155 (процессоры i7, i5, i3) и др. Разъемы для процессоров от AMD за последние десятилетия также изменились - AM2, AM2+, AM3, AM4 и т.д. О более ранних сокетах, думаю, смысла вспоминать нет, поскольку компьютеры на их основе – уже раритет.

Важно. Если вы задумали модернизировать старый компьютер путем приобретения более производительного процессора, убедитесь, что по сокету он подойдет к вашей старой материнской плате. Иначе однозначно придется менять и ее. Но даже если по сокету процессор подходит, не факт что материнская плата будет с ним работать. Большое значение имеет также системная логика материнской платы ("чипсет"). Нужно убедиться, что он поддерживает процессоры с такой архитектурой. Подробнее о разъеме центрального процессора и соответствующих чипсетах материнских плат можно узнать здесь.

Система охлаждения процессора


Как выглядит куллер процессора

Процессор нуждается в надлежащем охлаждении, иначе он может выйти из строя.

Как уже упоминалось выше, верхняя поверхность процессора представляет собой металлическую коробку, выполняющую, кроме защитных, еще и теплоотводные функции. Поверх процессора на материнской плате устанавливается система охлаждения. Ее теплоотводные элементы должны плотно прижиматься к поверхности процессора.

Для улучшения передачи тепла с процессора на радиатор системы охлаждения, между ними прокладывается слой термопасты – специального пастообразного вещества с высокой теплопроводностью.

При подборе системы охлаждения процессора нужно учитывать его TDP (рассматривалось выше в пункте о характеристиках процессора).

Процессоры обычно продаются в комплекте со штатной системой охлаждения. Но иногда ее эффективности не достаточно (например, если был произведен разгон и частота процессора, а следственно и его TDP, возросла). В таком случае можно отдельно приобрести более мощную систему охлаждения.

Нормальная температура работы процессора - до 50 градусов Цельсия (при пиковых нагрузках возможно чуть больше). Но от модели к модели она может отличаться. Средства измерения температуры встроены в центральный процессор. При помощи специальных программ температуру можно отслеживать в режиме реального времени (например, программой SpeedFan).

Современный процессор устроен так, что при достижении им критичной температуры он отключается и не включается, пока не остынет. Это позволяет предупредить его повреждение под воздействием высокой температуры.

Перегрев возможен вследствие низкой эффективности системы охлаждения, выхода ее из строя, засорения пылью, пересыхания термопасты и др.



НАПИСАТЬ АВТОРУ

Читайте также: