Терапевтический потенциал стволовых клеток доклад

Обновлено: 14.05.2024

История онкологии началась с незапамятных времён. Первые систематические попытки лечения опухолей предпринимались ещё в Древнем мире. С тех пор прошло несколько тысячелетий, но и сейчас в подавляющем большинстве случаев полное излечение злокачественных новообразований недостижимо. Однако теперь мы хотя бы знаем, что за преграда не даёт нам достигнуть заветной цели. Раковые стволовые клетки, практически никому не известные ещё каких-нибудь пятнадцать лет назад, сегодня оказались в центре внимания учёных. Выяснилось, что буквально все клинические проблемы, от устойчивости онкологических заболеваний к различным препаратам до фатальных рецидивов спустя десятилетия после кажущегося исцеления, связаны с этими клетками.

Модель раковых стволовых клеток (РСК) подразумевает, что любое злокачественное новообразование (неоплазия) развивается из одной клетки. В результате неких событий генетический аппарат некогда нормальной клетки трансформируется настолько, что происходит её перерождение в инициирующую раковую клетку. В результате последующей пролиферации (деления) этой клетки формируется злокачественная опухоль. Согласно концепции РСК, эта опухоль устроена иерархически, то есть разные типы раковых клеток обладают разной способностью к делению.

Раковые стволовые клетки составляют лишь небольшую популяцию опухолевых клеток. Однако, будучи истинно стволовыми клетками, они (и только они) способны к неограниченному числу делений и постоянному самовоспроизведению. Число делений остальных клеток, если они способны к пролиферации (то есть формально обладают неким стволовым потенциалом), строго ограничено.

В основе процесса самовоспроизведения РСК лежит так называемый асимметричный тип деления стволовых клеток, который заключается в том, что родительская стволовая клетка даёт начало двум клеткам. Одна из них — с такими же стволовыми свойствами, что и материнская, другая же способна к ограниченному числу делений и поэтому называется частично дифференцированной, временно пролиферирующей раковой клеткой. Конечные потомки таких клеток — раковые клетки, не способные к делению. Их называют терминально дифференцированными. Соответственно иерархия опухолевой ткани выглядит так: раковые стволовые клетки → временно пролиферирующие раковые клетки → терминально дифференцированные раковые клетки. Два последних типа клеток образуют при этом основную массу опухоли.

Точно такая же иерархия имеет место и в нормальных тканях, стволовые клетки которых, способные к самовоспроизведению и поддержанию собственной популяции, также дают начало ограниченно пролиферирующим клеткам — предшественникам зрелых клеток. Эти зрелые тканевые клетки не способны к делению вовсе и погибают через какое-то время после выполнения свойственных им функций.

Итак, согласно модели раковых стволовых клеток, не все опухолевые клетки обладают равной способностью к делению и самовоспроизведению. И несмотря на то что основная масса опухоли состоит из злокачественных клеток той или иной степени дифференцировки, её рост и развитие определяются небольшой по численности, но наивысшей в иерархии популяцией раковых стволовых клеток.

Cловарик к статье

Клеточная дифференцировка — процесс клеточной дифференцировки заключается в так называемом созревании стволовой клетки-предшественника в клетку со строго определённым фенотипом (например, кардиомиоцит или пирамидный нейрон), называемую дифференцированной.

Пролиферация (от лат. proles — отпрыск, потомство и fero — несу) — разрастание ткани организма путём размножения клеток делением.

Репарация ДНК — внутриклеточная молекулярная система восстановления исходной последовательности ДНК после её повреждений.

Стохастический (от греч. στοχαστικός — умеющий угадывать) означает неопределённость, случайность чего-либо.

Фенотип (от греческого слова phainotip — являю, обнаруживаю) — совокупность характеристик, присущих индивиду на определённой стадии развития (особенности строения и жизнедеятельности).

Упреждая аргументы критиков РСК-модели, следует отметить, что некоторые злокачественные новообразования не вписываются в эту модель, а, скорее, соответствуют модели клональной эволюции. Есть виды неоплазий, при которых могут встречаться разные популяции раковых стволовых клеток, имеющих разные хромосомные нарушения. Хрестоматийные примеры таких новообразований — хроническая миелоидная лейкемия и колоректальный рак. В этих случаях РСК-модель не может полностью описать развитие опухоли, так как в соответствии с ней все клетки опухоли — потомки одной инициирующей РСК. Здесь же возможна либо инициация опухоли сразу из нескольких злокачественных стволовых клеток, формирующих несколько генетически различающихся клонов, либо эволюция одного клона из другого за счёт последовательного накопления генетических нарушений. Разные клоны могут обладать разной злокачественностью и соответственно могут конкурировать за ресурсы. Иными словами, будет проходить эволюция опухолевых клонов.

Некоторые новообразования, отличающиеся экстремальной злокачественностью, также больше соответствуют модели клональной эволюции, нежели иерархической модели РСК. К ним относятся, например, различные злокачественные меланомы, при которых доля активно делящихся раковых клеток составляет чуть ли не более половины опухолевой массы. При этом в пределах одной опухоли сосуществуют РСК с различными фенотипами, которые при различных воздействиях на опухоль могут легко превращаться один в другой. Очевидно, что и для этих случаев РСК-модель не вполне подходит.

Однако, как можно заметить, в современной интерпретации модели клональной эволюции центральная роль инициирующих раковых стволовых клеток в запуске развития злокачественного новообразования ни в коей мере не оспаривается. Дискуссии продолжаются лишь относительно тех или иных сценариев развития опухоли * . А коли так, мы со спокойной совестью можем говорить о раковых стволовых клетках.

Более полувека спустя, в 1930-х годах, теория зародышевого остатка получила новый импульс. Гистологические наблюдения одной из опухолей мозга — медуллобластомы — показали, что её клетки морфологически очень напоминают клетки эмбрионального мозжечка, на основании чего было выдвинуто предположение, что эта форма опухолей мозга развивается из зародышевого остатка, состоящего из медуллобластов, утративших способность к дифференцировке.

Очередной значительный шаг на пути к концепции раковых стволовых клеток сделан в середине прошлого века. Исследования различных миелопролиферативных заболеваний (особой группы злокачественных новообразований, развившихся из клеток крови ** ) показали, что в развитие данной группы заболеваний могут быть вовлечены все ветви гемопоэза, за исключением лимфоидных ростков. Это послужило основанием для предположения, что все указанные патологии связаны со злокачественным перерождением клеток — предшественников всех остальных клеток миелоидного ряда, теперь известных как миелоидные cтволовые клетки.

А уже в 1960 году Питер Ноуэл (Peter Nowell) и Дэвид Хангерфорд (David Hungerford) открыли уникальную взаимосвязь так называемой филадельфийской хромосомы с одним из миелопролиферативных заболеваний — хронической миелоидной лейкемией. Филадельфийская хромосома — следствие хромосомной аномалии, которая приводит к образованию мутантного белка BCR-ABL1. К несчастью, этот мутантный белок сохраняет способность одного из своих родительских белков (ABL) к передаче пролиферативного (стимулирующего деление клетки) сигнала внутрь клетки. Более того, он передаёт сигналы гораздо интенсивнее и при этом делится вне зависимости от внешних сигналов. В результате клетки, несущие такую мутацию, начинают быстро и неконтролируемо делиться. В дальнейшем наличие филадельфийской хромосомы при этом заболевании было подтверждено во всех клетках, не относящихся к лимфоидному ряду, на основании чего выдвинули гипотезу о происхождении всех клонов лейкемических клеток от одного предшественника.

Питер Ноуэлл (университет Пенсильвании, США, на фото — слева) и Дэвид Хангерфорд (Фокс Чэйс Раковый центр при Институте исследования рака, США) — первооткрыватели филадельфийской хромосомы (1960).

Питер Ноуэлл (университет Пенсильвании, США, на фото — слева) и Дэвид Хангерфорд (Фокс Чэйс Раковый центр при Институте исследования рака, США) — первооткрыватели филадельфийской хромосомы (1960).

Как видно, модель клональной эволюции подразумевает, что одни раковые клоны отличаются большей злокачественностью, другие — меньшей, но в целом все они обладают сопоставимой способностью к делению. И в этом заключается принципиальное отличие стохастической теории канцерогенеза от иерархической теории, которая базируется на модели раковых стволовых клеток.

Тем не менее, как уже было упомянуто выше, модель клональной эволюции до сих пор не потеряла своей актуальности, поскольку в несколько большей степени, нежели модель РСК, объясняет развитие нескольких типов новообразований.

Долгое время концепция РСК находилась на вторых ролях. Однако в 1997 году Доминик Бонне (Dominique Bonnet, London Research Institute) и Джон Дик (John Dick, Toronto General Research Institute) продемонстрировали, что единичные лейкемические стволовые клетки, взятые у пациентов с острой миелоидной лейкемией, при трансплантации мышам дают начало полному спектру клеток с различными злокачественными фенотипами, наблюдаемыми при этом заболевании у человека. После этой работы число исследований, посвящённых РСК, стало лавинообразно нарастать.

В начале 2000-х годов раковые стволовые клетки были идентифицированы и в солидных опухолях (при одной из форм рака молочной железы). На сегодняшний день РСК описаны для абсолютного большинства форм онкологических заболеваний, и с этими клетками связывают все основные клинические проблемы в онкологии.

Поскольку любое новообразование может развиться только из активно делящейся клетки, наиболее подходящие кандидаты для злокачественной трансформации — нормальные тканевые стволовые клетки (дающие начало полностью дифференцированным клеткам, выполняющим свои узкоспецифические задачи в том или ином типе тканей), так как они обладают длительным сроком жизни и высокой скоростью деления. В соответствии с этим концепция РСК подразумевает, что инициирующее событие в канцерогенезе — злокачественное перерождение нормальных тканевых стволовых клеток *** , которые становятся инициирующими РСК.

Схематическое изображение возможных механизмов гетерогенности опухолевых клеток. Внизу — фенотипические различия раковых клеток первичной опухоли и метастазов. Схема сильно упрощена, поскольку не учитывает фенотипические различия между вторичными метастатическими РСК и первичными инициирующими РСК. Вверху — схема путей генерации опухолевой гетерогенности. Рисунок автора

Схематическое изображение возможных механизмов гетерогенности опухолевых клеток. Внизу — фенотипические различия раковых клеток первичной опухоли и метастазов. Схема сильно упрощена, поскольку не учитывает фенотипические различия между вторичными метастатическими РСК и первичными инициирующими РСК. Вверху — схема путей генерации опухолевой гетерогенности. Рисунок автора

Ещё одна неприятная особенность раковых стволовых клеток — их чрезвычайная устойчивость ко всем известным видам лечения. Какой бы вид противоопухолевой терапии ни применялся (радио-, химио-, иммунотерапия, таргетная), РСК будут погибать последними, когда все дифференцированные раковые клетки уже успешно побеждены.

Известно несколько механизмов терапевтической устойчивости РСК. Во-первых, РСК характеризуются повышенной экспрессией транспортных белков семейства ABC (ATP-binding cassette). Это эволюционно консервативные белки, присутствующие у всех организмов — от бактерий до человека. В норме они локализуются преимущественно в плазматической мембране клеток и отвечают за транспорт полезных веществ (например, витаминов) в клетку и выведение из неё вредных токсинов и ксенобиотиков. В РСК эти белки экспрессируются на особенно высоком уровне и отвечают за выведение из них различных химиотерапевтических препаратов.

Во-вторых, РСК, как никакие другие клетки, отличаются обилием фермента альдегид-дегидрогеназы (ALDH). В норме функция этого белка — окисление токсичных для организма альдегидов до карбоновых кислот. В РСК же он отвечает за инактивацию многих химиотерапевтических препаратов.

Это основные, но далеко не все механизмы устойчивости РСК. В тех же случаях, когда системы резистентности РСК к терапии дают сбой, раковые стволовые клетки впадают в дормантность (состояние покоя), в которой они могут пребывать несколько десятилетий, после чего активируются и обусловливают скоротечный фатальный рецидив. Дормантные РСК отличаются очень низким уровнем метаболизма, экстремальной устойчивостью к повреждающим воздействиям и практически не экспрессируют поверхностные белки, которые могли бы послужить мишенями для создания таргетных препаратов. На сегодняшний день дормантные РСК представляют собой наибольшую трудность для лечения. Однако надежда на успех есть. Во-первых, испытываются и неплохо себя проявляют различные сложные комбинации уже существующих таргетных препаратов. Во-вторых, удалось вплотную приблизиться к получению препаратов, воздействующих на процессы, лежащие в основе образования вторичных метастатических РСК. В-третьих, обнаружены белки, отвечающие за дормантность РСК и обеспечение их жизнеспособности в состоянии покоя. Наконец, разрабатываются препараты, способствующие выходу РСК из дормантности, что делает их более чувствительными к существующим формам терапии.

Акопян А.С., Белоусов Д.Ю., Рысулы М.Р., Куликов А.В. Некоторые актуальные проблемы клинических исследований стволовых клеток. Качественная Клиническая Практика. 2010;(1):22-28.

В то же время появляются данные об осложне­ниях при трансплантациях, в том числе онкогенного характера, не утихают споры об этическом использо­вании СК, звучат мнения скептиков о слабой эффек­тивности современной регенеративной медицины. Однако даже скептики, как и общество в целом, как правило, возлагают большие надежды на возможно­сти регенеративной медицины в будущем, во многом из-за отсутствия других видимых альтернатив.

Разберём более подробно, что же такое стволовые клетки и их типы.

По происхождению стволовые клетки можно раз­делить на следующие типы (рис. 1):

1) Эмбриональные стволовые клетки (ЭСК):

a) тотипотентные — это клетки эмбрио­нов и внезародышевых оболочек до имплантации (11 день после оплодотворения), способные диффе­ренцироваться в полноценный организм;

2) Фетальные стволовые клетки (ФСК): клет­ки, находящиеся в пуповинной крови, плаценте, спо­собные трансформироваться в разные типы клеток (мультипотентные клетки).

3) Клетки взрослого организма:

a) гемопоэтические стволовые клетки — находя­щиеся в кроветворных органах и крови, способные давать начало, в основном, различным росткам кро­ветворения;

b) мезенхимальные [стромалъные] стволовые клетки (МСК), находящиеся в костном мозге, обла­дающие способностью к дифференцировке в остео­бласты, сустеноциты, хондроциты, теноциты, адипоциты, миобласты, фибробласты;

c) стволовые клетки других тканей [регионарные] (кожи, сосудов, нервной ткани, яичек, яичников, про­статы и других) находятся в соответствующих тка­нях и дифференцируются в клетки этих тканей.

Рис. 1. Типы стволовых клеток

Помимо этого можно выделить подгруппу ЭСК, получаемых путём терапевтического клонирования. Для этого у пациента берут соматические клетки, из них удаляют ядра с генетической информацией. Затем берутся донорские яйцеклетки, из которых удаляется ядро и на его место вводится ядро клет­ки ткани пациента, несущее его наследственную ин­формацию. Показано, что в лабораторных условиях такая клетка будет делиться до стадии бластоцисты.

Самым важным свойством СК, определившим бурный рост исследовательских проектов с исполь­зованием СК, является плюрипотентность, то есть способность дифференцироваться и дать начало раз­личным типам клеток организма.

В качестве примера такого подхода можно при­вести операцию, проведённую в Научном центре сердечно-сосудистой хирургии им. А. Н. Бакулева, где 35-летнему пациенту с дилатационной кардиомиопатией была проведена реконструкция полости левого желудочка с помощью синтетической за­платы, совмещённая с имплантацией собственных стволовых клеток в миокард путём множественных инъекций. До вмешательства фракция выброса (со­отношение объёма крови, наполняющего левый же­лудочек сердца и изгоняемого из него) равнялась 1,7 % (нижняя граница нормы 50 %), пациент не вста­вал с постели, любая нагрузка приводила к возник­новению одышки. После операции объём левого же­лудочка пациента уменьшился на треть, а фракция выброса на следующий день возросла в два раза, что в целом существенно превосходило результаты изо­лированной реконструкции левого желудочка.

Более высокие клинические результаты лечения хронического простатита и андрогенной недоста­точности, ОАТ-синдрома (олигоастенотератозооспермии) были получены в Республиканском цен­тре репродукции человека и планирования семьи МЗ РФ в период 1997-2003 гг. при соответствующем использовании клеток Лейдига эмбрионального жи­вотного и человеческого происхождения, пересадки эмбриональных клеток предстательной железы, со­провождавшихся достоверным увеличением объёма гипоплазированных яичек и железистой ткани про­статы. Ни одного случая развития карциномы in situ за 5-летний период наблюдения после имплантации верифицировано не было, как и в предшествующих экспериментальных исследованиях на семенниках лабораторных белых мышей-самцов (линия валб-S), которым перевивались клеточные культуры семенников и головного мозга взрослой африканской зе­лёной мартышки, тестикул поросят.

При использовании СК в терапии тяжёлых, пре­жде неизлечимых заболеваний человека, возника­ют определённые проблемы — научные, этические и юридические. Рассмотрим их более подробно.

Основные научные проблемы

Как уже отмечалось, механизмы, влияющие на эффективность трансплантируемых СК разных типов пока досконально не известны, в связи с этим последствия использования СК в терапевтических целях зачастую трудно предсказуемы. Известно, что на дифференцировку СК влияют многочисленные факторы, такие как механическое натяжение, объём и форма занимаемого пространства, электрические поля, трофические факторы и клеточное микроо­кружение. Обеспечить полное соответствие условий клеточной дифференцировки in vivo и in vitro, к со­жалению, пока невозможно. Совсем недавно учёные из университета Джона Хопкинса сделали заявление о том, что для определения пути развития СК, содер­жащихся в костном мозге, решающее значение имеют не молекулярные сигналы, а форма, которую клеткам приходится принимать, а также размер их личного пространства.

Второй серьёзный вопрос, на который пока нет однозначного ответа, касается реакции полученных клеток на лекарственные вещества, используемые па­циентом. Эти вопросы поднимают серьёзную про­блему оценки качества образовавшихся в организме клеток.

В третьих, не меньшая проблема появляется при использовании клеток, полученных путём терапев­тического клонирования, поскольку весьма велик риск появления генетических мутаций при генно-инженерных манипуляциях. Гарантии безопасности биологического материала при генно-инженерных манипуляциях пока недостаточно проработаны. Признаётся, что использование ЭСК в терапевтиче­ских целях таит высокую опасность. Как показали экспериментальные данные, ЭСК обладают высоким туморогенным потенциалом, т. е. способностью к образованию опухолей. Как показано в экспериментах на лабораторных животных, ЭСК могут вызывать во взрослом организме образование тератокарцином (Blum, Benvenisty, 2009 г.). Поэтому широкое ис­пользование ЭСК в клинической практике по чисто биомедицинским причинам остаётся пока делом бу­дущего.

Ещё одной проблемой использования СК явля­ется иммунологическая несовместимость клеток, пересаживаемых реципиенту. Даже тщательный подбор донора и реципиента по антигенам главного комплекса гистосовместимости (HLA) и успехи иммуносупрессивной терапии не решают полностью эту проблему: вероятность иммунологического от­торжения по-прежнему достаточно велика. Показа­но, что МСК костного мозга после трансплантации оказывают системное иммуносупрессивное воздей­ствие (Ghannam et al., 2010 г.). Иммуносупрессивная функция МСК не зависит от HLA-совместимости после трансплантации. Иногда иммунологическая несовместимость оказывается не только проблемой, но и целью. В настоящее время ведутся исследова­ния по совместному применению гемопоэтических и МСК для коррекции иммунологического конфлик­та, возникающего в процессе лечения.

Этические проблемы. Развитие технологий ис­пользования СК во многом затруднено из-за эти­ческих проблем, встающих перед обществом. При этической экспертизе любого исследования всегда оценивается соотношение риска/пользы, которому подвергается испытуемый. Основное правило, прин­цип биомедицинской этики заключается в том, что интересы пациента (индивида), наряду с интереса­ми общества и вида, превалируют над интересами науки.

Использование ЭСК и ФСК в регенеративной медицине имеет серьёзные этические препятствия. Эти клетки обладают наиболее высоким потенциа­лом к росту и дифференцировке, что с одной сторо­ны, может обеспечить наилучший терапевтический эффект, с другой — эти же свойства несут в себе опасность неконтролируемого роста. Доказано, что неконтролируемый рост ЭСК может приводить к се­рьёзным отрицательным последствиям — образова­нию опухолей и гибели организма.

Однако является ли этичным, моральным с обще­человеческой точки зрения само использование ЭСК и ФСК? Допустимо ли использовать биологический материал, источником которого может быть кровь из пупочного канатика, ткань зародыша или плода на различных стадиях его развития? Можно ли спе­циально создавать эмбрионы с целью получения СК, которые будут использоваться для лечения и выжи­вания взрослых людей?

Другое дело использование СК взрослого орга­низма — забор аллогенных, а ещё лучше аутологичных СК, которые не имеют никаких этических огра­ничений. В самом деле, если бы удалось разработать технологии получения эффективных и безопасных клеточных продуктов из жировой ткани, либо обоня­тельного эпителия, этические вопросы к СК были бы сняты. Однако на данном этапе гарантированно эф­фективных и безопасных продуктов на основе СК взрослого организма не существует.

Существует проблема анонимности доноров и реципиентов. Необходима ли полная аноним­ность или по обоюдному требованию всех участни­ков лечения информация может быть раскрыта? Практика ЭКО показывает предпочтительность соблюдения полной анонимности. А охрана и безо­пасность клеточных банков? При некоторых видах патологии возможен забор клеток пациента, кото­рые, возможно, впоследствии спасут ему жизнь. Как должен охраняться такой банк? Насколько воз­можны злоупотребления со стороны работников такого банка? Должен ли он быть исключительно государственным или возможно создание частных банков СК? Обсуждаются проблемы добровольного информированного согласия, как доноров так и по­лучателей клеток, конфиденциальности генетиче­ской информации.

Другой, важной проблемой медицинской этики является недобросовестная псевдонаучная рекла­ма использования СК. В последнее время появились объявления об омоложении, лечении почти всех бо­лезней с использованием СК в малоизвестных част­ных клиниках. Приводятся примеры известных политиков, артистов эстрады, театра и кино, спор­тсменов, якобы прошедших терапию СК. Случаи их заболеваний и преждевременной смерти часто на­прямую связываются с лечением СК без достаточ­ных на то оснований. Источник СК, используемых в этих клиниках, как правило, не известен. Следует помнить, что панацеи, к сожалению, не существу­ет, а каждый метод лечения имеет свои показания и противопоказания. В случае использования СК и показания, и противопоказания пока только раз­рабатываются.

Религиозные особенности. Многие религии крайне негативно относятся к любым опытам с эм­брионами, абортивным материалом. Однако при­верженцы этих религий имеют право отказаться от лечения с использованием данных технологий как по религиозным мотивам, так и без объяснения причин.

Фармакоэпидемиология. Поскольку СК исполь­зуются не так давно, ещё не было широкомасштабных эпидемиологических и экономических исследований в этой области. Терапия СК пока остаётся весьма до­рогостоящим видом лечения, эффективность и без­опасность, которого точно не докзана.

Региональные осо­бенности. Этические проблемы, возникающие при использовании СК, на сегодняшний день остаются весьма серьёзными. В результате в разных странах различаются и подходы к использованию СК. Зача­стую они непоследовательны, компромиссны, имеют тенденцию к размыванию скоропалительных эмоци­ональных запретов в пользу допуска ограниченного круга учреждений, организаций и исследовательских групп.

В то же время Управление по пищевым продук­там и лекарствам (FDA) США выступило инициа­тором разработки стандартов забора, обработки, хранения распространения и трансплантации гемопоэтических СК. Эти стандарты были разработаны в результате совместных усилий — Американской ассоциации банков крови (ААВВ), FDA и Фонда для аккредитации терапии гемопоэтическими клетками (FAHCT). В 2000 г. выпущено второе издание, оза­главленное Standards for Hematopoietic Progenitor Cell Services (Стандарты служб гемопоэтических клеток-предшественников [stem-cell]). Разработаны правила GTP (Good Tissue Practice), также регламентирующие процесс получения СК.

В европейских странах не выработано едино­го подхода к использованию СК. Законодательство в этой области варьирует от разрешения экспери­ментов с ЭСК для терапевтического клонирования клеток больного человека, создания банков ЭСК, создания и клонирования предимплантационных за­родышей (до 14-го дня развития) для изолирования линий ЭСК (Великобритания, Бельгия и Швеция) до запрещения получения ЭСК (Германия, Швей­цария). Во Франции разрешено работать с уже соз­данными линиями и получать новые линии с целью терапевтического клонирования органов и тканей больного человека. Хотя в Германии и Швейцарии закон запрещает получение ЭСК, но разрешает учё­ным работать с импортированными линиями ЭСК, а также с ЭСК животных и СК из тканей взрослого человека.

В Канаде запрещено получение ЭСК из ранних зародышей человека.

В Японии разрешены эксперименты с зародыша­ми, остающимися после процедуры искусственного оплодотворения. Закон позволяет клонировать предимплантационные зародыши для выделения ЭСК и создания банков клеток-дериватов ЭСК.

В Индии и Китае активно ведутся исследования как по получению линий ЭСК человека, так и вы­делению ЭСК из других биоисточников, например, межвидовых клеточных гибридов.

Несмотря на всё это использование СК не полу­чило пока широкого признания. Для дальнейшего развития этой области медицины требуется:

  1. совершенствование законодательной базы;
  2. создание банков СК, оборудованных по прави­лам GTP;
  3. обучение специалистов и совершенствование материальной базы клиник, поскольку надлежащее получение, сохранение и применение СК относится к числу весьма сложных технологических процессов;
  4. разработка чётких показаний и противопока­заний для применения СК.

В заключение отметим, что использование СК, несмотря на имеющиеся сложности, признаётся боль­шинством специалистов одним из наиболее перспек­тивных направлений развития медицины XXI века.

Список литературы

1. . Акопян А. С. О временном запрете на клонирование человека . Есть ли смысл в продлении моратория//Проблемы репродукции, № 5, 2007 .

2. . Биомедицинская этика//Под ред . В . И . Покровского . М ., 1997 .

3. . Введение в биоэтику//Под ред . Б . Г . Юдина и П . Д . Тищенко . М .: Прогресс-Традиция, 1998 .

4. . Временная инструкция о порядке исследований в области клеточных технологий и их использования в учреждениях здравоохранения, разработана Экспертным Советом Минздрава России (18 .04 .2002) .

11. . О порядке испытания новых медицинских средств и методов, могущих представить опасность для здоровья и жизни больных — Постановление бюро ученого медицинского совета от 23 апреля 1936 года//Сборник Постановлений . — Наркомздрав РСФСР . — Учёный Медицинский Совет . — М . изд . УМС — № 1–4 — стр . 37–38 .

12. . Островская И. В. Медицинская этика: Сборник документов . — М .: АНМИ . — 2001:241 .

14. . Планирование и проведение клинических исследований лекарственных средств//Под ред . Ю . Б . Белоусова . М ., 2000 г .

23. . Харрис Д. Стволовые клетки и воспроизводство//Человек, № 5, 2003 г .

24. . Этическая экспертиза биомедицинских исследований . Практические рекомендации . Под общей редакцией член-корр . РАМН, проф . Ю . Б . Белоусова, академика НАН РК, проф . Р . С . Кузденбаевой, проф . М . Р . Рысулы . Второе издание (дополненное) . Россия, Москва, Казахстан, Алматы, 2008 г .

25. . Björklund A, Lindvall O. Cell replacement therapies for central nervous system disorders .//Nat Neurosci . 2000 . 3 (6):537–44 .

26. . Blum B., Benvenisty N. The tumorigenicity of diploid and aneuploid human pluripotent stem cells .//Cell Cycle . 2009 . 8 (23):3822–30 .

27. . Brinster R. L., Zimmermann J. W. Spermatogenesis following mail germ-cell transplantation .//Proc . Natl . Acad . Sci . USA . 1994 . Vol . 91, pp . 11298–11302

28. . Buckner C. D., Epstein R. B., Rudolph R. H., Clift R. A., Storb R., Thomas E. D. Allogeneic marrow engraftment following whole body irradiation in a patient with leukemia . 1970 .//J Hematother Stem Cell Res . 2001 . 10 (2):201–8 .

29. . Chen S., Zhang Q., Wu X., Schultz P. G., Ding S. Dedifferentiation of lineage-committed cells by a small molecule .//J Am Chem Soc . 2004 . 126 (2):410–1 .

30. . Friedenstein A. J., Petrakova K. V., Kurolesova A. I., Frolova G. P. Heterotopic of bone marrow . Analysis of precursor cells for osteogenic and hematopoietic tissues .//Transplantation . 1968 . 6 (2):230–47 .

31. . Ghannam S., Bouffi C., Djouad F., Jorgensen C., Noël D. Immunosuppression by mesenchymal stem cells: mechanisms and clinical applications .//Stem Cell Res Ther . 2010 . 1 (1):2 .

32. . Good R. A. Bone marrow transplantation for immunodeficiency diseases .//Am J Med Sci . 1987 . 294 (2):68–74 .

33. . McBeath R., Pirone D. M., Nelson C. M., Bhadriraju K., Chen C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment .//Dev Cell . 2004 . 6 (4):483–95 .

34. . Thomson J. A., Itskovitz-Eldor J., Shapiro S. S., Waknitz M. A., Swiergiel J. J., Marshall V. S., Jones J. M. Embryonic stem cell lines derived from human blastocysts .//Science . 1998 . 282 (5391):1145–7 .

Об авторах

Республиканский центр репродукции человека и планирования семьи МЗ РФ, г. Москва ; Национальный этический комитет Российской медицинской ассоциации, г. Москва
Россия

Рецензия

Для цитирования:

Акопян А.С., Белоусов Д.Ю., Рысулы М.Р., Куликов А.В. Некоторые актуальные проблемы клинических исследований стволовых клеток. Качественная Клиническая Практика. 2010;(1):22-28.


Контент доступен под лицензией Creative Commons Attribution 4.0 License.

1. Abudusaimi A. Adipose-derived stem cells enhance bone regeneration in vascular necrosis of the femoral head in the rabbit / A. Abudusaimi, Y. Aihemaitijiang and all. // Journal of International Medical Research. – 2011. – Vol. 39. Р. 1852–1860.

3. Beane O.S. Impact of Aging on the Regenerative Properties of Bone Marrow-, Muscle-, and Adipose-Derived Mesenchymal Stem/Stromal Cells / O.S. Beane, V.C. Fonseca and all. // PLoS ONE.- 2014. doi: 10.1371/journal.pone.0115963

4. Chang C.C. Determinants of microvascular network topologies in implanted neovasculatures / C.C. Chang, L. Krishnan and all. // Arterioscler Thromb Vasc Biol. – 2012. – Vol. 32(1). P. 5–14. doi:10.1161/ATVBAHA.111.238725

5. Frese L. Adipose Derived Tissue Engineered Heart Valve / L. Frese, B. Sanders and all. // Journal of Tissue Science. – 2015. – Vol. 6(3). doi:10.4172/2157-7552.1000156

6. Nagata H. Cardiac Adipose-Derived Stem Cells Exhibit High Differentiation Potential to Cardiovascular Cells in C57BL/6 Mice / H. Nagata, M. Ii and all. // Stem Cells Transl Med. – 2016. – Vol. 5(2). P. 141-151.

7. Park I.S. Enhanced angiogenic effect of adipose-derived stromal cell spheroid with low-level light therapy in hind limb ischemia mice / I.S. Park, P.S. Chung and all. // Biomaterials. – 2014. – Vol. 35(34). Р. 9280–9289.

10. Zhang Q. Intralesional injection of adipose-derived stem cells reduces hypertrophic scarring in a rabbit ear model / Q. Zhang, L.N. Liu and all. // Stem Cell Research & Therapy.- 2015.- Vol. 6(1). doi: 10.1186/s13287-015-0133-y

В последние годы популяция стволовых клеток жировой ткани рассматриваются в качестве альтернативы стволовых клеток красного костного мозга. Известно, что жировая ткань превосходит костный мозг по количеству стволовых клеток (СК), по их жизнеспособности и по технически более простому способу получения. Кроме того, СК жировой ткани имеют огромный регенеративный потенциал.

Так, в красном костном мозге взрослого человека на 50 000 – 1 000 000 клеток приходится всего 1 мезенхимальная стволовая клетка, а в жировои? ткани содержание СК составляет 1 на 30–1000 клеток [9].

Из 1 мл жира сразу после забора выделяется около 1 млн СК, через 2 часа — 500 тыс., и спустя 18 часов хранения жира при 4 ºС выделяется около 250 тыс.. Однако, несмотря на разные сроки выделения клеток, их жизнеспособность будет составлять 90–98 %. СК жировой ткани получают без негативного влияния на их количество, функциональную активность и жизнеспособность. У каждого человека есть большой запас СК для лечения, так как в норме жировая ткань составляет до одной четверти массы тела у женщин, и до одной пятой у мужчин.

СК жировой ткани в литературе принято называть ADSC (Adipose Derived Stem Cells). Они входят в состав стромально-васкулярной фракции (SVF) жировой ткани, включающей в себя смесь из различных клеток, в том числе следующих мезенхиальных стволовых клеток:

Перевод обзора Thorsten M. Schlaeger*, PhD, and Xiao Guan**, PhD, опубликованного в журнале The Hematologist в октябре 2009 г.
*Руководитель Программы по стволовым клеткам в детском госпитале Бостона (Children’s Hospital Boston), специалист Института Стволовых Клеток в Гарварде (Harvard Stem Cell Institute)
** Исполнитель Программы по стволовым клеткам в детском госпитале Бостона


Плюрипотентные стволовые клетки мыши

Характерными свойствами плюрипотентных стволовых клеток (ПСК) являются их неограниченная способность к делению и к дифференцировке во все типы клеток организма. Эмбриональные стволовые клетки мыши (ЭСК) получают из раннего эпибласта (наружный слой клеток у зародыша на самых первых этапах развития). Впервые эти клетки были выделены в 1981 г. [1] и с тех пор успешно используются in vitro в качестве моделей развития млекопитающих. Ключевым моментом кроветворения является дифференциация ПСК в гемангиобласты [2], эритроциты [3], лимфо-гематопоэтические прогениторные клетки [4] и гемопоэтические стволовые клетки (ГСК или КСК – кроветворные стволовые клетки) [5].

Мышиные ЭСК также служат объектом многочисленных исследований функций генов и для проверки терапевтической эффективности препаратов для лечения дегенеративных расстройств, таких как иммунодефициты [6] и серповидноклеточная анемия [7]. Следует, однако, заметить, что некоторые специфические гематологические аспекты биологии и патологии человека на мышах воспроизводятся неадекватно. Примерами этого могут послужить различные патологии, такие как анемия Фанкони, трисомия по 21 хромосоме, ассоциированная с острой миелогенной лейкемией, а также трудно диагностируемые генетические синдромы (например, тромбоцитопения и аплазия лучевой кости). Кроме того, модели на мышах зачастую неадекватно реагируют на действие ряда фармацевтических препаратов, таких как TNF-alpha (ФНО-альфа – фактор некроза опухоли альфа), IFN-gamma (интерферон гамма), EPO (эритропоэтин) и камптотецины.

Плюрипотентные стволовые клетки человека

Человеческие плюрипотентные ЭСК, выделенные из позднего эпибласта, были впервые получены в 1998 г., что стало величайшим открытием биологии за последнее десятилетие [8]. Недавно был совершен другой прорыв в науке: прямое перепрограммирование дифференцированных человеческих соматических клеток в так называемые индуцированные ПСК (иПСК) посредством усиленной экспрессии генов плюрипотентности 9. Применение иПСК вместо ЭСК снимает этические ограничения на использование эмбрионального материала. Перепрограммирование является захватывающим процессом, изучение которого, несомненно, будет продолжаться для развития понимания биологии стволовых клеток, регулирования клеточной программы, борьбы с онкологическими заболеваниями и старением.



Рисунок.
ЭСК (ESC, embryonic stem cells) человека могут быть выделены из эмбрионов, полученных путем экстракорпорального оплодотворения (1), в то время как иПСК (iPSC, induced pluripotent stem cells), могут быть получены путем прямого перепрограммирования соматических клеток, например, фибробластов кожи (2). Независимо от происхождения, эти ПСК обладают способностью давать начало всем типам соматических клеток, в том числе клеткам гемопоэтического ряда (HSC, hematopoietic stem cells) (3), благодаря чему появляется возможность изучать развитие тканей человеческого организма in vitro. Соматические клетки, полученные из ПСК, могут быть использованы как модельные объекты для изучения таких заболеваний, как лейкемия (4), для скрининга лекарственных препаратов (5) или в качестве агента клеточной терапии (6).

Использование человеческих ПСК для исследования онтогенеза гемопоэтических клеток (ГСК)

Вооружившись результатами исследований моделей на мышах, ученые получили возможность осуществить направленную дифференциацию человеческих ПСК в гемангиобласты [12], мультипотентные прогениторные клетки [13], лимфоидные клетки [14] и даже в гемопоэтические (кроветворные) стволовые клетки (ГСК) [15]. Однако все же имеется ряд проблем. Например, при дифференциации in vitro все стволовые клетки имеют тенденцию дифференцироваться, в результате чего их количество стремительно сокращается. В частности, образование зрелых эритроидных клеток или истинных ГСК пока увенчалось незначительным успехом. Более того, во многих исследованиях имеет место произвольное использование реагентов с неопределенным составом, таких как сыворотка животных или питающие (фидерные) клетки, которые могут мешать адекватной оценке процесса развития стволовых клеток и затруднять клиническое применение результатов таких наблюдений. Только сейчас мы начинаем понимать, почему отдельные линии стволовых клеток могут значительно различаться по способности образовывать специфические клоны. Этот факт ограничивает наши возможности в обобщении результатов, полученных на любом ограниченном множестве линий.

Использование человеческих ПСК для изучения заболеваний системы кроветворения и онкогенеза

Ученым удалось получить нормальные гемопоэтические прогениторные клетки с исправленным генетическим дефектом от пациентов, страдающих анемией Фанкони, используя технологию индукции плюрипотентности [16]. Кроме того, были получены и в настоящее время активно изучаются человеческие ЭСК и иПСК, выделенные из эмбрионов с врожденными генетическими дефектами и изолированные из организма пациентов с трисомией по 21 хромосоме, SCID (тяжелые комбинированные иммунодефициты), SBDS (Shwachman-Bodian-Diamond syndrome) и талассемией [17, 18]. Технологии, основанные на использовании человеческих ПСК, имеют особое значение, поскольку позволяют проводить моделирование заболеваний с неизвестной генетической этиологией, а также заболеваний, являющихся результатом соматических мутаций в отдельных тканях организма (например, лейкемия) [19]. Было бы интересно узнать, может ли многоступенчатое развитие пролиферативных нарушений быть воспроизведено in vitro и сможет ли скрининг на таких моделях способствовать усовершенствованию методов лечения. Кроме того, технология иПСК может быть использована для получения генетически разнообразных клонов человеческих клеток для тестирования токсичности лекарственных препаратов.

Терапевтическое применение человеческих ПСК

Считается, что аутологичные клетки пациента могут быть получены, подвержены в случае необходимости генетической репарации, индуцированы к дифференциации в терапевтически значимые типы клеток и затем трансплантированы для замены или улучшения качества поврежденных клеток или тканей. Полученные из ПСК гемопоэтические стволовые клетки могут быть полезны тем, кто нуждается в трансплантации костного мозга, поскольку поиск подходящего донора остается главным препятствием таких операций.

В отличие от традиционных трансплантаций костного мозга, КСК, дифференцированные из иПСК от одного здорового донора, могут быть введены нескольким реципиентам. При этом они не будут содержать лимфоцитов и, следовательно, не будут провоцировать развитие реакции трансплантат против хозяина (РТПХ). Дополнительными клиническими преимуществами таких КСК является индукция толерантности к солидным тканевым трансплантатам и препятствие развитию аутоиммунных реакций [20]. На сегодняшний день полученные из плюрипотентных клеток ГСК еще не вошли в клиническую практику, и в настоящее время можно говорить лишь о прогентирных глиальных клетках (предшественниках олигодендроцитов), полученных из ЭСК и проходящих клинические испытания в терапии повреждений костного мозга. Эти испытания проводит американская биотехнологическая корпорация Geron, лидер в экспериментальной терапии травм спинного мозга.

Основная задача этого пилотного испытания – оценить безопасность применения таких клеток, поскольку остаточные недифференцированные ПСК могут присутствовать в любом лекарственном препарате, произведенном на основе ПСК, и спровоцировать у реципиента появление тератом – доброкачественных опухолей, состоящих из различных дифференцированных соматических клеток [8]. По этой причине первостепенное внимание уделяется тщательной очистке дифференцированных клеток. С целью повышения безопасности клетки можно инкапсулировать или подвергать облучению накануне трансплантации, но это приведет к существенному снижению эффективности и увеличению продолжительности лечения. В то же время, эритроциты, полученные из человеческих ПСК, не теряют своей функциональной активности при облучении, уничтожающем оставшиеся в культуре недифференцированные стволовые клетки.

Терапевтические эффекты облученных эритроидных клеток неизбежно будут транзиторными, как и в случае с традиционным переливанием крови. Однако сочетание запросов клинической практики, отсутствия ограничений по HLA-совместимости и возможности достичь безопасности самой процедуры посредством облучения, вполне вероятно, будут способствовать тому, что эритроциты, полученные из ПСК, станут одним из первых успешных событий в клинической практике. В действительности их крупномасштабное производство вполне осуществимо [21], и консорциум во главе с Шотландской Государственной Службой Переливания Крови (Scottish National Blood Transfusion Service) нацелен на производство клинически значимых универсальных донорских эритроцитов [22].

Перспективы

Продвижение методов лечения, основанных на ПСК человека, сталкивается с рядом трудностей, такими как финансовые ограничения на получение и использование генетически модифицированных клеток, неопределенность перспектив по вопросу интеллектуальной собственности, неразвитость регуляторной базы в сфере таких методов лечения. Ученые пытаются найти безопасные и эффективные методы производства специфических для пациентов ЭСК или иПСК, а также их эффективной последующей дифференцировки в пригодные для трансплантации клетки.

В других публикациях авторы ставят вопрос о том, равноценны ли человеческие иПСК обыкновенным ЭСК (имеются доказательства, что такие различия существуют и это требует дальнейшего изучения), а также обращают внимание на недостаток данных долгосрочных клинических испытаний. Однако, несмотря на то, что эти трудности, вместе взятые, могут быть препятствием на пути продвижения новой технологии, каждая из них по отдельности может быть преодолена. Следует вспомнить, что от первого этапа разработки моноклональных антител до их успешного широкомасштабного применения в клинической практике прошло несколько десятилетий. При достаточном количестве времени и финансовых вложений технология, основанная на использовании ПСК человека, может совершить революционный переворот в регенеративной медицине.

Читайте также: