Технология пластического формирования материалов доклад

Обновлено: 02.07.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Описание презентации по отдельным слайдам:

Технологии ручной обработки древесных материалов. Резание. Пластическое формование материалов Технология 6 класс Учитель: Логинов А.А. МАОУ СШ №144 Красноярск 2020

Тезаурус Резание – это разделение какого-нибудь объекта на фрагменты (куски) или отделение от него небольших частей (стружек, образков) с помощью острого инструмента. Пластичность – это способность материала без разрушения изменять свои размеры и форму под действием внешних нагрузок и сохранять эти изменения после прекращения их воздействия. Пластическое формование – это придание изделиям или конструктивным элементам требуемой формы в процессе их изготовления.

Технологии ручной обработки древесных материалов включают, технологические процессы изменения формы, размеров и качеств материалов. Во время технологических процессов обработки материалов различными методами меняются форма и размер материала, а также могут меняться физико-механические свойства материалов. Для обработки древесных материалов с целью их изменения и достижения поставленных целей применяются различные методы обработки материалов. Основными методами ручной обработки древесных материалов являются: пиление, резание, строгание, долбление, сверление.

В 5 классе мы кратко ознакомились с искусственными материалами – пластмассами, состоящими из сложных веществ – полимеров, получаемых на предприятиях химической промышленности. Эти материалы при изготовлении (формировании) изделий нагревают, в результате чего они становятся пластичными, а при охлаждении – стеклообразными. Кроме полимера, пластмассы содержат добавки: наполнители, пластификаторы и др. Наполнители необходимы для придания пластмассе таких свойств, как прочность и устойчивость к высоким температурам. Пластификаторы повышают пластичность материала, а красители позволяют окрасить пластмассу в разные цвета.

Пластмассы хорошо обрабатываются, поэтому из них изготавливают разнообразные изделия: посуду, бытовые приборы, мебель, тубы, спортивны инвентарь, предметы интерьера и многое другое. Технологический процесс не стоит на месте, с каждым днём происходит усовершенствование цифровых технологий, что позволяет использовать новшества в различных сферах жизни человека. Аддитивные технологии - одни из самых передовых и востребованных во всем мире. Аддитивные технологии (Additive Manufacturing – от слова аддитивность – прибавляемый) – это послойное наращивание и синтез объекта с помощью компьютерных 3d технологий. Изобретение принадлежит Чарльзу Халлу, в 1986 г. сконструировавшему первый стереолитографический трёхмерный принтер. Что значит аддитивный процесс послойного создания модели и как он происходит? В современной промышленности это несколько разных процессов, в результате которых моделируется 3d объект: UV-облучение; (для 3 d печати); Экструзия; (для 3 d печати); Струйное напыление; (для 3 d печати); Сплавление; (для 3 d печати); Ламинирование.

Приемы обработки древесины Пиление- Это резание древесины пилами, с целью разделения ее на части.(выделяют поперечное и продольное пиление)

При помощи формовки пластическим материалам придают не­обходимую форму. Этот способ обработки используют для формов­ки хлебопекарных дрожжей, приготовления из теста хлебобулоч­ных, макаронных, кондитерских и других изделий.

Например, тесто относится к упругопластическим и вязким материалам, способным сохранять свои свойства до определенного предела. За этим пределом тесто начинает необратимо деформироваться и течет, как вязкая жидкость. Это насту­пает тогда, когда приложен­ные силы превосходят сопро­тивление структуры упругой системы.

Прессы, применяемые для формовки материалов, в за­висимости от способа деист. вия подразделяются на наг­нетающие, закаточные и штампующие.

Нагнетающие прессы ши­роко применяются для фор­мования макарон, вермишели, лапши, дрожжей и др. Такие прес­сы состоят из нагнетающего устройства и формующей матрицы (мундштука) с отверстиями нужного сечения и размеров.

Шнековый пресс для изготовления макарон, вермишели и лапши, показанный на рис. VI—4 состоит из тестосмесителя 1, нагнетаю­щего шнека 2 и прессовой головки 3, обеспечивающей равномер­ное давление теста на матрицу 4. В нем нагнетающим шнеком тесто продавливается через матрицу с получением продукта опре­деленного сечения и формы. Матрицу часто изготовляют из ла­туни или бронзы; в последнее время в нее вставляют вкладыши из фторопласта, к которому тесто не прилипает.

Закаточные прессы или машины (рис.5) применяются для придания тесту округлой формы. Это достигается прокатыванием


Рис. VI—5. Закаточные машины для теста:

куска теста между двумя поверхностями, движущимися одна относительно другой.

Штампующие прессы широко применяются при производстве печения и карамели. Из прокатанного в ленту материала, движущегося по конвейеру, штампующим механизмом вырубаются изделия необходимой формы и требуемого рисунка.

4. Уплотнение сыпучих материалов

Уплотнение (прессование) сыпучих материалов широко применяется при производстве сахара-рафинада и многих пищевых концентратов.

Чтобы полученные брикеты были прочными и не рассыпались, материал прессуют во влажном состоянии или добавляют к нему связывающую жидкость (растительное масло и др.).

Регулируемыми параметрами процесса отжатая жидкости в прессах являются количество и качество получаемой жидкости содержание ее в остатке. Эти показатели зависят от производительности пресса, рабочего давления при прессовании, продолжительности и температуры процесса.

ОПРЕДЕЛЕНИЕ ПОТЕРЬ НАПОРА


При движении жидкости в трубопроводе часть энер­гии потока (гидродинамического напора расходу­ется на преодоление гидравлических сопротивлений.

Последние бывают двух видов:


1) сопротивления по длине , пропорци­ональные длине потока;


2) местные сопротивления , возникнове­ние которых связано с изменением направления или ве­личины скорости в том или ином сечении потока.

К местным сопротивлениям относят внезапное расши­рение потока, внезапное сужение потока, вентиль, кран, диффузор и т. д.


Величина общих потерь энергии (напора) учитыва­ется дополнительным членом , в уравнении Бернулли для реальной жидкости.

Определение величины потерь энергии (напора) при движении жидкости является одной из основных задач гидродинамики.

При движении жидкости в прямой трубе потери энер­гии определяются формулой Дарси — Вейсбаха

= ; (2-27)


где —потери напора по длине, м.

Эту же потерю напора можно выразить в единицах давления:

(2-28)

где —потери давления, Па; —потери напора, м;—коэффициент сопротивления трения по длине; l- длина трубы, м; d—диаметр трубы, м; v—средняя ско­рость движения жидкости в выходном сечении трубы, м/с: g-ускорение силы тяжести, м/с 2 ; р—плотность жидкости (газа), кг/м 3 .

Коэффициент сопротивления трения по длине

В гидравлических расчетах потерь напора по формуле Дарси — Вейсбаха (2-27) наиболее сложным является определение величины коэффициента сопротивления трения по длине.

Многочисленными опытами установлено, что в общем случае коэффициент сопротивления трения К зависит от числа Рейнольдса и относительной шероховатости стенок канала, т. е. .


Для частных случаев движения жидкости имеем сле­дующие зависимости для определения коэффициента сопротивления трения .

При ламинарном движении коэффициент сопротивле­ния трения не зависит от относительной шероховатости, а является функцией только числа Рейнольдса и опреде­ляется по формуле Пуазейля:


; (2-29)


При турбулентном движении в гидравлически глад­ких каналах (трубах) в диапазоне чисел Рейнольдса 15•10 3 3 коэффициент сопротивления тре­ния также не зависит от относительной шероховатости стенок и является функцией числа Рейнольдса. Он опре­деляется по формуле Блазиуса:


(2.30)


В широком диапазоне чисел Рейнольдса для переход­ной области сопротивления коэффициент сопротивле­ния , уже является функцией двух величин: числа Рей­нольдса и относительной шероховатости и может опреде­ляться, например, по формуле Альтшуля:


(2-30)

Границы этой области сопротивления для круглых труб различной шероховатости определяются следующим неравенством:


. (2-32)

При этом условии ламинарная пленка начинает ча­стично разрушаться, крупные выступы шероховатости уже оголены, а мелкие еще скрыты в толще сохранив­шейся ламинарной пленки.


В квадратичной области сопротивления, когда лами­нарная пленка полностью исчезает и все выступы шеро­ховатости оголены, на величину коэффициента сопротив­ления трения число Рейнольдса уже не оказывает ни­какого влияния, и, как показывает опыт, в этом случаев является функцией только относительной шероховато­сти, т. е.


; (2-33)

Для определения коэффициента сопротивления в этой области может быть использована формула Б. Л. Шифринсона


; (2-34)

Для неновых стальных и чугунных водопроводных труб коэффициент сопротивления трения К можно опре­делить по следующим формулам Ф. А. Шевелева:


при 1,2 м/с


; (2-36)


здесь d — диаметр трубы; — средняя скорость движе­ния воды в трубе.

Местные потери напора и коэффициент местного сопротивления

Местные потери напора принято выражать в долях от скоростного напора. Их определяют по формуле Вейсбаха:


; (2-37)


где — коэффициент местного сопротивления, зависящий от вида местного сопротивления и определяемый опытным путем (для турбулентного режима течения); v— скорость за местным сопротивлением.

Значения видов местных сопротивлений приводятся в таблицах.

Вычисление полной потери напора

Полная потеря напора выражается суммой потерь напора по длине и на местные сопротивления:


; (2-38)


где -сумма местных потерь напора, со­четание которых в трубопроводе может быть различным в зависимости от назначения последнего.


Подставляя в уравнение (2-38) значение из фор­мулы (2-27), получаем удобную для практических рас­четов формулу полной потери напора:


(2-39)

Основные этапы производства кирпича методом пластического формования. Специфика процесса придания массе заданных форм и размеров в ходе получения заготовки изделия. Пластичные свойства сырьевой массы, технология изготовления и сушки керамического кирпича.

Рубрика Строительство и архитектура
Вид реферат
Язык русский
Дата добавления 14.04.2013
Размер файла 52,4 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Пермский Национальный Исследовательский Политехнический Университет

Кафедра строительных материалов и специальных технологий

по дисциплине: Процессы и аппараты в технологии строительных материалов

Пластическое формование в технологии строительных материалов

Все разнообразие керамических материалов производится в принципе по однотипной схеме, включающей в себя следующие переделы: добычу сырьевых материалов, подготовку сырьевой массы, формование изделий, сушку и обжиг. Однако для получения изделий с различной структурой черепка и различной конфигурации применяют разные методы формования: литье, пластическое формование, полусухое и сухое прессование. В зависимости от метода формования производят подготовку сырьевой массы.

Основные изделия строительной керамики -- кирпич и керамические камни, а также некоторые виды керамических плиток, черепицы и труб производят методом пластического формования. Этот метод формования наиболее прост и получил наибольшее распространение.

1. Пластическое формование в изготовлении строительного кирпича

Формованием называется процесс придания массе заданных форм и размеров, т. е. получения заготовки (полуфабриката) изделия. Структура заготовки в значительной мере определяет строение и свойства изделий после обжига. При формовании стремятся максимально увеличить содержание твердой фазы, чтобы снизить усадки в сушке и обжиге.

Пластичность глин предопределяет наличие специфических деформационных свойств -- малой вязкости и достаточно высокого предела текучести.

Показателем формовочных свойств масс является соотношение между внешним и внутренним трением. Считают, что формование возможно, если внутреннее трение массы (когезия) больше, чем трение о формующий орган машины (аутогезия). Для оценки формовочных свойств используют коэффициенты внутреннего трения и сцепления массы. Из уравнения Кулона-Мора следует, что сопротивлением массы уПР сдвигу определяется коэффициентом внутреннего трения f, сцеплением С и действующим сжимающим напряжением у:

Основные свойства пластичной формовочной массы зависят от минерального состава, формы и размеров частиц твердой фазы, вида и количества временной технологической связки, интенсивности образования гидратных слоев на поверхностях частиц. С увеличением содержания жидкой фазы коэффициент внутреннего трения растет, проходя через максимум. Другие показатели уменьшаются монотонно, но с разной интенсивностью. Это позволяет для каждой массы выбрать оптимальное значение формовочной влажности. Лучшие формовочные свойства имеет масса с максимально развитыми слоями физически связанной воды при минимальном содержании свободной воды в системе.

Возрастание дисперсности твердой фазы увеличивает количество контактов между частицами в единице объема и прочность. Одновременно растут оптимальная формовочная влажность, предел текучести, вязкость, модули деформации, коэффициент внутреннего трения и связность массы, повышается пластичность.

Чрезмерное повышение дисперсности увеличивает усадки в сушке и обжиге, поэтому оптимальный зерновой состав должен обеспечивать создание каркаса из сравнительно крупных зерен для повышения предела текучести и уменьшения усадок.

Пластическое формование осуществляют тремя способами: выдавливанием, допрессовкой и раскаткой. Во всех случаях механические напряжения не превышают 1--30 МПа, масса содержит 30--60% жидкости по объему. Заготовка сохраняет форму благодаря наличию предела текучести. Важнейшей задачей при пластическом формовании является подбор оптимальной формовочной влажности. Для оценки формовочной влажности WФ по П.А. Ребиндеру используют зависимость пластической прочности структуры Рm, от влажности Wабc.

Влияние влажности на основные параметры пластичной массы:

f - коэффициент внутреннего трения; Е1 и Е2 - модули быстрой и замедленной обратимой деформации; С - сцепление; з - вязкость.

Пластической прочностью называют механическое напряжение, которое способна выдерживать масса без нарушения сплошности. Считают, что формовочной влажности соответствует точка перехода зависимости Рm - влажность от прямолинейного участка. В заводской практике формования на вакуумных прессах ведут обычно при влажности на 1-3% меньше.

Чем сложнее форма изделия, тем при более высокой влажности проводят формование. Для его облегчения иногда в массы добавляют высокопластичные монтмориллонитовые глины.

Выдавливание является окончательной операцией формования изделий грубой строительной керамики (кирпич) и промежуточным этапом переработки пластичной тонкокерамической массы перед раскаткой и допрессовкой. Выдавливание может быть горизонтальным и вертикальным. Его осуществляют на шнековых вакуумных прессах. В шнековом прессе при движении массы возникает сложное объемно-напряженное состояние. Лопасти шнека сообщают массе поступательное и вращательное движение, а стенки корпуса пресса замедляют перемещение массы в прилегающим к ним слоям. По мере продвижения массы к головке пресса ее вращение замедляется, но периферийные слои движутся с большей скоростью. Окончательно уплотняет массу последний виток шнека. Он выжимает массу из цилиндра в головку пресса с различными по сечению скоростями, сообщая ей частичное вращение.

Распределение скоростей течения пластической (а) и тощей (б) масс в головке шнекового пресса.

Под действием бокового давления линейная скорость массы у стенки меньше, а окружная выше, чем в центре. В массе образуются два параболоидальных потока, скорости которых в мундштуке постепенно выравниваются. Более пластичные массы характеризуются большим градиентом скоростей по сравнению с жесткими (рис. 6.2.). Для снижения неравномерности течения используют шнеки с переменным шагом винта и двухзаходной выпорной лопастью. Крупнозернистые включения снижают склонность массы к расслаиванию.

Выдавливание сопровождается образованием анизотропной структуры масс, так как пластинчатые частицы глины ориентируются своей тонкой гранью в направлении максимальной скорости течения. Анизотропия проявляется в неравномерной усадке и различной прочности образцов в разных направлениях.

Дефекты устраняют подбором размеров головки пресса и мундштука (отношение длины к диаметру должно быть не менее 4, увеличиваясь для сильно пластичных и жестких масс), конусности мундштука, смазкой головки и мундштука. Эффективно применение вибрирующих головок или вставок и ультразвуковое разжижение масс.

Сформованный кирпич в дальнейшем подвергается сушке.

Формовка кирпича производится на вакуумном шнековом прессе СМК-217 или его аналогах. Пресс комплектуется вакуум-насосом ВВН-12, оборудуется ресивером и баком для рециркуляции воды в вакуум-насосе. В глиномешалке пресса производится доведение влажности глиномассы до оптимальной формовочной. Пресс также комплектуется мундштуками для формовки полнотелого и пустотелого кирпича.

Брус из мундштука пресса непрерывной лентой поступает на автомат многострунной резки (АМВР) КБ045 (поз. 5), где производится резка кирпича в две стадии. Сначала отрезается мерный брус длиной равной толщине 10 шт. кирпича (первый узел АМВР). Затем мерный брус поступает на второй узел многострунной резки АМВР, где разрезается на 10 шт. одинарного или на 8 шт. утолщенного пустотелого кирпича. На третьем узле АМВР - разгрузочном ленточном (или цепном) конвейере производится раздвижка кирпича с зазором в 20-30 мм. Этим же конвейером кирпич-сырец доставляется в зону укладки его на сушильную оснастку - посты укладки оборудуются с 2-х сторон конвейера.

керамический кирпич пластический формование

1. Госин Н.Я., Соболев М.А. Производство керамического кирпича. - Москва: Стройиздат 1971г. 207с.

2. Комлева Г.П., Комлев В.Г. Основы проектирования заводов по производству ТН и СМ. Ивановский Химико-технологический университет - Иваново, 2004г. 111с.

3. Кашкаев И.С., Шейман Е.Ш. Производство керамического кирпича. - Москва: Высшая школа, 1974г. 287с.

4. Буров Ю.С. Технология строительных материалов и изделий. Учебник для втузов Москва Высшая школа 1972г.

9. Роговой М.И. Технология искусственных пористых заполнителей и керамики. Учебник для вузов Москва Стройиздат, 1974г.

Подобные документы

Технологический процесс производства керамического кирпича. Механизация процессов вскрыши карьера и добычи глины. Формовка сырца, процесс сушки, обжиг кирпича. Применение туннельной печи для обжига кирпича. Внедрение автоматизированной системы управления.

презентация [5,5 M], добавлен 29.03.2016

Описание свойств керамического кирпича. Характеристика сырья для производства керамического кирпича на базе месторождений пластичной глины с нанесением ангоба. Материальный баланс технологического комплекса по производству керамического кирпича.

курсовая работа [803,9 K], добавлен 12.02.2011

Описание и область использования продукции, сырьевые материалы. Керамика — изделия из неорганических, неметаллических материалов и их смесей с минеральными добавками. Производство керамического кирпича пластического формования с щелевидными пустотами.

реферат [31,9 K], добавлен 16.11.2011

Характеристика основных видов сырья. Ассортимент и требования к выпускаемой продукции. Выбор способа производства кирпича. Технологическая линия производства лицевого керамического кирпича полусухого прессования. Тепловой баланс зон подогрева и обжига.

курсовая работа [116,9 K], добавлен 20.11.2009

Технологическая схема производства силикатного кирпича. Расчет удельного расхода сырьевых материалов. Процентное содержание пустот в кирпиче. Расчет потребности воды на изготовление силикатной смеси. Формование и автоклавирование силикатного камня.

курсовая работа [619,6 K], добавлен 09.01.2013

Описание продукции и области её применения. Классификация лицевых керамических кирпичей. Сырьевые материалы для производства керамических кирпичей, предъявляемые требования. Технологическая схема производственного процесса, контроль качества и испытания.

курсовая работа [183,4 K], добавлен 28.01.2011

Определение сопротивления теплопередаче теплоэффективного трехслойного блока. Расчет коэффициента теплопроводности кирпича керамического (полнотелого и пустотелого) и кирпича керамического одинарного. Особенности использования пирометра Testo 830-T1.

Пластическая деформация – эффективный инструмент формирования структуры различных материалов. На ее особенностях основаны технологии обработки давлением, придание материалам особых свойств, создание наноматериалов.

Пластическая деформация

Понятие деформации

  • внешними силами;
  • усадкой;
  • структурными превращениями;
  • внутренними физико-механическими процессами.

Примеры прилагаемых к телу нагрузок:

  • сжатие – нагрузка прикладывается соосно по направлению к телу;
  • растяжение – возникает при продольном от тела приложении нагрузки (соосно или параллельно плоскости, в которой находятся точки крепления тела);
  • изгиб – нарушение прямолинейности главной оси тела;
  • кручение – возникает при приложении к телу крутящего момента.

Механизм и виды деформирования изучаются материаловедением, физикой твердого тела, кристаллографией.

Суть явления пластической деформации

Твердые тела подвержены двум видам деформации:

В таблице приведены сравнительные характеристики этих явлений.

· в структуре возникают остаточные изменения;

Пластическое деформирование ведет к модификациям в структурах металлов и их сплавов, а, следовательно, к изменениям их свойств.

Механизм возникновения

Возникновение пластической деформации обусловлено процессами, имеющими кристаллографическую природу: скольжением; двойникованием; межзеренным перемещением.

Скольжение

Происходит под воздействием касательных напряжений. Проявляется в виде перемещения одной части кристалла относительно другой. Этот процесс, в пределах кристалла, называется линейной дислокацией. Когда линейная дислокация выходит из кристалла, на его поверхности возникает ступенька, равная одному периоду решетки. Увеличение напряжения ведет к перемещению новых атомных плоскостей. Образуются новые ступеньки единичных сдвигов на поверхности кристалла. Чтобы дислокация продвинулась, не требуется разрывать все атомные связи в плоскости скольжения. Межатомная связь разрывается только в краевой зоне дислокации.

Скольжение при деформации

Современная теория основана на положениях:

  • последовательность распространения скольжения в плоскости сдвига;
  • место возникновения скольжения – это область нарушения кристаллической решетки, возникающая при нагружении кристалла.

Одно из свойств металла – теоретическая прочность. Ее используют для характеристики сопротивления пластическому деформированию. Она определяется силами межатомных связей в кристаллических решетках и значительно превышает реальную. Так для железа прочность:

  • 30 кг/мм — реальная;
  • 1340 кг/мм — теоретическая.

Различие вызвано тем, что для движения дислокации разрушаются лишь связи между атомами, находящимися у края дислокации, а не все атомные связи. Для этого необходимы меньшие усилия.

Двойникование

Это процесс образования в кристалле областей с закономерно измененной ориентацией кристаллической структуры. Двойникованием достигается незначительная степень деформации.

Двойниковые образования возникают по одному из двух механизмов:

  • являются зеркальной переориентацией структуры матрицы (материнского кристалла) в некоторой плоскости;
  • путем поворота матрицы на определенный угол вокруг кристаллографической оси.

Двойникование свойственно кристаллам, имеющим решетки:

  • гексагональную (магний, цинк, титан, кадмий);
  • объемно-центрированную (железо, вольфрам, ванадий, молибден).

Склонность к нему повышается при увеличении скорости деформации и снижении температуры.

Двойникование при деформации

Двойникование в металлах с кубической гранецентрированной решеткой (алюминий, медь) — результат отжига заготовки, которая подверглась пластическому деформированию.

Межзеренное перемещение

Такое изменение структуры материала идет вод воздействием растягивающего усилия. Процесс, в первую очередь, начинается в зерне, в котором направление легкого скольжения совпадает с направлением действия нагрузки. Это зерно будет растягиваться. Соседние зерна при этом будут разворачиваться до того момента, когда в них направление легкого скольжения также совместится с направлением силы. После они начнут деформироваться.

Результат межзеренного перемещения – волокнистая структура материала. Его механические свойства неодинаковы в разных направлениях:

  • пластичность выше в направлении, параллельном действию растягивающего усилия, чем в перпендикулярном направлении;
  • прочность имеет высокие показатели поперек приложению усилия, в продольном направлении – показатели ниже.

Эта разница свойств называется анизотропия

Виды пластической деформации

В зависимости от температуры и скорости процесса различают такие виды пластической деформации:

Изменение структуры металла при деформации
Сдвиговой механизм пластической деформации

Одно из определяющих понятий — температура рекристаллизации. Она соответствует наименьшей температуре нагрева, при которой возможно возникновение новых зерен и определяется температурой плавления металла по формуле:

Холодная деформация. Наклеп

Холодная деформация проходит при температурах, ниже tрек. В ее результате возникает искажение кристаллической структуры материала. Все зерна растягиваются в одном направлении. Растет прочность, а свойства пластичности снижаются. Это упрочнение называется наклеп (нагортовка). Он может быть:

  • полезным — наклепанный слой формируется специально, например в дробеметных машинах, накатыванием поверхностей роликами или шариками, чеканкой бойками, гидроабразивными методами;
  • неумышленным (вредным) – возникает при воздействии на металл существенных давлений со стороны обрабатывающего инструмента.

Причина наклепа заключается в развороте плоскостей скольжения и усилении искажений кристаллической решетки. Упрочненный, наклепанный металл быстро вступает в химические реакции, хорошо корродирует и склонен к коррозионному растрескиванию. Деформировать его затруднительно. Но наклеп повышает свойство сопротивления усталости.

В прокатном производстве этот тип деформации применяется для обработки давлением пластичных металлов, заготовок с малым сечением. Такие методы, как штамповка и волочение, позволяют достичь требуемой чистоты поверхности и обеспечить точность размеров.

Устранить изменения в структуре, которые появляются при холодной деформации, возможно термообработкой (отжигом).

При отжиге подвижность атомов повышается. В металле из множественных центров вырастают новые зерна, которые заменяют вытянутые, деформированные. Они характеризуются одинаковыми размерами во всех направлениях. Это эффект называется рекристаллизацией.

Горячая деформация

Горячая деформация имеет такие характерные признаки:

  1. Температура, выше tрек.
  2. Материал приобретает равноосную (рекристаллизованную) структуру.
  3. Сопротивление материала деформированию ниже в десять раз, чем при холодной.
  4. Отсутствует упрочнение.
  5. Свойства пластичности более высокие, чем при холодной.

Благодаря этим обстоятельствам, технологии горячей деформации применяются при обработке давлением крупных заготовок, малопластичных и сложно деформируемых материалов, литых заготовок. При этом используется оборудование меньшей мощности, чем для холодной деформации.

Недостаток процесса — возникновение окалины на поверхности заготовок. Это снижает показатели качества и возможность обеспечения требуемых размеров.

Горячая пластическая деформация

Процессы, после которых структура образцов рекристаллизована частично с признаками упрочнения, называются неполной горячей деформацией. Она является причиной неоднородности структуры металла, пониженных механических и пластических характеристик. Регулированием соответствия скорости деформирующего воздействия и рекристаллизации, можно достичь условий, при которых рекристаллизация распространится во всем объеме обрабатываемой заготовки.

Рекристаллизация начинается после окончания деформирования. При значительных температурах описанные явления происходят за секунды.

Таким образом, особенности воздействия холодной деформации используются для улучшения рабочих характеристик изделий. Сочетанием горячей и холодной деформаций, режимов термообработки можно воздействовать на изменение этих свойств в требуемых пределах.

Интенсивная пластическая деформация

Получить беспористые объемные металлические наноматериалы можно технологиями интенсивной пластической деформации (ИПД). Их суть заключается в деформировании металлических заготовок:

  • при относительно небольших температурах;
  • при повышенном давлении;
  • с высокими степенями деформации.

Это обеспечивает формирование гомогенной наноструктуры с большеугловыми границами зерен. Вопреки интенсивному воздействию, образцы не должны получать механические повреждения и разрушаться.

  1. кручение (ИПДК);
  2. разноканальное угловое прессование;
  3. всесторонняя ковка;
  4. мультиосевое деформирование;
  5. знакопеременный изгиб;
  6. аккумулированная прокатка.

Первые работы по созданию наноматериалов выполнены в 80х-90х годах ХХ века с использованием методов кручения и разноканального прессования. Первый метод применим для небольших образцов – получаются пластинки диаметром 10…20 мм и толщиной до 0,5 мм. Для того чтобы получить массивные наноконструкции используется второй метод, в основу которого положена деформация сдвигом.

Интенсивная пластическая деформация
Интенсивная пластическая деформация: понятие

Методы пластической деформации позволяют получать заготовки из стали, сплавов цветных металлов и других материалов (резина, керамика, пластмассы).

Они высокопроизводительные, позволяют обеспечить требуемое качество получаемых изделий, улучшить их механические свойства.

Читайте также: