Технический доклад о космическом мусоре

Обновлено: 16.05.2024

Руководящие принципы Комитета по использованию космического пространства в мирных целях по предупреждению образования космического мусора

1. Исходная информация

Со времени опубликования Комитетом по использованию космического пространства в мирных целях своего Технического доклада о космическом мусоре 1 в 1999 году существует общее понимание того, что засоренность космического пространства создает опасность для космических аппаратов, находящихся на околоземной орбите. Для цели настоящего документа космический мусор определяется как все находящиеся на околоземной орбите или возвращающиеся в атмосферу антропогенные объекты, включая их фрагменты и элементы, которые являются нефункциональными. Поскольку засоренность космического пространства продолжает увеличиваться, вероятность столкновений, способных наносить повреждения, будет также увеличиваться. Кроме того, существует и опасность причинения ущерба на поверхности Земли, если мусор сохранится после входа в ее атмосферу. В связи с этим незамедлительное осуществление надлежащих мер по предупреждению образования космического мусора считается благоразумным и необходимым шагом на пути к сохранению космической среды для будущих поколений.

Исторически сложилось так, что основными источниками космического мусора на околоземных орбитах были

а) самопроизвольные и преднамеренные разрушения на орбите, которые приводят к долгосрочному засорению, и

b) космический мусор, высвобождаемый умышленно во время функционирования орбитальных ступеней ракет-носителей и космических аппаратов. В будущем фрагменты, возникающие в результате столкновений на орбите, как предполагается, станут значительным источником космического мусора.

Меры по предупреждению образования космического мусора можно подразделить на две широкие категории: меры, которые уменьшают образование потенциально вредного космического мусора в краткосрочном плане, и меры, которые ограничивают образование такого мусора в долгосрочном плане. Меры первой категории сопряжены с уменьшением образования космического мусора в результате полетов и избежанием разрушений на орбите. Меры второй категории касаются процедур после завершения программ полетов, которые позволяют уводить отработавшие космические аппараты и орбитальные ступени ракет-носителей из районов, плотно загруженных функционирующими космическими аппаратами.

2. Обоснование

Осуществление мер по предупреждению образования космического мусора рекомендуется по той причине, что для некоторой части космического мусора существует вероятность нанесения повреждений космическим аппаратам, ведущих к прекращению программы полета или, в случае пилотируемых аппаратов, к потере жизни. В отношении орбит, на которых осуществляются пилотируемые полеты, меры по предупреждению образования космического мусора имеют огромное значение с учетом их последствий для обеспечения безопасности экипажей.

Свод Руководящих принципов предупреждения образования космического мусора, который был разработан Межагентским координационным комитетом по космическому мусору (МККМ), отражает основополагающие элементы существующей совокупности практики, стандартов, кодексов и руководств по этому вопросу, разработанных рядом национальных и международных организаций. Комитет по использованию космического пространства в мирных целях признает полезность свода качественных руководящих принципов высокого уровня, пользующегося более широким признанием в мировом космическом сообществе. По этой причине была создана (Научно-техническим подкомитетом Комитета) Рабочая группа по космическому мусору для разработки свода рекомендуемых руководящих принципов на основе технического содержания и базовых определений руководящих принципов МККМ по предупреждению образования космического мусора и с учетом договоров и принципов Организации Объединенных Наций, касающихся космического пространства.

3. Применение

Государствам-членам и международным организациям следует добровольно принять через национальные механизмы или через свои применимые механизмы меры по обеспечению осуществления в максимально возможной степени данных руководящих принципов путем использования практики и процедур предупреждения образования космического мусора.

Эти руководящие принципы являются применимыми при планировании полетов и функционировании вновь спроектированных космических аппаратов и орбитальных ступеней, а также, если это возможно, при функционировании существующих аппаратов и ступеней. Эти принципы не являются юридически обязательными согласно международному праву.

Кроме того, признается, что исключения из осуществления отдельных руководящих принципов или их элементов могут быть обоснованы, например, в соответствии с положениями договоров и принципов Организации Объединенных Наций, касающихся космического пространства.

4. Руководящие принципы предупреждения образования космического мусора

При планировании полетов, проектировании, изготовлении и функционировании (запуск, полет и увод с орбиты) космических аппаратов и орбитальных ступеней ракет-носителей необходимо учитывать следующие руководящие принципы:

Руководящий принцип 1:
Ограничение образования мусора при штатных операциях

Космические системы следует проектировать таким образом, чтобы не происходило образования мусора при штатных операциях. В тех случаях, когда это не осуществимо, последствия любого образования мусора для космической среды должны быть сведены к минимуму.

В течение первых десятилетий космической эры конструкторы ракет-носителей и космических аппаратов допускали преднамеренное высвобождение многочисленных объектов, связанных с полетами, на околоземную орбиту, включая, среди прочего, крышки датчиков, механизмы отделения и устройства вывода на орбиту. Целенаправленные усилия в области проектирования, которым способствует признание угрозы, порождаемой такими объектами, оказались эффективными с точки зрения сокращения этого источника космического мусора.

Руководящий принцип 2:
Сведение к минимуму возможности разрушений в ходе полетных операций

Космические аппараты и орбитальные ступени ракет-носителей следует проектировать таким образом, чтобы избегать таких отказов, какие могут вести к самопроизвольному разрушению. В случае выявления состояния, ведущего к такому отказу, следует планировать и принимать меры по уводу с орбиты и пассивации систем во избежание разрушений.

Исторически сложилось так, что некоторые случаи разрушений обусловливались такими неисправностями в космической системе, как катастрофические отказы двигателей и энергетических установок. Посредством включения возможных сценариев разрушения в анализ характера отказов вероятность таких катастрофических событий может быть уменьшена.

Руководящий принцип 3:
Уменьшение вероятности случайного столкновения на орбите

При проектировании и разработке программы полета космических аппаратов и ступеней ракет-носителей следует проводить оценку и принимать меры по ограничению вероятности случайного столкновения с известными объектами в течение этапа запуска системы и на протяжении срока существования системы на орбите. Если имеющиеся данные об орбите указывают на вероятность столкновения, то следует рассматривать возможность корректировки времени запуска или проведения маневров для предотвращения столкновений на орбите.

Некоторые случайные столкновения уже были выявлены. Многочисленные исследования указывают на то, что по мере увеличения количества и массы космического мусора основным источником нового космического мусора, по всей вероятности, станут столкновения. Процедуры избежания столкновения уже были приняты некоторыми государствами-членами и международными организациями.

Руководящий принцип 4:
Избежание преднамеренного разрушения и других причиняющих вред действий

С учетом признания того, что увеличившаяся опасность столкновения может представлять собой угрозу для космических операций, следует избегать преднамеренного разрушения любых находящихся на орбите космических аппаратов и орбитальных ступеней ракет-носителей или других причиняющих вред действий, ведущих к образованию существующего в течение длительного периода времени мусора.

Если преднамеренное разрушение является необходимым, то оно должно производиться на достаточно низкой высоте, с тем чтобы сокращать время существования на орбите фрагментов, возникающих в результате такого разрушения.

Руководящий принцип 5:
Сведение к минимуму возможности разрушений после выполнения программы полета, вызываемых запасом энергии

Чтобы ограничить опасность для других космических аппаратов и орбитальных ступеней ракет-носителей, создаваемую самопроизвольными разрушениями, следует обеспечивать истощение или перевод в безопасное состояние всех бортовых источников запасенной энергии, когда они более не требуются для полетных операций или увода с орбиты после завершения программы полета.

Наибольшая часть внесенного в каталог космического мусора возникла в результате фрагментации космических аппаратов и орбитальных ступеней ракет-носителей. В большинстве случаев такие разрушения не носили преднамеренного характера, а во многих случаях они явились результатом оставления космических аппаратов и орбитальных ступеней ракет-носителей со значительным запасом энергии. Наиболее эффективными мерами предупреждения образования космического мусора явились пассивация космических аппаратов и орбитальных ступеней ракет-носителей в конце их полета. Пассивация требует удаления всех форм запасенной энергии, включая остатки топлива и жидкости под большим давлением, и разрядки аккумуляторов.

Руководящий принцип 6:
Ограничение длительного существования космических аппаратов и орбитальных ступеней ракет-носителей в районе низкой околоземной орбиты (НОО) после завершения их программы полета

Космические аппараты и орбитальные ступени ракет-носителей, которые завершили свои полетные операции на орбитах, проходящих через район НОО, должны быть уведены с орбиты контролируемым образом. Если это не представляется возможным, то они должны быть удалены с орбит во избежание их длительного нахождения в районе НОО.

При подготовке обоснований, касающихся возможных решений об удалении объектов с НОО, следует надлежащим образом учитывать необходимость обеспечения того, чтобы мусор, который способен достичь поверхности Земли, не представлял излишней опасности для людей или имущества, в том числе посредством загрязнения окружающей среды, вызываемого опасными веществами.

Руководящий принцип 7:
Ограничение длительного нахождения космических аппаратов и орбитальных ступеней ракет-носителей в районе геосинхронной орбиты (ГСО) после завершения их программы полета

Космические аппараты и орбитальные ступени ракет-носителей, которые завершили свои полетные операции на орбитах, проходящих через район ГСО, должны быть оставлены на таких орбитах, какие позволяют избегать их долгосрочного нахождения в районе ГСО.

В отношении космических объектов, находящихся в районе ГСО или около него, вероятность будущих столкновений может быть уменьшена путем оставления объектов по завершении их программы полета на орбите, находящейся над районом ГСО, таким образом, чтобы они не находились в районе ГСО или не возвращались в него.

5. Обновление

Исследования, проводимые государствами-членами и международными организациями в области космического мусора, следует продолжать в духе международного сотрудничества, с тем чтобы максимально использовать выгоды от осуществления инициатив в отношении предупреждения образования космического мусора. Настоящий документ будет рассматриваться и может быть пересмотрен, если это является обоснованным, с учетом новых данных.

6. Справочная информация

Справочный вариант руководящих принципов МККМ по предупреждению образования космического мусора на время опубликования настоящего документа содержится в приложении к документу A/AC.105/C.1/L.260.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Космический мусор: текущее состояние, проблемы и пути ее решения

hello_html_2aab41f6.jpg

Что такое космический мусор? Под космическим мусором подразумеваются все искусственные объекты и их фрагменты в космосе, которые уже неисправны, не функционируют и никогда более не смогут служить никаким полезным целям, но являющиеся опасным фактором воздействия на функционирующие космические аппараты, особенно пилотируемые. В некоторых случаях, крупные или содержащие на борту опасные (ядерные, токсичные и т. п.) материалы объекты космического мусора могут представлять прямую опасность и для Земли — при их неконтролируемом сходе с орбиты, неполном сгорании при прохождении плотных слоев атмосферы Земли и выпадении обломков на населённые пункты, промышленные объекты, транспортные коммуникации и т. п.

Космос нуждается в срочной очистке от мусора. Если обломки и останки спутников и ракет не будут удалены с низкой околоземной орбиты, космические полёты вскоре могут стать слишком опасными для людей и техники.

Целью моей работы является выяснение причин возникновения космического мусора и выявление рядя методов борьбы с космическим мусором.

История освоения околоземного космического пространства искусственными спутниками.

Важный научный результат полета спутника состоял в открытии окружающих Земля радиационных поясов. Счетчик Гейгера-Мюллера прекратил счет, когда аппарат находился в апогее на высоте 2530 км, высота перигея составляла 360 км.

В настоящее время только две страны — Россия и США имеют возможность и отслеживают всё околоземное космическое пространство в плане техногенного засорения с опорой на свои национальные системы контроля космического пространства.

Двое специалистов космического центра NASA в Хьюстоне выступили предостережением. Джей-Си Лю (J.-C. Liou) и Николас Джонсон (Nicholas Johnson) использовали компьютерную модель под названием LEGEND, чтобы попытаться спрогнозировать то, что случится с космическим мусором в последующие 200 лет. В настоящее время на земной орбите находится больше 9 тысяч объектов искусственного происхождения. Две трети из них — космический хлам. Исследователи сосредоточились на фрагментах, летающих на низкой орбите, на высотах от 200 до 2 тысяч километров над поверхностью Земли. всё больше металла отправляется в космос каждый год: к 2200-му количество ненужных человечеству объектов на орбите должно утроиться.

Наиболее засорены те области орбит вокруг Земли, которые чаще всего используются для работы космических аппаратов. Это НОО, геостационарная орбита (ГСО) и солнечно-синхронные орбиты (ССО).

Вклад в создание космического мусора по странам: Китай — 40 %; США — 27,5 %; Россия — 25,5 %; остальные страны — 7 %.

Методы уборки и уничтожения КМ.

Разработка и внедрение мероприятий, направленных на снижение засоренности ОКП.

Методы устранения проблем, связанных с орбитальным космическим мусором.

Отработавшие своё спутники представляют реальную опасность для других орбитальных объектов.

hello_html_m7826c7fa.jpg

Новый метод увода аппаратов-ветеранов с орбиты и их уничтожения предложили на днях инженеры американской корпорации Global Aerospace.Как считают специалисты, оптимальным решением может стать крупный воздушный шар, закреплённый в сложенном состоянии на борту спутника. Когда последний исчерпает свои возможности, шар должен наполниться гелием (либо другим газом). Большая оболочка создаст измеримое аэродинамическое сопротивление даже в разреженных остатках атмосферы.

По расчётам инженеров Global Aerospace, такой шар диаметром 37 метров всего за год в состоянии увести зонд массой 1,2 тонны с начальной орбиты, условно принятой за 830 километров, и заставить его сгореть в атмосфере. В естественных условиях процесс торможения может занять не одно столетие.

США построили орбитальный наблюдатель за космическим мусором.

На середину августа 2010 года американские ВВС (USAF) запланировали запуск единственного в своём роде спутника — Space Based Space Surveillance (SBSS). Новый аппарат впервые займётся отслеживанием орбитального мусора непосредственно из космоса.

Однотонный спутник изготовила компания Boeing. Его полезная нагрузка — мощный визуальный сенсор с широким полем зрения и электроникой с низким уровнем шума. Аппарат будет выведен на солнечно-синхронную орбиту высотой 630 километров.

Интерес к теме космического мусора возрос после беспрецедентной аварии в 2009 году, когда в космосе столкнулись действующий американский и выведенный из эксплуатации российский спутники. Наземные службы слежения тогда не сумели предсказать коллизию и увести работающий аппарат в сторону. Также участились случаи близкого прохода космических обломков от МКС, из-за чего порой приходится корректировать её орбиту.

Разработан солнечный уборщик космического мусора.

Небольшой солнечный парус мог бы не только предоставлять малым спутникам даровую тягу во время выполнения основной миссии, но и сводить с орбиты аппараты, отработавшие свой век. Проверить эту идею на практике призван наноспутник CubeSail, представленный недавно британскими инженерами.

Партнёры в этом проекте: космический центр университета Суррея (Surrey Space Centre), основной разработчик аппарата, компания Surrey Satellite Technology, а также европейский аэрокосмический гигант EADS Astrium, который предоставил финансирование.

Запуск аппарата в космос намечен на конец 2011 года. Он должен выйти на полярную орбиту высотой 700 километров. Там CubeSail развернёт квадратный парус из тонкой полимерной плёнки площадью 25 квадратных метров.

Авторы технологии предполагают, что подобные очень недорогие и лёгкие устройства могут стать стандартным оснащением новых спутников класса до 500 килограммов. Они бы развёртывали парус и работали как тормозная система в конце срока службы, уменьшая тем самым количество мусора в околоземном пространстве (фото Surrey Space Centre).

Более сложные аппараты такого типа могли бы в будущем даже состыковываться со старыми спутниками с той же целью утилизации.

Вакансия космического мусорщика все еще открыта.

Поскольку экономически приемлемых методов очистки космического пространства от мусора пока не существует, основное внимание в ближайшем будущем будет уделено мерам контроля, исключающим образование мусора, таким как предотвращение орбитальных взрывов, сопутствующих полету технологических элементов, увод отработавших ресурс космических аппаратов на орбиты захоронения, торможение об атмосферу и т. п.

В то же время поскольку большинство мер по уменьшению засорения прямо или косвенно затрагивает вопросы формирования облика и конкурентоспособности перспективной космической техники и сопряжены со значительными затратами по проектам её модернизации, перспективные общие нормативы и стандарты по засоренности ОКП необходимо принимать взвешенно и на глобальной основе.

Случаи столкновения космических аппаратов с мусором

В 1983 году маленькая песчинка (менее 1 мм в диаметре) оставила серьёзную трещину на иллюминаторе шаттла.

В июле 1996 года на высоте около 660 км французский спутник столкнулся с фрагментом третьей ступени французской же ракеты Arian .

hello_html_m7e10a6e1.jpg

В 2001 году МКС едва не столкнулась с семикилограммовым прибором, утерянным американскими астронавтами.

При столкновении спутника с мусором часто образуется новый мусор (так называемый синдром Кесслера), что в будущем может привести к неконтролируемому росту засорённости космоса.

Историческое значение орбитального мусора

Историки науки указывают на то, что некоторые объекты на орбите, рассматриваемые как мусор, будут представлять интерес для космических археологов будущего и поэтому должны быть сохранены.

Российская орбитальная группировка насчитывает более 110 спутников.

Более 110 космических аппаратов входят сегодня в российскую орбитальную группировку, при этом около 80% из них - военного или двойного назначения, сообщил во вторник журналистам командующий Космическими войсками (КВ) генерал-лейтенант Олег Остапенко.

"На сегодняшний день в составе российской орбитальной группировки насчитывается более 110 космических аппаратов. Из них около 80% составляют космические аппараты военного и двойного назначения. Порядка 30% космических аппаратов орбитальной группировки проходят летно-конструкторские испытания", - сказал Остапенко.

Хотелось бы добавить, что загрязненность космоса с каждым годом продолжает расти, в связи с этим растет риск столкновений причиняющих повреждения КА.

Поскольку с помощью существующих технологий тяжело решить задачу улучшения состояния космической среды, разумным шагом по сохранению космического пространства для будущих поколений в настоящее время есть принятие мер по уменьшению загрязненности.

Причин загрязнения космоса множество. Этим и обусловлен процесс засорения пространства. Так, при запуске ракет возникает выброс частей установок. А, например, работа реактивных двигателей насыщает пространство химическими веществами, несвойственными космической среде. Опять же, космический мусор как источник засорения околоземного пространства выступает устрашающим явлением. Не стоит списывать со счетов электромагнитное излучение и радиоактивное загрязнение, поступающей от радиопередающих систем и спутников.


Загрязнение космоса

Появление нового типа небесных объектов искусственного происхождения астрономы осознают теперь как специфическую область астрономии, которая является промежуточной между метеорной астрономией, исследующей вещество Солнечной системы вблизи и внутри атмосферы Земли, и планетной астрономией, изучающей вещество Солнечной системы за пределами так называемой сферы действия Земли. Первые шаги в систематическом слежении за объектами, находящимися в околоземном космосе, были предприняты военными в СССР и США в рамках задач противоракетной и противокосмической обороны. В обеих странах были созданы системы контроля околоземного пространства, оснащенные радарами дальнего обнаружения и оптическими инструментами. Задачи служб контроля состоят в обнаружении, сопровождении, получении координатной информаций и изображений объектов, их идентификации, анализе и отображении космической обстановки. Всего службами контроля космоса зафиксировано и непрерывно отслеживается сейчас чуть более 10 тыс. объектов, находящихся на околоземных орбитах. Это в основном довольно крупные тела размером более 10 см. Около 8 тыс. объектов занесены в официальные каталоги. Действующие спутники (примерно 500) составляют лишь незначительную часть общего числа каталогизированных объектов на околоземных орбитах.

Появилось абсолютно новое понятие — космический мусор. Оно объединяет спутники, исчерпавшие свои энергетические ресурсы, верхние ступени ракет-носителей, различные детали, сопутствующие запуску, и многое другое, что уже никогда не принесет никакой пользы человечеству, но вполне может остаться практически навечно в околоземном пространстве. За 43 года космической деятельности человека на разные околоземные орбиты и в далекий космос было запущено более 20 тыс. объектов общей массой свыше 3 тыс. т. Наблюдаемое распределение космического мусора в околоземном пространстве показано на рис. 1.

Рис. 1. Увеличение содержания мусора в околоземном космическом пространстве

1 — общее число объектов, включая не занесенные в официальные каталоги; 2 — общее число объектов, занесенных в каталоги; 3 — фрагменты космического мусора; 4 — космические аппараты; 5 — верхние ступени ракет; 6 — эксплуатационный мусор

(Технический доклад о космическом мусоре, подготовленный научно-техническим подкомитетом Комитета ООН по использованию космического пространства в мирных целях. Нью-Йорк, 1999)

Гавайях введен в эксплуатацию телескоп с зеркалом диаметром 3.7 м, оборудованный самым современным приемником излучения. В 2000 г. началась эксплуатация модернизированной станции американской системы слежения за космосом в контейнерном исполнении, которую можно быстро развернуть в нужном месте. Проницающая способность телескопа превышает 20-ю звездную величину. Такому оборудованию могут позавидовать профессиональные астрономы.

ПОДРОБНЕЕ О КОСМИЧЕСКОМ МУСОРЕ

Отслеживаемые телескопами и радарами служб контроля и занесенные в каталоги объекты имеют минимальные размеры 10-30 см для низких орбит (высоты орбит от 200 до 2000 км) и около 1 м на геостационарной орбите (высота круговой экваториальной орбиты около 35 800 км).

Число объектов размером 1-10 см можно оценить лишь статистически (это примерно 70000 -150000 объектов), поскольку они не наблюдаются ни телескопами, ни радарами, и не могут поэтому быть занесены ни в какие каталоги. Количество частиц, имеющих размеры менее 1 см, оценивается в несколько миллионов. Количество объектов микронного и меньшего размера, газовой и пылевой фракций — порядка 1013-1014. Столкновение любого фрагмента размером более 1 см с действующим спутником опасно для последнего из-за большой кинетической энергии осколка и может стать причиной прекращения его функциональной деятельности (это еще не самое худшее последствие, если учесть, что на спутнике может находиться ядерный реактор).

Для оценки реального риска столкновения действующих спутников с фрагментами космического мусора необходимо учитывать и некаталогизированные объекты, что подразумевает знание их пространственного распределения. Для получения такой информации в настоящее время существует единственный путь — моделирование некаталогизированных популяций. Такие модели созданы в ведущих космических странах — в США, государствах Западной Европы и в России.

Основным источником некаталогизированных объектов являются разрушения космических аппаратов и ракет-носителей вследствие взрывов или высокоскоростных столкновений. При этом чем меньше размер фрагмента, тем большее количество обломков такого размера образуется. Следовательно, наблюдаемые обломки составляют лишь очень небольшую часть общего числа частиц, находящихся в околоземном пространстве.

Наиболее засорены, конечно же, часто используемые области околоземных орбит: на высотах 850-1200 км и в зоне геостационарных орбит. Здесь же концентрируется и космический мусор (рис. 2). На высотах 850-1200 км летают метеорологические спутники и спутники дистанционного зондирования Земли, а также большая часть спутников с ядерными энергетическими устройствами. Последние на этих высотах могут существовать сотни лет до полного исчезновения радиационной опасности. Случаи досрочного разрушения возможны вследствие соударения с частицей размером меньше 0.1 см, летящей со скоростью пули -10 км/с.

Рис. 2. Схематическое распределение космического мусора в непосредственной близости от Земли (данные Научной корпорации КАМАН, США, 1995) Видны два пояса уплотнения космического мусора: один на высотах 850-1200 км над поверхностью Земли, другой на высоте около 38500 км

В ближней части околоземного пространства, на высотах ниже 400 км, то есть в области полета пилотируемых аппаратов, также имеется большое количество космического мусора, но эти объекты сравнительно недолговечны: через несколько лет после образования они сгорают в атмосфере Земли. Периодическое самоочищение низких орбит за счет трения объекта об атмосферу вызвано тем, что эффект трения приводит к вековому изменению большой полуоси орбиты объекта, постепенно уменьшая ее, пока объект не войдет в плотные слои атмосферы и не сгорит в ней. Правда, в ряде случаев обломки спутников и верхних ступеней ракет падают на поверхность Земли.

Считалось, что на геостационарной орбите подобного механизма самоочищения не существует. Однако выполненный в Институте астрономии РАН цикл работ, посвященных изучению долговременной эволюции высокоорбитальных космических объектов под действием светового давления, в корне изменил это мнение. Дело в том, что из-за наличия реактивной силы, возникающей от переизлученного солнечного света поверхностью спутника или иного объекта, появляется сила давления, которая в случае асимметрии поля рассеяния его поверхностью (а это наблюдается практически у всех спутников и фрагментов космического мусора) вызывает долгопериодические и вековые изменения в большой полуоси, наклоне и эксцентриситете орбиты. Таким образом, можно утверждать, что и на геостационарной орбите существует механизм самоочищения.

СТОЛКНОВЕНИЯ И ВЗРЫВЫ НА ОРБИТАХ

Исследования, проведенные в последние годы в Институте астрономии РАН и НАСА, привели к выводу, что более 40% космического мусора, находящегося на низких околоземных орбитах, — это осколки, образовавшиеся в результате взрывов вторых ступеней ракет и спутников на орбитах. А что происходит с теми спутниками, которые располагаются на геостационарных орбитах?

На геостационарную орбиту спутники запускают с 1963 г., а уже через год некоторые из них перестают быть активными и их орбиты начинают эволюционировать. Это привело к тому, что в 90-х годах плоскости их орбит вновь сблизились с геостационарной орбитой, а в первые десятилетия XXI в. этот процесс станет массовым. Появится дополнительная опасность столкновений функционирующих объектов с отработавшими свой срок и как результат этого — образование массы новых фрагментов космического мусора. Поэтому необходимо держать под контролем все спутники и их перемещения на геостационарной орбите.

Такой контроль можно осуществить с помощью больших фотографических камер с широким полем зрения. В течение одной ночи они позволяют проконтролировать всю область геостационарной орбиты, видимую со станции наблюдения. Самая большая камера подобного типа (рис. 3), работающая в Институте астрономии РАН (Звенигородская обсерватория под Москвой), может охватить область около 100° по долготе и обнаружить все геостационарные объекты размером более 1 м. Фотографирование с большим перекрытием исключает возможность пропуска объектов, вызываемого их видимым перемещением, что вполне вероятно при обзоре такой большой зоны дискретными участками.

Рис. 3. Высокоточная астрономическая установка (камера ВАУ) Звенигородской обсерватории для фотографирования искусственных спутников Земли

Есть основания считать, что столкновения и взрывы спутников на геостационарной орбите происходят столь же часто, как и на низкой орбите, но поиск и изучение осколков на геостационарной орбите представляет собой особую проблему. Первым шагом в ее решении является установление факта взрыва. Наблюдениями твердо установлены три факта взрывов на геостационарной орбите. Однако эти же события можно выявить и по косвенным признакам: по внезапным изменениям элементов орбит спутников или скорости дрейфа наблюдаемого объекта. В Институте астрономии РАН проводилось сравнение значений большой полуоси орбит ракет-носителей на геостационарной орбите в момент запуска с их значениями в более поздние моменты времени. Всего было проанализировано около сотни орбит, из которых 19 показали значимые изменения большой полуоси (рис. 4). По-видимому, эти объекты претерпели взрыв или разрушение.

Космический мусор

К нему относятся спутники, которые уже не работают на человечество, части ракет, различные детали и объекты. Проще говоря, это всё что попало в космос за время космической деятельности человека.

Уже установлен тот факт, что увеличение содержания мусора в околоземном пространстве повышает вероятность космических аварий. Из-за этой проблемы приходится откладывать космические операции и даже проводить процедуры по уклонению от столкновения с мусором.

Самое страшное заключается не только в росте наличия мусора, но и в невозможности полного его отслеживания и утилизации.

Бесспорно, это одна из важных, даже можно сказать, глобальных проблем на сегодняшний день. Да, да. Вы не ослышались. Это реальная проблема. В космическом пространстве действительно множество мусорных объектов.

Ведь увеличение космического мусора, как минимум, приводит к усложнению освоения космоса. А это точно не входит в наши планы. К чему же приведёт возможное падение крупных мусорных объектов страшно представить. Как видно, с этим нужно что-то делать. Интересный факт установили учёные. Большее количество мусора попало в космос из-за космической работы России. На втором месте по загрязнению космической среду стоит США.



Загрязнение околоземного космического пространства

Методы устранения космического мусора

К сожалению, человечество ещё не пришло к эффективным способам утилизации космического мусора. Очевидно, что в современном мире этот вопрос актуален и остро стоит перед людьми. На данный момент учёные предлагают несколько вариантов, но все они из области фантастики и являются нереально дорогими. И что еще важнее, пока выполнимы.

Из более возможных мер контроля и устранения можно использовать сбор, утилизацию и контроль полётов.

НАСА предлагает корректировать движение мусора с помощью лазеров. Но это, разумеется, дорогое удовольствие. Воздействие лазерной установки необходимо ежедневно, чтобы хоть как-то изменить курс объектов в космосе.


Европейское космическое агентство призывает вместо лазера использовать реактивную струю. Но такая идея подходит только, если мы говорим о крупных объектах. Также Европа предлагает собирать мусор в сети и перенаправлять его на орбиту для захоронения. Как ни печально, но проведённый опыт по такому захвату мусора не оправдал надежд учёных.


Также существуют идеи по удалению космического мусора с помощью роботов. Помимо того, придумали создать специальный спутник для его сбора.

Безусловно, проблема загрязнения космического пространства носит мировой характер. Необходимо создание международного права и проектов в данном направлении.

МУСОР КАК КОСМИЧЕСКИЙ ОБЪЕКТ

С начала освоения околоземного космического пространства прошло более 35 лет. За это время в результате запусков космических аппаратов образовалось множество достаточно мелких космических частиц и обломков. Как ни странно, изучение этого космического мусора уже стало новым направлением классической астрономии. Без анализа состояния загрязнения околоземного пространства невозможно дальнейшее освоение космоса.

Особенно остро стоит вопрос применительно к области низких (до высоты 2000 км) орбит, где загрязнение максимальное из-за большого количества мелких опасных объектов (крупные занесены в каталог). На Земле уже проводились исследования небольших районов на высотах от 300 до 600 километров с помощью радиолокационных станций. К сожалению, по этим данным трудно достоверно оценить степень загрязнения пространства космическим мусором. Детальных сведений о движении мелких объектов нет, поэтому изучение опасности столкновения с ними космических аппаратов требует, очевидно, статистического подхода. Например, в моделях оценки загрязнения, предложенных NASA (США) и ESA (Европейское космическое агентство), имитируются последствия всех известных запусков и разрушений спутников, а также возможных будущих аналогичных событий. При этом точность моделирования неизвестна. Оценки в таком случае могут отличаться на порядок.

В российской модели SDPA, разработанной в Центре космических наблюдений Росавиакосмоса, рассматриваются не отдельные составляющие космического мусора, а пространственное распределение их концентрации и, кроме того, величины и направление скорости космических объектов. Применение закономерностей движения этих объектов как спутников Земли при максимальном усреднении описания источников загрязнения позволило значительно уменьшить число вводимых в расчеты параметров. Именно российская модель SDPA оказалась наиболее экономичной с точки зрения затрат машинного времени и памяти. Только в расчетах концентраций, применяемых в нашей модели (с не худшей точностью), выполняется в 7400 раз меньше отдельных операций, чем в зарубежных моделях. Последние учитывают лишь взаимные столкновения довольно крупных обломков размером более 10 см. Однако, по российским данным, уже на высотах 800-1000 км доля взаимных столкновений с малыми объектами (0,25-0,5 см) составляет не менее 30%. А с учетом микрометеоритов — по-видимому, еще больше. Таким образом, различие оценок плотности потока космического мусора и его средней скорости, возможности столкновений обломков с космическими аппаратами в российской и зарубежных моделях весьма существенное (27-37%).


Суть проблемы

Угроза физического столкновения


Собственно, самая очевидная угроза, исходящая от космического мусора, — это угроза физического столкновения. На текущем уровне развития технологий не существует какого-либо способа защитить космические аппараты от небольшого объекта, размером с пулю, движущегося со скоростью 10 км/с. Ну а про защиту от более крупных объектов и заикаться не приходиться, хотя на орбите их существенно меньше. Помимо угрозы повреждения и уничтожения объектов, стартующих с Земли, на орбите находится огромное количество различных спутников, необходимые для работы разных служб. GPS, метеорология, да куча всего в общем. Уничтожение одного из них не сделает всю систему нежизнеспособной, но в условиях увеличения количества мусора в будущем это может серьёзно повлиять на работоспособность этих систем. Помимо прогнозов на будущее, в настоящем и прошлом есть примеры столкновения космических аппаратов с мусором:


За всё время программы шаттлов, на них было обнаружено порядка 170 следов на иллюминаторах от столкновения, к счастью с микрочастицами (0,2 мм в диаметре). Около 70 иллюминаторов пошли под замену. На изображении слева кратер диаметром 2.5 мм от частицы краски.

  • В июле 1996 года французский спутник столкнулся с третьей ступенью французской ракеты Arian, запущенной намного раньше;


Французская ракета Arian. Источник — ESA


Для контроля мусора космическими агентствами ведутся соответствующие реестры, отслеживающие относительно крупные (от нескольких сантиметров) объекты. Так, например. основываясь на имеющихся данных, МКС несколько раз в год корректирует своё положение на орбите, дабы избежать столкновения.

Синдром Кесслера

Однако на низких орбитах взаимодействие с атмосферой постепенно уменьшает количество мусора, и это подводит нас к следующей угрозе.

Падение космического мусора на Землю

Объекты, находящиеся на низкой орбите, еще находятся под влиянием атмосферы земли и постепенно замедляются, в результате через какое-то время начинают снижаться и входить в более плотные слои атмосферы. Многие объекты сгорают в атмосфере, но есть и те, что достигают поверхности планеты. Так, по данным НАСА, почти ежегодно отдельные фрагменты космических аппаратов достигают поверхности Земли.


Кладбище космических кораблей

Точка Немо — это самая удаленная от суши место на Земле, также называемая океаническим полюсом недоступности. Полюс недоступности — это место, которое наиболее сложно достигнуть из-за её удалённости, обычно от береговой линии. Ближайшая суша находиться в 2688 километрах от Точки Немо, а ближайшим населенным местом периодически становится МКС, орбита которой проходит над этим местом. Низкое содержание питательных веществ (круговорот в южной части Тихого океана блокирует попадание питательных веществ в этот район) и удаленность от прибрежных вод делают это место практически безжизненным, поэтому Точка Немо — идеальное место для захоронения космических аппаратов. Периодически этот район называют кладбищем космических кораблей. Некоторые русскоязычные источники называют этот район закрытым для судоходства, но судя по отсутствию нормативных документов и регламента процедуры захоронения (о которой чуть ниже) данный запрет носит рекомендательный характер. Ответственность за движение судов в этом регионе разделяют Чили и Новая Зеландия. За несколько дней до спуска космического аппарата, космические агентства предупреждают службы этих стран, которые в свою очередь доносят соответствующие предупреждения избегать этот район до летчиков и капитанов морских судов.


Похороны космического аппарата


Орбита захоронения

Помимо наземного кладбища также существует орбита, на которую отправляют уже отработавшие космические аппараты для уменьшения вероятности столкновения с ещё работающими. Существует две официальных орбит захоронения: для космических аппаратов, располагавшихся на геостационарной орбите, и для аппаратов для военных разведывательных спутников с ядерной энергетической установкой.

Геостационарная орбита — это орбита, расположенная над экватором земли, находясь на которой, искусственный спутник имеет такую же угловую скорость, как и Земля, т.е. находится всегда над одним и тем же местом на Земле. Эта орбита используется для размещения коммуникационных, телетрансляционных спутников и находиться на высоте 35786 километров над уровнем моря. После отработки, спутник примерно на 200 км (для каждого спутника расстояние рассчитывается индивидуально).


Увеличение количества искусственных спутников Земли. Источник — Европейское космическое агентство.

Другая орбита захоронения находится на высоте от 600 до 1000 километров. На эту орбиту отправляют военные спутники с ядерной энергетической установкой. Ориентировочно, эти спутники будут находится на орбите порядка 2 тысяч лет, после чего гравитация Земли притянет их.

Пути решения

В целом, поиск путей решения этой проблемы ничем не отличается от решения проблемы творческого беспорядка у вас на столе, только масштаб у первой слегка побольше. Имеется два пути — создавать меньше мусора или убирать старый.

Снижение создаваемого мусора

  • Увеличение срока эксплуатации космических аппаратов:
  • Минимизация количества остающихся в космическом пространстве частей КА:

Как видно, первые два пункта пересекаются с общими направлениями развития космонавтики. Последний пункт же вносит некоторые коррективы в построение ракет. Как грамотно организовать утилизацию отработавших частей? Одно из развивающихся направлений — использование материалов, позволяющих ракетам-носителям вывести аппарат на орбиту, а затем сгореть в атмосфере. Т.е. такой материал должен выдерживать все взлетные нагрузки, и при этом не должен быть супер тугоплавким, чтобы за счет трения сгореть в атмосфере. Звучит как некоторый парадокс. На данный момент таких материалов в ракетостроении нет.

Второй способ — это возвращение частей КА на Землю. Самый очевидные примеры — это многоразовые ступени SpaceX и программа Space Shuttle.

Утилизация уже имеющегося мусора



Облачные серверы от Маклауд быстрые, безопасные и не генерируют космический мусор.

Зарегистрируйтесь по ссылке выше или кликнув на баннер и получите 10% скидку на первый месяц аренды сервера любой конфигурации!

Фото: Shutterstock

Космический мусор может стать новой глобальной проблемой. Когда-то в космосе его станет так много, что мы больше не сможем запускать новые спутники. Разбираемся, что представляет собой космический мусор

Что такое космический мусор

Космический мусор представляет собой твердые отходы космической деятельности. Сюда относятся неработоспособные спутники, запущенные человеком за 60 лет освоения космоса, вторая и третья ступени ракета-носителя (первая обычно падает в Тихий океан), разгонные блоки и фрагменты спутников после взрыва или столкновений, например, фрагменты обшивки — так появляется космический мусор.

Ученые подсчитали, что сейчас в космосе находится почти 128 млн кусков космического мусора размером более 1 мм и 34 тыс. частиц размером более 10 см. Все, что меньше 1 мм подсчитать крайне трудно, некоторые ученые говорят о триллионах таких частиц. Около 3 тыс. спутников вышли из строя из-за мусора и сами превратились в космический мусор.

Астрономы могут отследить только крупные фрагменты, так как скорость частиц может доходить до 14 км/с (зависит от орбиты). Россия и США сейчас наблюдают за 23 тыс. космических объектов размером от 10 см, каталогизировано же и того меньше — 17 тыс. При этом 95% каталога космических объектов составляет космический мусор.

Проблемы и угрозы

Степень опасности космического мусора определяется в основном тремя факторами:

  1. как долго космический мусор находится на орбите;
  2. какова скорость движения;
  3. велика ли сложность утилизации космического мусора.

Главная проблема мусорного кризиса в космосе — выход из строя работающих спутников при столкновении с космическим мусором. Из-за больших скоростей опасность представляют даже частицы менее 1 см, они могут пробить противометеоритную защиту орбитальной станции. При столкновении с объектом более 10 см любой космический аппарат или станция гарантированно уничтожаются.

В мае 2016 года в Международную космическую станцию (МКС) влетела частица космического мусора размером в сотые доли миллиметра и оставила на МКС скол диаметром около 7 мм. Чтобы не допустить более разрушительных последствий МКС приходится регулярно менять свою орбиту, уворачиваясь от мусора.

Скол на иллюминаторе МКС, 2016 год

Хоть мелкий мусор и не влечет за собой катастрофических последствий, однако его опасность заключается в гигантском объеме, неконтролируемом распределении в пространстве, огромной скорости и абсолютной непредсказуемости столкновений.

Сейчас около 99% потенциально опасных объектов вовсе не контролируется из-за их малых размеров и огромных скоростей.

Что такое синдром Кесслера и при чем он здесь

Ученые предполагают, что в какой-то момент мы больше не сможем выводить новые спутники на орбиты, так как они будут полностью заняты космическим мусором. Это может произойти из-за каскадного эффекта, который называется синдромом Кесслера:

стремительно растущий объем космического мусора будет производить другой мусор, а он, в свою очередь, по цепной реакции — новый мусор.

Общий характер каскадного эффекта такой же, как и у ядерной цепной реакции. Таким образом орбиты будут заняты, и человек больше не сможет запускать летательные аппараты по причине неконтролируемых столкновений.

Вероятность столкновений на любой орбите растет приблизительно пропорционально квадрату количества космических объектов. Есть ученые, которые считают, что каскадный эффект уже начался в некоторых орбитальных областях и для некоторых классов космического мусора (на высотах 900–1000 км и 1500 км).

Наиль Бахтигараев, старший научный сотрудник Института астрономии РАН:

Впрочем, на сегодняшний день столкновения работающих летательных аппаратов с космическим мусором на орбите происходят довольно редко благодаря работающим системам слежения. Существует другая проблема — взрывы старых спутников, на борту которых осталось топливо и отработанные аккумуляторы. Под различного рода воздействием они могут повреждать работающие спутники сильнее, чем обычные столкновения.

Утилизация космического мусора

Фото:Pixabay

Так как существующие технологии не способны избавить космос от мусора, то космические агентства начали уделять внимание профилактике. Для новых аппаратов предъявляют стандарты, например, на борту космических аппаратов закладывают ресурс, чтобы они могли уходить от столкновений с мусором. Также их снабжают броней, которая защищает космического мусора, но только от мелкого.

На сегодняшний день работающей технологией по утилизации космического мусора является увод старых спутников на соседние орбиты. Это можно сделать с помощью аппаратов-захватчиков, которые буксируют мусор на орбиты для захоронения. Также отработанные спутники могут сами уходить со своих мест на остатках топлива. Но массово эти методы не применяются.

Считается, что космический мусор не падает на Землю, но это не совсем так. Для отработанных крупных спутников и грузовых кораблей на Земле в Тихом океане существует свое кладбище, где их затапливают, так как они не сгорают в атмосфере. Это место расположено в южной части Тихого океана около точки Немо, самого удаленного от суши места на Земле. Над этим местом запрещено летать и проплывать кораблям. Так проблема космического мусора превращается в проблему земного мусора. С 1971 по 2016 года там захоронили минимум 260 аппаратов.

Сейчас перед астрофизиками стоит задача, как избавиться от мусора на геостационарной орбите или поясе Кларка. Она находится непосредственно над экватором Земли на расстоянии 35 786 км. Эта орбита очень привлекательна для запуска спутников, так как на ней летательные аппараты требуют меньше топлива и охватывают значительно больше поверхности Земли, чем на других орбитах. Однако количество точек стояния спутников на геостационарной орбите ограничено — их около 180. Помимо очистки геостационарной орбиты, важное значение имеет удаление космического мусора в окрестностях МКС, так как станция является дорогостоящей и очень уязвимой.

Космический мусор: карты и модели

Видео от Европейского космического агентства демонстрирует, насколько много мусора находится вокруг Земли. В начале модель показывает обломки больше 1 м, а в самом конце — количество космических объектов от 1 мм:

Читайте также: