Силикаты доклад по химии 9 класс

Обновлено: 28.06.2024

Московский Государственный Горный Университет.
Факультет ГЭМ.
Группа ГМО-4-93.
Орлов Александр.
1994 г.

РЕФЕРАТ ПО ХИМИИ.
ТЕМА "СИЛИКАТЫ"

Природные силикаты образовались в основном из расплавленной
магмы. Предпологается, что при затвердевании магмы из нее
сначала выкристаллизовывались силикаты, более бедные кремнеземом
-ортосиликаты,затем после израсходования катионов выделялись
силикаты с высоким содержанием кремнезема - полевые шпаты, слюды
и, наконец, чистый кремнезем.
Силикаты - сложные кремнекислородные соединения в виде минералов
и горных пород, занимают определяющее место в составе земной
коры (80% по В.И.Вернадскому). А если добавить природный оксид
кремния - кварц, то кремнекислородные соединения образуют более
90% массы земной коры и практически полностью слагают объем
Земли. Силикатные минералы являются породообразующими: такие
горные породы, как гранит, базальт, кварцит, песчаник, полевой
шрат, глина, слюда и другие, сложены силикатными и алюмо-
силикатными минералами. Абсолютное большинство силикатных
минералов является твердыми кристаллическими телами, и только
незначительное количество минералов находится в аморфном
состоянии (халцедон, опал, агат и др.)или в коллоидно-дисперсном
состоянии: глины, цеолиты, палыгорскит и др.
Каждый минерал, как извесно, обладает совокупностью физических и
химических свойств, которые всецело определяются его
кристаллической структурой и химическим составом.
Кристаллические структуры силикатов многообразны, но основу
их составляют комбинации атомов самых распространенных элементов
- Si (кремния) и O (кислорода).
Координатное число кремния 4. Таким образом, каждый атом
кремния находится в окружении четырех атомов кислорода. Если
соединить центры атомов кислорода, то образуется пространствен-
ная кристалическая структура - тетраэдр, в центре которого
находится атом кремния, соединенный с четырьмя атомами кислорода
в вершинах. Такая группировка называется кремнекислородным
радикалом [SiO ] . Химическая связь Si - O - Si называется
силоксановой, природа связи - ковалентная, энергия связи Si - O
очень высока и равняется 445 кДж/моль.
Поскольку устойчивое координатное число кремния равно 4,
силикатные структуры полимерны. Они представлены различными
типами структур - островной, кольцевой, цепочечной или слоистой,
каркасной.
Состав и строение главных породообразующих минералов определяют
их свойства, а следовательно, и поведение в массивах горных
пород при различных механических, физических и физико-химческих
воздействиях в естественных условиях залегания и при проведении
горных работ. Таким образом, химия силикатов является одним из
главных моментов при проектировании и технологии проведения
горных работ. Кроме того, многочисленные силикатные минералы и
порды широко используются как сырьевые материалы в различных
технологических производствах, например, в высокотемпературных
процессах (обжиг, спекание, плавление)
при производстве:
1) цемента (глины, карбонаты, мергели);
2) глазурий, стекол (полевые шпаты, пегматиты, нефелины, и другие
щелочные, в том цисле литиевые алюмосиликаты,
циркон);
3) легких заполнителей и (вспучивающиеся при
термоизоляционных порошков обжиге вермикулиты,
перлиты и т.д.);
4) огнеупоров, керамических изделий (глины, каолины, силлиманиты,
циркон);
5) форстеритовых огнеупоров (дуниты, оливиновые минералы, тальк,
асбестовые отходы);
6) фарфора (глины, каолины и др.);
7) изоляторов (тальк);
8) каменных материалов (глины).

Группа силикатов используется без обжига в качестве:
1) адсорбентов для очистки газов и вод (бентонитовые глины, цеолиты);
2) компонента буровых растворов (бентонитовые высокодисперсные глины);
3) наполнителя при производстве бумаги, резины (каолины, тальк);
4) драгоценных камней (изумруд, топаз, цветные турмалины, хризотил,
голубые аквамарины и др.).
Силикатные руды и минералы используют для добычи металлов, их оксидов
и солей, а также для извлецения Zi (лепидолит, сподумен),
CS (поллуцит), Be (берилл) и получения Ni (ревдинкит, гарниерит и др.)
и Zr (циркон).

--T-------------T-------------T-------------------------------T-------------¬
¦ ¦ Tип ¦Силикатные ¦ Минералы ¦ ¦
¦N¦структуры ¦ группы +-------------------T-----------+ Свойства ¦
¦ ¦ ¦(радикалы) ¦ Формула ¦ Название ¦ ¦
+-+-------------+-------------+-------------------+-----------+-------------+
¦1¦Островной ¦[SiO ] ¦ Be [SiO ] ¦Фенакит ¦Характерны ¦
¦ ¦(ортосиликат)¦ ¦ Mg [SiO ] ¦Форстерит ¦высокие ¦
¦ ¦ ¦ ¦(Mg,Fe) [SiO ] ¦Оливин ¦температуры ¦
¦ ¦ ¦ ¦ Zr[SiO ] ¦Циркон ¦плавления, ¦
¦ ¦ +-------------+-------------------+-----------+значительная ¦
¦ ¦ ¦[SiO ] - ¦Al O[SiO ] ¦Дистен ¦плотность ¦
¦ ¦ ¦анионы (F ,O ¦CaTiO[SiO ] ¦Титанит ¦(выше3,2г/см)¦
¦ ¦ ¦OH )наряду ¦Al (OH,F )[SiO ] ¦Топаз ¦и частота, ¦
¦ ¦ ¦с катионами ¦3Mg [SiO ]Mg(OH,F) ¦Гумит ¦интенсивная ¦
¦ ¦ ¦металлов ¦ ¦ ¦окраска. ¦
+-+-------------+-------------+-------------------+-----------+-------------+
¦2¦Кольцеоб - ¦[Si O ] ¦Na Ca [Si O ] ¦ --- ¦Те же, что и ¦
¦ ¦разный ¦ ¦Ca (OH) [Si O ] ¦ --- ¦для островных¦
¦ ¦а)2 тетраэдра¦ ¦Sc [Si O ] ¦Тройтветит ¦структур ¦
¦ ¦ ¦ ¦ ¦ ¦ ¦
¦ ¦ +-------------+-------------------+-----------+ ¦
¦ ¦б)3 тетраэдра¦[Si O ] ¦Сa [Si O ] ¦Волластонит¦ ¦
¦ ¦ ¦ ¦BaTi[Si O ] ¦Бенитоит ¦ ¦
¦ ¦ ¦ ¦K Z [Si O ] ¦Вадеит ¦ ¦
¦ ¦ +-------------+-------------------+-----------+ ¦
¦ ¦в)4 тетраэдра¦[Si O ] ¦Ba (Ti,Nb)[Si O ] ¦Баотит ¦ ¦
¦ ¦ +-------------+-------------------+-----------+ ¦
¦ ¦г)6 тетраэдра¦[Si O ] ¦Al Be [Si O ] ¦Берилл ¦ ¦
¦ ¦ ¦ ¦Cr [Si O ] 6H O ¦Диоптаз ¦ ¦
+-+-------------+-------------+-------------------+-----------+-------------+
¦3¦Листовой ¦[Si O ] ¦Mg [Si O ](OH) ¦Тальк ¦Малопрочные ¦
¦ ¦(слоистая ¦ ¦ L-¬ ¦хорошо рас- ¦
¦ ¦ решетка) ¦[Si O ] ¦Mg [Si O ](OH) Mg(OH)¦Антигорит¦щепляющиеся ¦
¦ ¦ ¦ ¦ --- ¦структуры с ¦
¦ ¦ ¦ ¦Al (OH) [Si O ] ¦Каолинит ¦совершенной ¦
¦ ¦ ¦ ¦KAl [AlSi O ](OH) ¦Мусковит ¦спайностью ¦
L-+-------------+-------------+-------------------+-----------+--------------
--T-------------T-------------T-------------------T-----------T-------------¬
¦4¦Цепочечный ¦[Si O ] ¦Mg [Si O ] ¦Энстатит ¦Невысокая t C¦
¦ ¦или ленточный¦(пироксены) ¦Ca(Mg,Fe,Al)[Si O ]¦Авгит ¦плавления, ¦
¦ ¦(бесконечные,¦ ¦Ca(Mg)[Si O ] ¦Диопсид ¦плотность ¦
¦ ¦одномерные ¦ ¦Li Al[Si O ] ¦Сподумен ¦(2,7 г/см ), ¦
¦ ¦или двухмер- ¦ ¦Na Al[Si O ] ¦Жадеит ¦низкая ¦
¦ ¦ные радикалы)+-------------+-------------------+-----------+твердость. ¦
¦ ¦ ¦[Si O ] ¦Ca Mg [Si O ] ¦Тремолит ¦ ¦
¦ ¦ ¦(амфиболы) ¦NaCa [Si O ] ¦Роговая ¦ ¦
¦ ¦ ¦ ¦ ¦обманка ¦ ¦
¦ ¦ ¦ ¦Mg [Si O ] 3Mg(OH) ¦Хризотил ¦ ¦
¦ ¦ +-------------+-------------------+-----------+-------------+
¦ ¦Цепочечные ¦[SiO ] ¦Ca,Mg[SiO ] ¦ --- ¦породо - ¦
¦ ¦метасиликаты ¦ ¦Mg[SiO ] ¦ --- ¦образующие ¦
¦ ¦ ¦ ¦LiAl[SiO ] ¦ --- ¦минералы ¦
+-+-------------+-------------+-------------------+-----------+-------------+
¦5¦Простран- ¦Бесконечные ¦SiO ¦ ¦Характерны ¦
¦ ¦ственный, ¦трехмерные ¦ ¦-кварц ¦небольшая ¦
¦ ¦каркасный ¦радикалы ¦ ¦ ¦плотность ¦
¦ ¦ ¦[SiO ] или ¦ ¦-тридимит, ¦и твердость, ¦
¦ ¦ ¦[Si O ] , ¦ ¦кристобалит¦светлая ¦
¦ ¦ ¦в том числе ¦Na[AlSiO ] ¦нефелин ¦окраска, ¦
¦ ¦ ¦ со +-------------------+-----------+сравнительно ¦
¦ ¦ ¦значительмым ¦К ркасные алюмо- ¦полевые ¦невысокие ¦
¦ ¦ ¦замещением ¦ силикаты ¦шпаты ¦температуры ¦
¦ ¦ ¦Si на Al ¦(K,Na)[AlSi O ] ¦ ¦плавления ¦
¦ ¦ ¦ +-------------------+-----------+(1100-1700 С)¦
¦ ¦ ¦[(Si,Al)O ] ¦Каркасные алюмоси- ¦Цеолиты- ¦ ¦
¦ ¦ ¦ ¦ликаты в виде фо- ¦молекуляр- ¦ ¦
¦ ¦ ¦ ¦нарей с центральной¦ные сита ¦ ¦
¦ ¦ ¦ ¦плотностью, чаще ¦ ¦ ¦
¦ ¦ ¦ ¦из 24 тетраэдров ¦ ¦ ¦
¦ ¦ ¦ ¦[(Si,Al)O ]: ¦ ¦ ¦
¦ ¦ ¦ ¦Na [Al Si O ]2NaOH ¦ L¬ ¦
¦ ¦ ¦ ¦H O ¦Гидросодалит¦ ¦
¦ ¦ ¦ ¦Na Ca [Al Si O ] ¦ -- ¦
¦ ¦ ¦ ¦ 30H O ¦Фожазит ¦ ¦
¦ ¦ ¦ ¦Na [Al Si O ] 12H O¦Шабазит ¦ ¦
L-+-------------+-------------+-------------------+-----------+--------------

Многообразие структурных типов силикатных соединений определяется
важнейшим законом кристаллохимии силикатов: кремнекислородные
тетраэдры, входящие в состав сложных силикатных радикалов, объединяются
друг с другом только общими вершинами (а не ребрами или гранями)
и сохраняют свой состав и строение. Это объясняют сильным взаимным
сталкиванием между многозарядными атомами (ионами) кремния, занимающими
центральное положение в каждом соседнем тетраэдре. Так, например,
в кристаллах кварца (SiO ) каждый кремнекислородный тетраэдр дает
на образование силоксановых связей четыре вершины:

Образуется сплошной трехмерный каркас (каркасный тип структуры).
В кристалах более сложных силикатов тетраэдры [SiO ] могут давать
на связь Si - O - Si одну, две или три вершины.
Тетраэдры внутри сложных радикалов чаще не самостоятельных:
атомы кислорода, через который осуществляется силоксановая
связь, принадлежат одновременно каждой из объединившийхся
структурных единиц. Такие атомы кислорода называются поделен-
ными. Например, шесть кремнекислородных групп тетраэдров,
имеющих по два общих атома кислорода, могут соединяться в
замкнутое кольцо.

Так возникает кольцевой тип структуры, которым, в частности,
обладает минерал берилл. Во многих силекатах кремнекислородные
тетраэдры связаны в бесконечно протяжные цепочечные структуры.
Цепочки могут быть толщиной в один тетраэдр, и тогда в них
соотношение кремния и кислорода равно 1:3, в сдвоенных цепочках
(лентах) - 4:11. Одинарные и сдвоенные цепочки соединяются между
собой катионами. Силикаты, структура которых образована одинар-
ными цепочками кремнекислордных тетраэдров, называются
пироксенами. Более сложная формула силикатов со сдвоенными
цепочками представлена амфиболами.


При соединении кремнекислородных тетраэдров тремя вершинами
образуются плоские слои тетраэдров, у которых свободна только
одна вершина. Это слоистый тип структуры. Слои могут по-разному
связываться между собой. В структуре слюд два таких слоя,
обращенные друг к другу свободными атомами кислорода, соединя-
ются катеонами.


Как видно из рисунка,в каждом плоском слое кремнекислородных
тетраэдров на два атома Si приходится по три атома кислорда,
общих для соседних тетраэдров, и два свободных кислорода в
вершинах тетраэдров. Таким образом, состав слоя отвечает
формуле Si O , а состав двух - [Si O ] .
Островной тип структуры. В этом случае кремнекислордные
тетраэдры не соединяются друг с другом через вершины, как в
других структурах, а изолированы, разобщены и связываются в
единую структуру двухвалентными катионами магния и железа, у
которых близкий размер радиуса.
Поэтому состав минералов с такой структурой можно выразить
формулой (Mg,Fe) [SiO ]. Это формула минерала оливина.
Все структуры характеризуются общими свойствами и прежде
всего объемностью, непрерывностью по всем трем измерениям
пространства.Изолированные кремне- и алюмокислородные тетраэдры
их кольца, цепи, ленты, листы и каркасы соединены катеомами с
относительно большими радиусами в бесконечно большие конструк-
ции.Структура минералов основывается на ионной связи, молекуляр-
ные силы отсутствуют.
Изучение структур силикатов позволило совсем недавно правиль-
но установить их химические формулы, отвечающие составу в тех
случаях, когда правильная формула нарушилась колебаниями в сос-
таве вследствие изоморфныхзамещений. Однако оно раскрыло прежде
всего важные связи между кристалическими структурами и физически-
ми химическими свойствами силикатов. Такие свойства, как твер-
дость, плотность, расщепляемость, термическая устойчивость, незна-
чительная растворимость, определенным образом связаны с внутрен-
ним строением силикатов.
Для силикатных минералов как природных, так и искуственных харак-
терны изоморфные замещения (изоморфизм) - взаимное замещение
ионов в кристалической структуре без нарушения ее строения. Сос-
тав природных химических соединений меняется не случайно, а за-
кономерно - в зависимости от величины радиусов инонов и координа-
ционного числа.Если существует определенная структура, в нее
могут войти (путем замещения или внедрения) не любые химические
элементы, а лиш те, размер ионов которых будет отвечать данной
структуре.
Минералы группы оливина представляют собой непрерывный изоморф-
ный ряд от железистого до магнитного представителя. Такой изо-
морфизм называется изовалентным. Ниболее распространен другой
тип изоморфизма - гетеровалентный,тпри которм взаимозамещаются
ионы различной валетнтности, но замещение происходит с компен-
сацией зарядов, т.е. при сохранении электростатического баланса
кристалической решетки. Вывод о том, что этот тип изоморфизма
(диагональный) обусловлен близостью размеров (радиусов, оъбемов)
у соседних атомов по диагонали в периодической системе элементов,
был сделан Д.И.Менделеевым и развит А.Е.Ферсманом.
При гетеровалентном изоморфизме чаще возникает необходимость
зарядовой компенсации. В структуре при этом образуются вакансии.
Для компенсации заряда внедряются дополнительные атомы.
Изоморфные замещения влияют на дефектность структур минира-
лов, которая, как известно, является одним из существенных
факторов, приводящих к изменению физических,химических и тех

Образуется сплошной трехмерный каркас (каркасный тип структуры).

В кристалах более сложных силикатов тетраэдры [SiO ] могут давать

на связь Si - O - Si одну, две или три вершины.

Тетраэдры внутри сложных радикалов чаще не самостоятельных:

атомы кислорода, через который осуществляется силоксановая

связь, принадлежат одновременно каждой из объединившийхся

структурных единиц. Такие атомы кислорода называются поделен-

ными. Например, шесть кремнекислородных групп тетраэдров,

имеющих по два общих атома кислорода, могут соединяться в

Так возникает кольцевой тип структуры, которым, в частности,

обладает минерал берилл. Во многих силекатах кремнекислородные

тетраэдры связаны в бесконечно протяжные цепочечные структуры.

Цепочки могут быть толщиной в один тетраэдр, и тогда в них

соотношение кремния и кислорода равно 1:3, в сдвоенных цепочках

(лентах) - 4:11. Одинарные и сдвоенные цепочки соединяются между

собой катионами. Силикаты, структура которых образована одинар-

ными цепочками кремнекислордных тетраэдров, называются

пироксенами. Более сложная формула силикатов со сдвоенными

цепочками представлена амфиболами.

При соединении кремнекислородных тетраэдров тремя вершинами

образуются плоские слои тетраэдров, у которых свободна только

одна вершина. Это слоистый тип структуры. Слои могут по-разному

связываться между собой. В структуре слюд два таких слоя,

обращенные друг к другу свободными атомами кислорода, соединя-

Как видно из рисунка,в каждом плоском слое кремнекислородных

тетраэдров на два атома Si приходится по три атома кислорда,

общих для соседних тетраэдров, и два свободных кислорода в

вершинах тетраэдров. Таким образом, состав слоя отвечает

формуле Si O , а состав двух - [Si O ] .

Островной тип структуры. В этом случае кремнекислордные

тетраэдры не соединяются друг с другом через вершины, как в

других структурах, а изолированы, разобщены и связываются в

единую структуру двухвалентными катионами магния и железа, у

которых близкий размер радиуса.

Поэтому состав минералов с такой структурой можно выразить

формулой (Mg,Fe) [SiO ]. Это формула минерала оливина.

Все структуры характеризуются общими свойствами и прежде

всего объемностью, непрерывностью по всем трем измерениям

пространства.Изолированные кремне- и алюмокислородные тетраэдры

их кольца, цепи, ленты, листы и каркасы соединены катеомами с

относительно большими радиусами в бесконечно большие конструк-

ции.Структура минералов основывается на ионной связи, молекуляр-

ные силы отсутствуют.

Изучение структур силикатов позволило совсем недавно правиль-

но установить их химические формулы, отвечающие составу в тех

случаях, когда правильная формула нарушилась колебаниями в сос-

таве вследствие изоморфныхзамещений. Однако оно раскрыло прежде

всего важные связи между кристалическими структурами и физически-

ми химическими свойствами силикатов. Такие свойства, как твер-

дость, плотность, расщепляемость, термическая устойчивость, незна-

чительная растворимость, определенным образом связаны с внутрен-

ним строением силикатов.

Для силикатных минералов как природных, так и искуственных харак-

терны изоморфные замещения (изоморфизм) - взаимное замещение

ионов в кристалической структуре без нарушения ее строения. Сос-

тав природных химических соединений меняется не случайно, а за-

кономерно - в зависимости от величины радиусов инонов и координа-

ционного числа.Если существует определенная структура, в нее

могут войти (путем замещения или внедрения) не любые химические

элементы, а лиш те, размер ионов которых будет отвечать данной

Минералы группы оливина представляют собой непрерывный изоморф-

ный ряд от железистого до магнитного представителя. Такой изо-

морфизм называется изовалентным. Ниболее распространен другой

тип изоморфизма - гетеровалентный,тпри которм взаимозамещаются

ионы различной валетнтности, но замещение происходит с компен-

сацией зарядов, т.е. при сохранении электростатического баланса

кристалической решетки. Вывод о том, что этот тип изоморфизма

(диагональный) обусловлен близостью размеров (радиусов, оъбемов)

у соседних атомов по диагонали в периодической системе элементов,

был сделан Д.И.Менделеевым и развит А.Е.Ферсманом.

При гетеровалентном изоморфизме чаще возникает необходимость

зарядовой компенсации. В структуре при этом образуются вакансии.

Для компенсации заряда внедряются дополнительные атомы.

Изоморфные замещения влияют на дефектность структур минира-

лов, которая, как известно, является одним из существенных

факторов, приводящих к изменению физических,химических и тех

Московский Государственный Горный Университет. Факультет ГЭМ. Группа ГМО-4-93. Орлов Александр. 1994 г. РЕФЕРАТ ПО ХИМИИ. ТЕМА "СИЛИКАТЫ" Природные силикаты образовались в основном из распла

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Силикатная промышленность Цель урока: Дать понятие о силикатной промышленност.

Описание презентации по отдельным слайдам:

Силикатная промышленность Цель урока: Дать понятие о силикатной промышленност.

Что считается силикатной промышленностью? Силикатная промышленность – это отр.

Что считается силикатной промышленностью? Силикатная промышленность – это отрасль которая занимается переработкой природных соединений кремния. Производство фарфора, керамики, фаянса, стекла, цемента и т.д.

Истоки силикатной промышленности лежат в глубокой древности. Уже первые оруди.

Истоки силикатной промышленности лежат в глубокой древности. Уже первые орудия труда около 800-900 тыс.лет до н.э. древние люди изготовляли из кремния – плотного природного образования, состоящего из халцедона, кварца и опала. Позднее стали использовать яшму, горный хрусталь, агат, обсидиан(вулканическое стекло), нефрит

Керамика( греч. Kepamike – гончарное искусство, kepamos –глина). Общее назван.

Керамика( греч. Kepamike – гончарное искусство, kepamos –глина). Общее название многочисленных материалов, полученных при спекании глин с различными минеральными добавками

Виды керамики Строительная Декоративная Огнеупорная Химически стойкая Тонкая

Виды керамики Строительная Декоративная Огнеупорная Химически стойкая Тонкая


Производство керамики Сырье: глина, каолин Al2O3 · 2SiO2 ·2H2O Технологически.

Производство керамики Сырье: глина, каолин Al2O3 · 2SiO2 ·2H2O Технологический процесс: замачивание формование обжиг глазурование вторичный обжиг

Из меня посуду тонкую Нежно- белую и звонкую Обжигают с древних пор. Называюс.

Из меня посуду тонкую Нежно- белую и звонкую Обжигают с древних пор. Называюсь я …..

Фарфор Фарфор – самая благородная керамика. Это материал, состоящий из каолин.

Фарфор Фарфор – самая благородная керамика. Это материал, состоящий из каолина, глины, кварца и полевого шпата. Характерные признаки: белый цвет, отсутствие пористости, высокая прочность, термическая и химическая стойкость. Впервые фарфор был привезен в Европу из Китая – родины фарфора – в XVI веке.

Гжель Знаменитая Гжель – родина русского народного фарфора – расположена на о.

Гжель Знаменитая Гжель – родина русского народного фарфора – расположена на обочине Касимовского тракта в 60 км от Москвы. Первая половина XIX века – время расцвета фарфорового производства Гжели. О высоком качестве гжельских глин писал М. В. Ломоносов. Исследовал эти глины и создатель русского фарфора Д. И. Виноградов.

Майолика Майолика близка по свойствам и качеству к терракоте, только в отличи.

Терракота Терракота – разновидность грубой керамики. Она известна с эпохи нео.

Такова моя природа: Известняк, песок и сода Много требуют огня, Чтобы выплави.

Такова моя природа: Известняк, песок и сода Много требуют огня, Чтобы выплавить меня. Я прозрачно и светло, И зовут меня …….

Стекло Твердый силикатный материал, основным свойством которого является проз.

Стекло Твердый силикатный материал, основным свойством которого является прозрачность и химическая стойкость. Стекло получают варкой шихты

Производство стекла Сырье: сода Na2CO3, песок SiO2, известняк CaCO3 Технологи.

Производство стекла Сырье: сода Na2CO3, песок SiO2, известняк CaCO3 Технологический процесс: варка формование вторичное нагревание

Химические процессы Na2CO3 + SiO2 = CaCO3 + SiO2 = Na2SiO3 + CaSiO3 + 4SiO2 =

Химические процессы Na2CO3 + SiO2 = CaCO3 + SiO2 = Na2SiO3 + CaSiO3 + 4SiO2 =

Виды стекол

Родина цветной обшивки окон и живописи на стекле – Франция. Самое раннее изве.

Родина цветной обшивки окон и живописи на стекле – Франция. Самое раннее известие о них касается ВИТРАЖЕЙ в монастыре Сен-Реми. Родиной СТЕКЛЯННОЙ БИЖУТЕРИИ считают Древний Египет. Из Византии и римских колоний производство бус пришло в остальную Европу, в частности в Венецию, которая в XVIII веке становится важнейшим центром этой продукции. Затем в Богемии расцветает производство галантерейных изделий из стекла, включая бисер и стеклярус.

Сырая пыль в воду нырь, Потом на мастерок – готов домок

Сырая пыль в воду нырь, Потом на мастерок – готов домок

Цемент собирательное название порошкообразных вяжущих веществ (преимущественн.

Цемент собирательное название порошкообразных вяжущих веществ (преимущественно гидравлических), способных при смешивании с водой (иногда с водными растворами солей) образовывать пластичную массу, приобретающую затем камневидное состояние. Цемент был известен ещё римлянам, которые получали его из извести, вулканического пепла и жженой извести.

Производство цемента Сырье: мел (известняк) СаСО3, глина Аl2O3 · 2SiO2 · 2H2O.

Производство цемента Сырье: мел (известняк) СаСО3, глина Аl2O3 · 2SiO2 · 2H2O, металлургические шлаки Технологический процесс прокаливание (сплавление) перемешивание с гипсом перемалывание

Химические процессы Аl2O3 · 2SiO2 · 2H2O = Аl2O3 · 2SiO2 + 2H2O СаСО3 = СаО +.

Химические процессы Аl2O3 · 2SiO2 · 2H2O = Аl2O3 · 2SiO2 + 2H2O СаСО3 = СаО + СО2 СаО + SiO2 = CaSiO3

Виды цемента портландцемент шлаковые и пуццолановые цементы глиноземистый цем.

Виды цемента портландцемент шлаковые и пуццолановые цементы глиноземистый цемент специальные виды цемента (напр., кислотоупорный).

  • подготовка к ЕГЭ/ОГЭ и ВПР
  • по всем предметам 1-11 классов

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания


Курс повышения квалификации

Инструменты онлайн-обучения на примере программ Zoom, Skype, Microsoft Teams, Bandicam

  • Курс добавлен 31.01.2022
  • Сейчас обучается 24 человека из 17 регионов

Курс повышения квалификации

Педагогическая деятельность в контексте профессионального стандарта педагога и ФГОС

  • ЗП до 91 000 руб.
  • Гибкий график
  • Удаленная работа

Дистанционные курсы для педагогов

Свидетельство и скидка на обучение каждому участнику

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 608 242 материала в базе

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

Свидетельство и скидка на обучение каждому участнику

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

  • 08.10.2015 19398
  • PPTX 2.3 мбайт
  • 1122 скачивания
  • Рейтинг: 5 из 5
  • Оцените материал:

Настоящий материал опубликован пользователем Александрова Анфиса Михайловна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

40%

  • Подготовка к ЕГЭ/ОГЭ и ВПР
  • Для учеников 1-11 классов

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Курские власти перевели на дистант школьников в районах на границе с Украиной

Время чтения: 1 минута

Минтруд предложил упростить направление маткапитала на образование

Время чтения: 1 минута

В Россию приехали 10 тысяч детей из Луганской и Донецкой Народных республик

Время чтения: 2 минуты

Отчисленные за рубежом студенты смогут бесплатно учиться в России

Время чтения: 1 минута

Время чтения: 2 минуты

Академическая стипендия для вузов в 2023 году вырастет до 1 825 рублей

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.


Производством материалов из соединений кремния занимается силикатная промышленность. Основные направления – изготовление стекла, цемента и керамики.

Свойства элемента

Кремний – твёрдый элемент тёмно-серого цвета с металлическим блеском. Проявляет свойства полупроводника. В природе находится в составе песка, кварца, глины.

В реакциях с металлами кремний выполняет функцию окислителя (принимает электроны), с неметаллами – восстановителя (отдаёт электроны). При обычных условиях кремний реагирует только с фтором. С остальными веществами взаимодействует при нагревании.

Кремний

Рис. 1. Кремний.

Кремний образует сложные вещества:

  • оксиды SiO и SiO2;
  • простые соли – хлорид (SiCl4), нитрид (Si3N4), карбид SiC, силициды (Mg2Si, CsSi8, Cu8Si);
  • кислородные соли (Na2SiO3).

Взаимодействуя с углеродом, кремний образует карборунд или карбид. Это вещество близкое по твёрдости алмазу. В промышленности используются силикаты – соли кремниевых кислот. Кремниевые кислоты весьма слабые и неустойчивые. Водород легко вытесняется металлами. В результате образуются прочные кристаллические вещества.

Карборунд

Рис. 2. Карборунд.

Из кислот кремний реагирует только с плавиковой кислотой HF. Кроме того, элемент не реагирует непосредственно с водородом. Гидроксид Si(OH)4 в свободном виде неустойчив и быстро превращается в кислоту за счёт потери воды.

Виды производства

Кремний используют в составе песка (SiO2), глины и других природных материалов для изготовления прочных материалов – цемента, стекла, керамики. В таблице кратко описаны изготовление и использование материалов.

Материал

Сырьё

Использование

Сода, известняк, белый песок. Сырьё спекают в специальных печах. Процесс состоит из трёх этапов:

Могут добавляться дополнительные соединения для придания прочности или, наоборот, пластичности и хрупкости. Например, поташ К2СО3, добавленный вместо соды, делает стекло жаропрочным. Добавление оксидов придаёт стеклу окраску: CoO – синюю, Cr2O3 – зелёную, MnO2 – красную

Изготовление стеклянных листов для окон, нитей для оптоволокна, посуды

Глина, состоящая из кристаллов каолинита Al2O3 ∙ 2SiO2 ∙ 2Н2О. Сначала глину готовят для формовки, смешивая её с водой. Затем придают форму изделиям, обсушивают и обжигают

Производство кафеля, кирпичей, посуды

Глина, известняк. Получившуюся после спекания массу размалывают в порошок, который при смешивании с водой образует цемент

Изготовление строительного материала – щебня, бетона, железобетона

Производство стекла

Рис. 3. Производство стекла.

Кремний используется в производстве фотоэлементов, транзисторов, диодов, микросхем. Элемент добавляют при производстве стали для повышения прочности.

Что мы узнали?

Из урока химии 9 класса узнали об особенностях кремния и его соединений, а также о производстве материалов на основе кремния. Кремний в природе находится в составе песка, глины, известняка. Эти природные материалы используются в качестве сырья для изготовления стекла, цемента, керамики. Кремний также применяется в производстве электроники и электротехники.


Научные доклады

Силикатная промышленность являет собой сферу производства из природных соединений кремния стекла, керамики и цемента. Она производит разные изделия и материалы, которые в народном хозяйстве имеют огромное значение. Самая распространенная продукция силикатной промышленности — черепица, облицовочные плиты, кирпич, огнеупоры, тепло -, электро — и звукоизоляционные материалы, листовое стекло, изделия из фаянса и фарфора, хозяйственная и химическая посуда, хрусталь, растворимое стекло, кварцевое стекло, стеклопластики, стеклоткани, пеностекло, стекловолокно, вяжущие вещества, цемент.

Отрасли силикатной промышленности

К керамическим изделиям относятся кирпич, фаянсовая и глиняная посуда, кафель, амфоры. Для производства керамических изделий сырьем выступают минеральные добавки и глина. Последний элемент состоит из маленьких кристаллов каолинита Аl2О3 • 2SiO2 • 2НО2. Изготовление керамики состоит из 4-ех этапов: подготовка сырья, формовка, сушка, обжиг. Для подготовки сырья вначале глину перемешивают с водой. В результате получается тестообразная масса, которая сохраняет приданную форму. После обжига и сушки изделие твердеет и стает похожее на камень. Производство керамики развивается в таких направлениях — керамика для быта, строительная керамика, техническая керамика.


Стекло открыли в IV тыс. до н. э. в восточных странах. Это прозрачный, аморфный, твердый, хрупкий материал. Стекло изготавливают в специальных печах путем спекания известняка, соды и белого песка. Химическая формула этого процесса выглядит так: SiO2 + Na2CO3 = Na2SiO3 + CO2↑, SiO2 + CaCO3 = CaSiO3 + CO2↑, Na2SiO3 + CaSiO3 + 4SiO2 = Na2O • CaO • 6SiO2. Из жидкого состояния в твердое оно переходит постепенно. Благодаря этому стеклянную массу можно прокатывать в листы, получать нити, выдувать различные изделия. По составу различают тугоплавкое специальное стекло (с добавлением поташа), хрусталь (с добавлением соды). Окрас бывает прозрачный, синий, ярко-зеленый, красновато-лиловый и так далее.

Сырьем для производства материала выступают известняк и глина. Их запекают, и в процессе происходит распад известняка, образовываются силикаты и алюминаты кальция. В итоге получается масса, которую перемалывают в портландцемент — зеленовато-серый порошок. Когда смешивают цемент с водой, то получается тестообразная масса, твердеющая со временем. Цемент является важным строительным материалом. Из него готовят железобетон и бетон.

Читайте также: