Роботы в космосе доклад

Обновлено: 05.07.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Научно-технические проекты для освоения космоса

Выполнил: Полуянов Роман Михайлович

Руководитель: Голунько Т.А. – учитель физики МАОУ СОШ №17

Актуальность работы и задачи

Актуальность данной работы заключается в том, что космороботы, которые используются как мощный фактор в освоении космоса, получили широкое распространение в научном мире и действующие модели можно применять не только в космосе, но и на земле для нужд человека.

Задача. Изучение проблемы применения космороботов в освоении космического пространства. Описание применяемых космороботов, их достоинства и недостатки .

Во второй половине XX в. человечество ступило на порог Вселенной - вышло в космическое пространство. Дорогу в космос открыла наша Родина. Первый искусственный спутник Земли, открывший космическую эру, запущен бывшим Советским Союзом, первый космонавт мира - гражданин бывшего СССР.

Космос жив! Космос не может быть мертв. Есть много инновационных проектов, разрабатывающихся по всему миру, которые должны расширить наше понимание Вселенной. Они используют невероятные технологии, но многим из них нужно еще много времени на реализацию. Хотя в астрономических масштабах это совсем не много.

Я проанализировал современные проекты и меня заинтересовал проект применения космо-роботов для изучения и освоения космического пространства, как могут космо-роботы служить человечеству и какие перспективы в этом направлении существуют.

Основная часть

Роботы в космосе

Неоспоримое преимущество роботов в космических исследованиях заключается в том, что автоматы не нуждаются в еде, питье и способны работать в крайне неблагоприятных условиях. Что еще важнее, потеря автоматического исследователя гораздо предпочтительнее гибели астронавта, хотя разработка и производство киберов - занятие недешевое.

После "золотой эры" беспилотных исследований, когда зонды из СССР и США бороздили космические просторы Солнечной системы и проводили наблюдения на поверхности Луны, Венеры и Марса, мало уже кто сомневался в том, что автоматические исследовательские аппараты ждет большое будущее. Весьма скоро, в конце декабря этого года, посадочный модуль "Гюйгенс" отделится от аппарата "Кассини", чтобы впервые прилуниться на крупнейшем в Солнечной системе планетоиде Титане. Американские марсоходы Spirit и Opportunity уже доказали, что автоматам по силам исследовательские миссии чрезвычайной сложности, но киберпомощников конструируют не только в NASA.

В научно-техническом центре Европейского космического агентства в Нидерландах (ESTEC) ведется активная работа по созданию автоматических помощников астронавтов, призванных заменить дорогостоящие пилотируемые экспедиции рачительными миссиями роботов.

На Земле роботы, как правило, подменяют людей на всевозможной рутинной работе или в условиях возможного риска для здоровья человека: собирают автомобили, разминируют взрывные устройства, варят трубопроводы на морском дне и трудятся в "горячих" зонах атомных электростанций. Однако использовать автоматы в космосе еще выгоднее, считает Джанфранко Висентин, возглавляющий Отдел автоматизации и роботизации ЕКА (ESTEC). Роботы должны помогать людям или вовсе заменять астронавтов при выполнении особо опасных или сложных задач, при выполнении повторяющихся операций, отнимающих много времени работ и даже миссий, которые человек выполнить просто не может. "Киберы выполняют задания быстрее и точнее людей, и вдобавок, работают круглосуточно, не нуждаясь в перерывах на обед и сон", - подчеркивает Висентин.

Что такое косморобот?

В среде инженеров, занимающихся разработкой беспилотных космических аппаратов, едва ли не всякий автоматический зонд называют космороботом, но Висентин предпочитает более точное определение: "мобильная система, способная манипулировать объектами и достаточно универсальная, чтобы выполнять любой набор подобных заданий автономно или под дистанционным контролем".

В некотором смысле космороботы мало отличаются от своих земных собратьев, подменяя человека тогда, когда требуется выполнить какую-либо работу. Тем не менее, к автоматам для работы в безвоздушном пространстве предъявляются некоторые особые требования. Они должны:

* перенести запуск
* функционировать в сложных условиях враждебной среды, зачастую на большом удалении
* весить как можно меньше, так как каждый килограмм, выведенный на орбиту, стоит дорого
* потреблять мало энергии и иметь долгий срок службы
* работать в автоматическом режиме
* обладать чрезвычайной надежностью

Для соответствия всем этим требованиям требуются передовые и инновационные технологии, а также сложные системы и механизмы. Задача кажется трудновыполнимой, по крайней мере, вовсе не тривиальной, но только так можно конструировать роботы, способные работать за переделами земной атмосферы. При этом единственным преимуществом при работе в космосе является невесомость, позволяющая даже небольшому автомату прилагать минимум усилий для передвижения даже крупных объектов в безвоздушном пространстве.

Типы роботов

Самые распространенные из автоматических аппаратов, использующихся в космических исследованиях - это роверы (луноходы, марсоходы). Такой робот может передвигаться по поверхности другой планеты, неся на борту научные приборы. Как правило, и сам ровер, и научное оборудование на нем функционируют в автоматическом режиме.

Роботы-аватары - это роботы, полностью копирующие людей, и способные в точности повторять движения человека, находящемся в специальном костюме. Смысл в том, что человек, например какой-нибудь ученый, одевает специальный костюм, после чего робот начинает повторять все движения головы, ног, рук и даже пальцев. Нужно это по нескольким причинам:

1) - это гораздо упрощенная конструкция кораблей, которые будут посылать аватара в космос, так как не надо встраивать в корабль систему жизнеобеспечения, роботу этого не нужно.

2)- робота не нужно забирать обратно с луны, чего нельзя сказать про космонавта. То есть корабль рассчитывается только на полёт в один конец.

3) - робот может работать в более жестких условиях, чем человек.

4) - костюм, управляющий роботом, может одеть любой человек, например, с начала его может одеть ученый, исследуя то, что ему нужно, потом его может одеть инженер, для того чтобы что-либо починить (например, деталь в самом роботе, вышедшую из строя) и так далее…

Но у робота есть один неоспоримый минус - задержка в сигнале, посылаемом от костюма к роботу, и от видеокамеры робота на Землю, будет очень велика. Если для Луны эта задержка составит около 3 секунд, то для Марса эта задержка будет в разы больше, что уже значительно осложнит управление этим роботом. Так что в ближайшее время их можно будет использовать только вблизи Земли, например на Луне или на космических станциях.

Роботы-роверы.

NanoKhod .

Европейское космическое агентство в сотрудничестве с некоторыми промышленными концернами разработало необычайно мелкий микроровер Nanokhod ("Наноход"). Аппарат размером с книжный том весит всего два килограмма, способен нести на борту целый килограмм приборов, исследуя территорию небольшого радиуса вокруг посадочного минимодуля.

MIRO -2.

Более крупный робот был спроектирован для сбора образцов грунта других планет. На двенадцатикилограммовом MIRO-2 имеется автоматический бур, который способен извлечь до десяти образцов с разных глубин до двух метров. После выполнения задания этот ровер возвращается на посадочный аппарат, где собранные материалы исследуются при помощи бортовых анализаторов.

SOLERO .

Третий минировер, разрабатывающийся в ЕКА - пятнадцатикилограммовый Solero, все энергопотребности которого обеспечиваются солнечной батареей и миниатюрными подзаряжаемыми аккумуляторами. Данный аппарат имеет принципиально новую конструкцию шасси: шесть колес, расположенных по вершинам шестиугольника, обеспечивают ему отличную проходимость.

Робот-аватар TELESAR V .

Японские исследователи из университета Кейо создали робота под названием TELESAR V . Устройство позволяет оператору не только дистанционно управлять роботом, но и ощущать, например, предметы, к которым тот прикасается.

Интересные проекты

1. WorldView -3

2. SolarProbePlus

Этот космический аппарат NASA размером с небольшой автомобиль будет запущен в 2018 году. Среди его задач будет изучение атмосферы Солнца, причем практически вплотную — до 2 миллионов километров от светила. Аппарат обойдет Солнце 24 раза. Первый оборот состоится спустя 2 месяца после запуска на расстоянии 7 миллионов километров от Солнца, а после этого начнется сближение. В конечном счете аппарат подойдет к Солнцу ближе, чем Меркурий. Миссия продлится три года. Зонд оснащен специальным тепловым щитом из композитного углерода, который должен будет защищать его от температуры до 2550 градусов по Цельсию.

3. Батарея для глубокого космоса

Ни одно космическое агентство не отказалось бы от топливного элемента, который можно было бы использовать в ходе миссий в глубокий космос. Новый накопитель энергии необходим для прогресса в исследованиях NASA, поэтому организация совсем недавно заключила четыре контракта на его разработку. Хранение энергии критично для миссий на астероиды, Марс или за его пределы. Предложения по этому проекту делают разнообразные центры разработки NASA, правительственные исследовательские центры и академические институты.

4. EmDrive

EmDrive — это экспериментальная технология двигательной установки, разработка которой находится в ранней стадии. Была создана Робертом Шоером в 2006 году, но в этом году установкой заинтересовалось NASA. Эксперимент, проведенный Гарольдом Уайтом, показал, что EmDrive работает, хотя никто и не знает, как. Исследователи всего мира начали делать собственные версии двигателя.

EmDrive — это двигатель на микроволновой тяге с питанием от солнечной электроэнергии, который может быть запущен в глубокий космос без жидкого топлива и разогнать космический аппарат до скорости, намного превышающей доступную сегодня. На самом деле никто не знает, как этот двигатель работает — по сути, он нарушает закон сохранения импульса. Есть мнение, что двигатель работать не будет, поскольку в эксперименте закралась ошибка.

6. Японский космический лифт

Корпорация Obayashi, расположенная в Токио, планирует построить к 2050 году космическую станцию, которая будет на высоте 36 000 километров над Землей. Компания планирует отправлять туристов вверх на лифте из углеродных нанотрубок со скоростью около 200 километров в час (путешествие займет примерно неделю) и питать все устройство солнечными батареями на космической станции, плавающей в качестве противовеса чуть выше. Obayashi говорит, что понятия не имеет, сколько будет стоить такой проект, но работает над ним.

7. SpiderFab

TethersUnlimited заключила контракт на 500 000 долларов на разработку средства под названием SpiderFab, которое будет использовать 3D-принтеры для создания структур, для помощи нам в поиске внеземной жизни. Основной задачей SpiderFab будет избавить нас от необходимости отправлять что-либо с Земли — все будет собираться прямо в космосе.

3D-печать предлагает массу выгодных преимуществ для освоения космоса: снижение времени путешествий, стоимости, отходов, увеличение настраиваемости и подгонки размеров частей. Не хватало только материалов. NASA разработало 3D-принтер, который может выбирать между различными типами сплавов для печати частей космических аппаратов. SpaceX недавно напечатала главный клапан окислителя для одной из своих ракет с помощью такого принтера. Компания сообщила, что будет использовать технологию в течение трех лет и скоро попытается напечатать двигательную камеру.

Таким образом, изучив литературу по этому вопросу, с помощью интернет-ресурсов, я пришел к выводу, что космороботы уже чрезвычайно широко применяются в разных странах для изучения космического пространства: взятие различных материалов с планет, исследование на наличие водяных паров на планетах (Марс –есть пары, измерение температуры)

Миниатюрный спектрометр теплового излучения

Антенна для передачи данных на Землю

Всей этой аппаратурой управлял бортовой компьютер, тактовая частота которого равна 20 мегагерц. Питалась вся электроника от солнечной батареи, установленной у него не верху. Вырабатывала она примерно 140 Ватт в 4 часа. Также она заряжала литиево-ионный аккумулятор, энергия с которого использовалась в ночное время. Изначально рассчитывали, что эти марсоходы проработают около 90 дней, и их миссия завершится, но проработали они гораздо больше. Спирит проработал больше шести лет, после чего связь с ним была утеряна. Оппортьюнити до сих пор стабильно работает, и в данный момент проводит изучение кратера Индевор.

  1. Современные разработки космической робототехники.

Принцип управления - повтор андроидом движений человека-оператора, одетого в специальный костюм (задающее устройство копирующего типа УКТ-3).

Для SAR-401 разработаны два варианта захватывающих устройств. Первый антропоморфный захват (АЗ) необходим для выполнения рабочих задач с предельными характеристиками и предназначен для удержания, манипуляций и перемещения объектов различной массы. Захват обеспечивает значительные усилия, развиваемые каждой структурной группой, контроль текущего положения звеньев, имеет 8 степеней подвижности, простую, надежную конструкцию.

Второй захват предназначен для выполнения работ, требующих мелкой и точной моторики. Он гарантирует пространственную ориентацию объекта в точке позиционирования, контроль силового взаимодействия оператором (обратная связь), полную адаптацию положения звеньев к геометрии захватываемого объекта, имеет 13 степеней подвижности.

Взаимодействие оператора с СРТС SAR- 401 осуществляется системой дистанционного управления копирующего типа. Так же предусмотрен супервизорный и автономный режимы управления.

  1. Перспективные разработки космической робототехники.

"Персональный помощник астронавта"

Малоразмерное устройство, способное перемещаться во внутренних объемах кораблей и станций за счет миниатюрных реактивных двигателей. Предназначено для "информационной поддержки" астронавтов при их работе с бортовым оборудованием. Разработка ведется специалистами Исследовательского центра NASA имени Эймса. Устройство оснащено датчиками атмосферы, измеряющими почти все ее параметры. Может служить средством непосредственной связи астронавтов и наземных центров управления полетом. Может работать автономно и по командам с Земли. Устройство проходит летные испытания на борту МКС.

Для работы на Международной космической станции российские инженеры создают робота, который станет настоящим помощником космонавтам и астронавтам на МКС. Разработкой косморобота занимаются специалисты ракетно-космической корпорации "Энергия" совместно с коллегами из НПО "Андроидная техника".

Основными направлениями развития робототехнических систем космического назначения на ближайшую перспективу являются решение функциональных, технологических, сервисных и организационных задач, возникающих в ходе космических полетов, по результатам которых и должны быть сформулированы технические требования к перспективным робототехническим системам космического назначения.

При повороте двигателя крутятся шестерёнки, и двигая прикреплённые к ним рычажки сжимают и разжимают клешни, обмотанные резинками, для увеличения трения.

Планка зафиксирована с одного конца, и свободна с другого. Недалеко от места крепления присоединена ещё одна планка с другой стороны, прикрепленная к вращающейся шестерни.

Т.к. кисть получилась тяжёлая для мотора, то я сделал противовес для неё (теперь конструкция стала походить на подъёмный кран)

В качестве противовеса я использовал контроллер nxt. Сам контроллер нечто вроде человеческого мозга, он обрабатывает поступающую информацию и реагирует так, как заложено в программе.

Теперь робот может брать и поднимать предмет, делаем так, чтоб он мог вращаться.

Постановка конструкции на двигатель.

Создание управления робота.

Существует два способа управления роботом.

Через уже готовую программу, которая позволит роботу делать очень точное действие много раз, но этот способ не очень хорош, так как для этого нужно либо большое количество датчиков, и очень много проверок условия.

Управление оператором с помощью пульта.

В данном случае я буду использовать второй способ, т.к. человек может подстраиваться под проблему и решать её, когда робот не найдя данную проблему в списке откажется работать. Я буду использовать программу для управления приводами средствам подачи сигнала на робота при помощи bluetooth. Теперь робот движется, по моим командам и может поднимать предметы.

В результате выполнения данной работы я изучил исторические и теоретические знания в области космической робототехники, познакомился с практическими проектами использования робототехники в космосе, создал модель робота-манипулятора, способного выполнять сложные механические движения под управлением мобильного устройства.

Вместе с тем, говоря о сегодняшних достижениях космической робототехники, нужно понимать, что мы находимся лишь в начале пути. Возрастание состава задач, выполняемых с использованием робототехнических систем космического назначения, а также повышение требований к качеству их решения делает необходимым формирование адекватной концепции их развития.

Вопрос замены человека роботами начал рассматриваться учеными и фантастами еще в начале ХХ века. Человек все больше и больше осваивал окружающее пространство, расширял сферу своей деятельности. Все чаще человек направлял свою работу в те среды, где для его здоровья и жизни условия окружающего пространства представляли опасность. Поэтому задача создания роботов для работы в опасных для человека условиях стал жизненной необходимостью. Сначала человек заменил роботами выполнение трудоёмких операций, таких как автоматизированная линия сборки автомобилей.

Чем дальше шёл технический прогресс, тем в больших областях хозяйственной деятельности человека находили применение роботы и робототехнические системы.

В настоящее время роботы стали неотъемлемой частью производства, высвобождая человека в его трудовой деятельности. Космос является одной из областей применения автоматизированных и робототехнических систем в связи с высокой опасностью для человека открытого космоса.

  • перенести запуск
  • функционировать в сложных условиях враждебной среды
  • весить как можно меньше
  • потреблять мало энергии и иметь долгий срок службы
  • работать в автоматическом режиме
  • обладать чрезвычайной надежностью

Для того, чтобы соответствовать всем этим требованиям, учёные создают все новые и новые устройства, механизмы, приводы, микроконтроллеры, обладающие высокой прочностью и использующим как можно меньше энергии. Эксперты подсчитали, что отправление на Марс человека будет стоить примерно 200-300 миллиардов долларов, при том что это будет безвозвратное отправление. Еще придется потратить несколько месяцев на психологическую адаптацию участников экспедиции. А отправка корабля, на борту которого будет робот, обойдется примерно в 5-10 миллиардов долларов. Так что роботы в космосе обходятся намного дешевле, чем люди.

Самые известные роботы, которых используют в космических исследованиях - это роверы. Они функционируют в автоматическом режиме и приспособлены для передвижения по поверхности другой планеты. Обычно они комплектуются научно-исследовательским оборудованием, камерой, передатчиком (для связи с Землей) и солнечными батареями, для долгой и автономной работы. Далее я приведу пример космороботов, которые когда-то работали в космосе, работают сейчас, или которых планируют запустить в будущем. И начну я с Лунохода.

  • Масса – 756 килограмм
  • Длина – 4,42 метра
  • Ширина – 2,15 метров
  • Высота – 1,92 метра
  • Диаметр колес – 510 миллиметров
  • Ширина колес – 200 миллиметров
  • Колесная база – 1700 миллиметров
  • Ширина колеи – 1600 миллиметров
  • Две телекамеры (одна резервная), четыре панорамных телефотометра,
  • Рентгеновский флуоресцентный спектрометр
  • Рентгеновский телескоп
  • Одометр-пенетрометр
  • Детектор радиации
  • Лазерный рефлектор
  • Антенна для передачи информации на Землю

Луноход-1 проработал в 3 раза дольше запланированного срока, успев проехать 10540 метров, передав на Землю 211 панорам и около 25000 фотографий. Проработав чуть больше 301-го дня, он не вышел на связь с Землей в связи с выработкой изотопного источника теплоты, поддерживающего тепло внутри лунохода.

Марсоход – это аппарат, предназначенный для изучения планеты Марс.

  • Масса – 185 килограмм
  • Длина – 1,6 метров
  • Ширина – 2,3 метра
  • Высота – 1,5 метра
  • Максимальная скорость 50 миллиметров в секунду
  • Рабочая температура – от -40оС до +40оС
  • Бур
  • Две телекамеры
  • Микроскоп
  • Два спектрометра
  • Манипулятор
  • Навигационная система
  • Панорамная камера
  • Миниатюрный спектрометр теплового излучения
  • Спектрометр альфа-излучения
  • Антенна для передачи данных на Землю

Всей этой аппаратурой управлял бортовой компьютер, тактовая частота которого равна 20 мегагерц. Питалась вся электроника от солнечной батареи, установленной у него не верху. Вырабатывала она примерно 140 Ватт в 4 часа. Также она заряжала литиево-ионный аккумулятор, энергия с которого использовалась в ночное время. Изначально рассчитывали, что эти марсоходы проработают около 90 дней, и их миссия завершится, но проработали они гораздо больше. Спирит проработал больше шести лет, после чего связь с ним была утеряна. Оппортьюнити до сих пор стабильно работает, и в данный момент проводит изучение кратера Индевор.

  • Масса – 900 килограмм
  • Длина – 3 метра
  • Ширина – 2,7 метра
  • Высота – 2,1 метра
  • Максимальная скорость – 90 метров в час
  • Диаметр колёс – 0,5 метра

Роботы-аватары – это роботы, полностью копирующие людей, и способные в точности повторять движения человека, находящемся в специальном костюме. Смысл в том, что человек, например какой-нибудь ученый, надевает специальный костюм, после чего робот начинает повторять все движения головы, ног, рук и даже пальцев. Нужно это по нескольким причинам:

  • Во-первых – это гораздо упрощенная конструкция кораблей, которые будут посылать аватара в космос, так как не надо встраивать в корабль систему жизнеобеспечения, роботу этого не нужно.
  • Во-вторых – робота не нужно забирать обратно с луны, чего нельзя сказать про космонавта. То есть корабль рассчитывается только на полёт в один конец.
  • В-третьих – робот может работать в более жестких условиях, чем человек.
  • В-четвертых – костюм, управляющий роботом, может надеть любой человек, например, с начала его может надеть ученый, исследуя то, что ему нужно, потом его может надеть инженер, для того чтобы что-либо починить (например, деталь в самом роботе, вышедшую из строя) и так далее…

Но у робота есть один неоспоримый минус – задержка в сигнале, посылаемом от костюма к роботу, и от видеокамеры робота на Землю, будет очень велика. Если для Луны эта задержка составит около 3 секунд, то для Марса эта задержка будет во много раз больше, что уже значительно осложнит управление этим роботом. Так что в ближайшее время их можно будет использовать только вблизи Земли, например на Луне или на космических станциях.


Кроме нашего родного праздника 12 апреля — Дня Космонавтики — есть ещё целая Всемирная неделя космоса, которая длится с 4 по 10 октября. И недавно очередная статья о том, что в будущем роботы лишат нас работы, натолкнула нас на мысль поинтересоваться, а как обстоят дела с роботизацией космонавтики? Под катом — краткий обзор использования современных космических роботов.

Как гласит Википедия:

Ро́бот — автоматическое устройство, созданное по принципам распознавания, удержания и перемещения объектов во вредной и опасной средах, предназначенное для осуществления различного вида операций для производства, которое действует по заранее заложенной программе и получает информацию о положении и состоянии окружающего пространства посредством датчиков. Робот самостоятельно осуществляет производственные и иные вспомогательные операции, частично или полностью заменяющие труд человека. При этом робот может как иметь связь с оператором получать от него команды, так и действовать автономно, в соответствии с заложенной программой.

Нестареющая классика


image

image




А ручки-то вот они!


… и японский JEMRMS длиной 10 м:


Роботы-аватары

Одно из самых интересных направлений развития космической робототехники — роботы-аватары. Это устройства, которыми космонавты могут управлять дистанционно, выполняя работы в открытом космосе, но при этом находясь в тепле и уюте космической станции. Дело в том, что выпускать в открытый космос человека очень дорого: каждому космонавту шьют индивидуальные скафандры, которые сами по себе стоят как несколько роскошных автомобилей, а ведь их ещё нужно доставить на станцию. Если посчитать все расходы, то каждый час работы космонавтов в открытом космосе стоит, по разным данным, $2—4 млн. При этом далеко не всегда для выполнения работ требуется особая смекалка, в космическом ремонте/монтаже/разгрузке/погрузке достаточно рутинных операций. Было бы идеально, если бы этим занимались автономные роботы, а космонавты тратили бы своё время на более важные задачи или просто больше отдыхали. Но увы, технологии искусственного интеллекта пока ещё в зачаточном состоянии, так что сэкономить деньги и время на выходах людей в открытый космос можно только с помощью роботов-аватаров.

Их разработка ведётся и в NASA, и в Роскосмосе, возможно, и в других странах. Например, в рамках американской программы Robonaut было создано несколько моделей антропоморфных роботов-аватаров. Robonaut 2 в 2011 отправлен на МКС.


В этом году завершилось инициированное NASA соревнование на разработку лучших алгоритмов управления для будущего робота Robonaut 5 (”Valkyre”), которого планируется использовать в разных миссиях агентства, в том числе в экспедиции на Марс.


Робот высотой 185 см весит 135 кг, потребляет 1,8 кВт*ч и управляется двумя компьютерами на базе Intel Core i7. Основную информацию об окружающем пространстве робот получает с помощью системы датчиков, включая пассивное стереозрение, лазерное сканирование и генерирование облака точек инфракрасного структурированного освещения (IR structured light point cloud generation). Питание робота может быть как автономным, так и по кабелю.


Сам себе мастер

Любопытный проект сейчас разрабатывается под эгидой NASA — космический робот (”Dragonfly”) для сборки и ремонта спутников. По сути, это рука-манипулятор длиной 3,5 м, с помощью которой спутники могут самостоятельно монтировать на себе в космосе антенны и прочее хрупкое оборудование. Также Dragonfly будет использоваться для сборки в космосе больших спутников, которые слишком дорого или невозможно выводить на орбиту целиком.

Та же контора SSL, что создаёт Dragonfly, прорабатывает и проекты роботов-ремонтников для спутников — RSGS и Restore-L. Это очень актуальная проблема, поскольку срок жизни спутников не слишком велик, обычно считаные годы. Потом у них кончается топливо для маневровых двигателей или они умирают, нередко пополняя легион космического мусора, уже окутавшего планету. А с помощью роботов-ремонтников можно сэкономить на запуске новых спутников вместо сломавшихся и замедлить замусоривание околоземного пространства.

В прошлом году начальник лаборатории космической робототехники ЦНИИмаш сообщил, что и у нас в стране разрабатываются ремонтные роботы для спутников. Но нам не удалось найти какой-то информации об этих разработках.

Звёздная пчела

image

Астероидный вор

NASA, как самое богатое аэрокосмическое агентство в мире, может себе позволить очень сложные и необычные проекты. К середине 2020-х здесь собирались реализовать оригинальную миссию-многоходовку Asteroid Redirect Mission по исследованию астероидов. Специальный робот должен был подлететь к астероиду, найти на его поверхности подходящий валун, схватить его манипуляторами и привезти на орбиту вокруг Луны, где камешек приняли бы в свои дружеские объятия космонавты, взяли образцы и отправили на Землю для анализа химического состава, чтобы узнать всю правду о том астероиде, с которого умыкнули валун. Прототип робота уже прошёл испытания, его запуск планировался на 2021-й. Но космические программы режут не только у нас, и проект стал жертвой сокращения бюджета. Возможно, прототип робота-камненосителя будет использован в других миссиях NASA.

Читайте также: