Развитие микроэлектроники в россии доклад

Обновлено: 30.06.2024

Авторизуясь в LiveJournal с помощью стороннего сервиса вы принимаете условия Пользовательского соглашения LiveJournal

Советская микроэлектронная промышленность оставалась передовой до конца семидесятых годов прошлого века. Погубила ее межведомственная разобщенность и недостаток финансирования для перехода на новый уровень развития

В начале шестидесятых годов ХХ века Советский Союз по многим направлениям научно-технической политики занимал ведущее место в мире. В ряду его успехов были первые в мире спутник, запуск человека в космос, атомный ледокол, компьютер мощностью выше одного миллиона операций в секунду, ПРО и многое что другое. Все эти достижения были бы невозможны без соответствующего развития электроники. По крайней мере, серийное производство транзисторов Советский Союз и США начали практически одновременно, в 1949 году.

Однако как отдельная отрасль промышленности советская электроника не сложилась. Потому что за исключением полупроводников, для производства которых были созданы специализированные предприятия, хотя их и было раз, два и обчелся, остальные необходимые компоненты радиоэлектронной аппаратуры все аппаратурщики делали в основном сами: и резисторы, и конденсаторы, и трансформаторы, и разъемы. Это было побочное полукустарное производство. С определенного момента такая ситуация стала осознаваться как проблема, и в 1961 году был создан Государственный комитет по электронной технике, который возглавил Александр Шокин. Позже Госкомитет был преобразован в Министерство электронной промышленности, которое объединило все до этого разрозненные предприятия — производители электронной компонентной базы.

Создание Госкомитета пришлось на переломный момент в истории мировой электроники. В 1959 году в США была разработана первая в мире микросхема, а в 1962-м начат серийный выпуск. Советский Союз принял вызов, и в том же 1962 году появилось решение ЦК КПСС об организации в Зеленограде под Москвой Научного центра микроэлектроники.

— С разработкой микросхемы мы задержались, но серийное производство США и Советский Союз начали почти одновременно, в 1962 году. Немного истории. Как известно, первую микросхему Джек Килби из Texas Instruments сделал в 1959-м, но она никуда не пошла. Он еще раз на практике доказал и, что особенно важно, придал широкой гласности возможность изготовления на германии и кремнии не только транзисторов и диодов, что было общеизвестно, но и резисторов и конденсаторов, о чем производители электронных приборов и не задумывались. Непосредственной практической ценности проект не имел и в серийном производстве реализован не был. У Килби была так называемая волосатая — это жаргонное выражение — технология. То есть для соединений даже внутри самой микросхемы он использовал проводочки. И по сути, это и все, что он сделал. И получил Нобелевскую премию.

А в Советском Союзе?

Директор РЗПП дал поручение молодому инженеру Юрию Валентиновичу Осокину. Перед рижанами стояла принципиально новая задача: реализовать на одном кристалле два транзистора и два резистора, исключив их паразитное взаимное влияние. В СССР никто ничего подобного не делал, а о работах Килби и Нойса никакой информации в РЗПП тогда не было. Но специалисты РЗПП успешно преодолели все трудности, причем совершенно не так, как это сделали американцы. И уже осенью 1962 года были получены первые опытные образцы германиевой твердой, как тогда называли, схемы 2НЕ-ИЛИ, получившей заводское обозначение Р12–2. Она содержала два германиевых p-n-p-транзистора с общей нагрузкой в виде распределенного германиевого резистора р-типа. А к концу года завод выпустил первые пять тысяч микросхем. То есть начало серийного производства микросхем разделяло нас и американцев не больше чем на полгода.

Таким образом, 1962 год стал годом рождения микроэлектронной промышленности одновременно и в США, и в СССР. И я считаю, что Осокин Юрий Валентинович, который был главным конструктором нашей первой микросхемы, не меньше достоин Нобелевской премии, чем Килби. Тем более что он сделал устройство 2НЕ-ИЛИ значительно более сложное, чем триггер, который сделал Килби. Только о нем в мире едва ли кто знал и знает.

А что потом стало с Осокиным?

Я еще не сказал, что работы по микроэлектронике также велись в Ленинграде, в СКБ-2, Старосом и Бергом, которые были участниками группы Розенберга в США и бежали оттуда, когда возникла угроза их разоблачения. Настоящие их фамилии, как выяснилось уже значительно позже, Сарант и Барр.

Пожалуйста, подробнее.

— Они были единственные, кто смог сбежать. Остальных переловили. Самого Розенберга и его жену, как известно, отправили на электрический стул, а остальные просидели до 18 лет в тюрьмах. Действовали все они из коммунистических убеждений и стремления помочь Советскому Союзу. Сначала в войне с Германией, а потом в холодной войне. Берг в этой паре был, так сказать, фигурой второго плана, а Старос действительно фигура солидная, он много чего сделал для советской электроники. Хотя когда про них говорят, что они привезли сюда новейшие достижения американской микроэлектроники, это не соответствует действительности. Оба бросили работать по специальности еще до изобретения транзистора. И проработали по специальности по шесть лет в четырех фирмах. То есть в среднем по полтора года в фирме. Выше рядового инженера они не поднимались и были бакалаврами в электротехнике, а не в электронике, с ничтожным производственным опытом.

У нас здесь вышла?

— В Америке. Как два инженера шпионили для Сталина и создали советскую Кремниевую долину.

Сбежав из США, они сначала жили в Чехословакии и занимались электроникой. Причем не самостоятельно, а под руководством известного чешского электронщика Антонина Свободы, который во время Второй мировой войны был ведущим разработчиком компьютерных систем управления зенитными системами в Radiation Labs Массачусетского технологического института. Свобода уже тогда был фигурой всемирно известной. С 1950 года в Чешском институте технологии в Праге он читал курс по цифровым и аналоговым ЭВМ. В частности, Берг и Старос участвовали под руководством Свободы в создании первой в Чехословакии ЭВМ. Потом, когда там произошла смена власти и к ним стали проявлять нездоровый интерес, им пришлось переехать в Союз. Сначала они работали в авиапроме. Там сделали свой первый бортовой компьютер, правда, не совсем удачно, и в результате министр авиапрома к ним остыл. Но Шокин, будущий министр электронной промышленности, который умел ценить интересных людей, видя, что они решают важную задачу, забрал их к себе в радиопром, где он тогда работал заместителем министра. А потом и в Госкомитет по электронике. И привлек Староса к работе по созданию Зеленоградского научного центра.

Я помню эти приемники еще с детства.

— Старос принимал участие в подготовке решения по созданию Зеленоградского научного центра и был назначен его первым главным инженером. А директором стал Лукин Федор Викторович, тоже фигура из подзабытых. Старос, судя по всему, обиделся на то, что его не назначили директором, и, фактически так и не приступив к работе в Зеленограде, остался в Ленинграде.

Завершая разговор о роли Староса, отмечу, что им был действительно сформирован один из лучших в Минэлектронпроме коллектив разработчиков ЭВМ, ИС и микропроцессоров. Старос был чудесным организатором, умел подбирать и сплачивать людей, до сих пор вспоминающих его с глубоким уважением. Этот коллектив одним из первых в стране создал микрокалькулятор, микропроцессор, однокристальный и одноплатный микроконтроллер. Две из разработанных под руководством Староса ЭВМ были удостоены Государственных премий. Старос реально мог стать создателем первой в стране, а может быть, и в мире, тонкопленочной ГИС, поскольку такая ГИС была создана в его коллективе, но Староса не интересовала ГИС как самостоятельное изделие, его интересовало создание ЭВМ на основе гибридной технологии. В результате это направление не получило в его СКБ развития, а Старос не получил приоритета в создании ГИС.

Именно там была выдвинута и реализована идея фрагментно-модульного проектирования однокристальных и одноплатных микропроцессорных систем. Почти через 30 лет эта идея нашла распространение во всем мире в виде технологии проектирования микросхем на основе IP-блоков и систем на кристалле.

А Федор Лукин, ставший первым директором научного центра, был во время войны одним из ведущих разработчиков радиолокационных систем управления стрельбой артиллерии крейсеров и эсминцев. За их создание ведущие разработчики, в том числе Лукин, были удостоены Сталинской премии. В 1953 году после ареста Берии его сын Серго был изгнан из КБ-1, где он был главным конструктором. Появились даже предложения это КБ закрыть. Разобраться с КБ-1 направили в том числе и Лукина, назначив его главным инженером, и он сделал все, чтобы КБ-1 успешно продолжило работу. А в 1958 году Лукину присвоили Ленинскую премию за мобильную зенитно-ракетную систему, созданную в этом КБ.

Советский разведчик, один из основателей зеленоградского Научного центра Филипп Старос (Альфред Сарант)

Лукин одним из первых в стране понял, что электронная аппаратура на основе дискретных элементов исчерпала свои возможности. В конце пятидесятых годов он, как я уже сказал, создает первую в стране лабораторию микроэлектроники. Так Лукин, сам того не подозревая, начал готовить научный задел и кадры для зеленоградского Научного центра микроэлектроники, который через три года ему предстояло создать.

Зеленоградский проект

Как разворачивались работы по созданию центрамикроэлектроники в Зеленограде?

— Постановление ЦК КПСС о создании этого центра вышло 8 августа 1962 года, в тот же год, когда началось производство первых советских микросхем. В следующем году центру будет 50 лет. Хотелось бы воспользоваться этой датой, раскачать ее до федеральной акции, чтобы как-то привлечь внимание властных и деловых структур к тому, что нам надо иметь собственную электронику и ее надо развивать.

Идеологом и основателем Научного центра, как стали называть объединение зеленоградских предприятий микроэлектроники, был, безусловно, Александр Шокин — в то время руководитель Государственного комитета электронной техники. Он, собственно, подготовил постановление и сумел убедить Хрущева в его необходимости.

В постановлении была заложена основополагающая идея, предопределившая успех Научного центра: комплексный, замкнутый характер центра с организацией всех основных необходимых НИИ и опытных заводов для исследования, разработки и производства ИС, материалов и технологий.

В решении было предусмотрено, во-первых, создание в одном месте ряда НИИ с опытными производствами, работающими один на другого и создающими последовательную цепочку для получения интегральных микросхем и аппаратуры на их основе. Во-вторых, создание социальной инфраструктуры, необходимой для жизни сотрудников всех этих предприятий. И в-третьих, создание инфраструктуры, необходимой для подготовки кадров.

Идея комплексного решения научно-технических задач большого государственного значения и развития социальной структуры была не нова. Так решались вопросы при разработке атомного оружия, ракетных систем. Шокин, на мой взгляд, блестяще использовал возможность реализации этой идеи на одной территории. Далее все было, как говорится, делом техники.

Как получилось, что постановление вышло в 1962 году, а уже наследующий год заработали некоторые заводы и институты?

А золото зачем? Для покупки иностранного оборудования?

— Конечно. Хотя тогда было очень трудно что-то закупить, потому что были ограничения. КОКОМ еще, по-моему, не существовал, но ограничения всегда были.

Советскую электронику часто упрекают в том, что она нестолько разрабатывала собственные микросхемы, скольковоспроизводила иностранные образцы. И это одна из причин,погубивших нашу электронику.

Почему?

— Причин тому немало, но к главным я бы отнес следующие две. Во-первых, сложившаяся к тому времени политика и практика воспроизводства зарубежных образцов, заведомо программирующая отставание, — этим увлекались не столько электронщики, сколько разработчики аппаратуры и военные, не доверявшие нашим разработчикам. Во-вторых, ведомственная разобщенность, которая приводила к тому, что другие отрасли народного хозяйства отказывались разрабатывать и производить материалы и спецоборудование для электронной промышленности с соответствующими характеристиками по чистоте и точности.

Я недавно брал интервью у президента европейского отделенияобъединения производителей электроники SEMI Хайнца Кундерта,который сказал, что в настоящее время только две фирмы в миреспособны делать оборудование для микроэлектроники — Intel и Samsung. И бесполезно пытаться догонять.

— В 1962 году мы тоже ничего не умели. А в 1965–1966 годах уже выпускали. Главное — захотеть, очень сильно захотеть. Тогда в мире было три страны, которые делали, скажем, фотолитографическое оборудование:. США, Япония и Советский Союз. Это самое прецизионное оборудование среди всех технических устройств: уровень технологии в микроэлектронике зависит от уровня фотолитографии.

И сегодня в России, в том же Зеленограде, есть компании, разрабатывающие и производящие оборудование мирового уровня, в том числе и для микроэлектроники. Например, компания НТ-МД. Так что главное — захотеть. Но захотеть должны нынешние Хрущевы. За специалистами дело не станет.

Надо помнить, что при всех проблемах, которые испытывала наша страна, только в Советском Союзе была единственная в мире самодостаточная электроника. В которой все было свое и которая сама выпускала всю номенклатуру электронных изделий от радиоламп до СБИС. И обладала собственным материаловедением, собственным машиностроением — все было свое. Другие развитые страны — США, Япония, страны Европы, — какая бы ни была конкуренция между их фирмами, развивались в условиях широкой международной кооперации.

Но в конце 1970-х советская электроника, как я уже сказал, начала входить в кризис. Требовались новые материалы, коренная смена оборудования, то есть требовались крупные капитальные вложения. Зеленоградский Научный центр в 1978 году подготовил программу перевооружения и дальнейшего развития микроэлектроники и проект соответствующего постановления ЦК КПСС. Но приближалась Олимпиада-80 в Москве, и для руководства страны она оказалась важнее — на все средств не хватало.

Говорят, что на заседании Политбюро против постановления выступил Гришин, первый секретарь Московского горкома КПСС. Постановление было подписано через несколько лет в существенно урезанном и выхолощенном виде. С этого момента началось уже прогрессирующее отставание отечественной микроэлектроники и всей экономики, усугубленное последующими реформами в стране до катастрофического. И продолжается до сих пор.

Аннотация. В статье рассматривается история развития отечественной микроэлектронной отрасли. Кратко перечислены основные разработки отечественной потребительской микроэлектроники с начала ее возникновения в нашей стране (1960-е годы). Приведена справочная информация о развитии Центра микроэлектроники в наши дни.

Ключевые слова: микроэлектроника, микропроцессор, интегральные схемы (ИС), Центр микроэлектроники (ЦМ).

Развитие науки и техники сегодня невозможно представить без становления одной из ведущих областей электроники – микроэлектроники, занимающейся созданием электронных функциональных узлов, блоков и устройств в микроминиатюрном интегральном исполнении.
Появление первых микроэлектронных компонентов произошло в начале 60-х годов ХХ века США. Именно в это время началось серийное производство интегральных схем (ИС) на полупроводниках.

Следуя мировым тенденциям и очевидной необходимости развития новой отрасли в Советском Союзе, министр электронной промышленности СССР Александр Иванович Шокин сформулировал основные требования к новому объединению предприятий, институтов, заточенному на производство микроэлектронных компонентов. В связи с этим весной 1962 года была подготовлена концепция нового Центра микроэлектроники (ЦМ), после принятия которой вышло постановление Совета Министров СССР о создании ЦМ [3]. Существенной проблемой итоговой реализации данного вопроса оставалась необходимость одобрения руководителя страны.

Так, во время встречи Н. С. Хрущёва с судостроителями 4 мая 1962 года в Ленинграде была предложена к обсуждению проблема бортовой радиоэлектронной аппаратуры (РЭА), в рамках которой коллектив электронщиков представил образец электронно-вычислительной машины (ЭВМ), созданной на основе транзисторной схемы. Демонстрируемый образец существенно отличался от предыдущих моделей своей компактностью, а показанный радиоприемник с ДВ-диапазоном и размером со спичечный коробок (45 x 30 x 13 мм) окончательно убедил Никиту Сергеевича в необходимости развития данной отрасли.
Далее встал вопрос о размещении центра для развития новой отрасли – микроэлектроники. В процессе изучения разных мест, предназначенных для возможного строительства, особое внимание было привлечено к подмосковной территории, находившейся рядом со станцией Крюково (севернее Москвы), на которой начиная с 1958 года вели строительство нового города-спутника [2] для текстильной промышленности [11]. В ходе строительства сложилась градостроительная дисгармония: возводились жилые массивы, но текстильное производство было решено строить в другом месте, а других крупных промышленных объектов в плане пока не было. Это послужило причиной переориентации местности на размещение Научного центра микроэлектроники, который в свою очередь стал градообразующей организацией города.

Концепция города-спутника была изложена и утверждена в Постановлении ЦК КПСС и Совмина СССР от 8 августа 1962 года. С тех пор микроэлектронная отрасль была включена в экономику страны.

Зеленоград в силу разных причин стал обычным московским районом. Безусловно, в нашей стране будет еще множество различных амбициозных проектов по построению высокотехнологичных производств. Но, несмотря на быстрый научно-технических прогресс, не стоит забывать об отрасли, стоящей в начале пути развития современных технологий. Советская Силиконовая долина – Центр микроэлектроники в городе Зеленограде – навсегда останется знаковым местом страны, который напоминает о временах зарождения и становления микроэлектроники.

History of development of russian microelectronics

Busarov Ivan Vladimirovich,
student of 1 course of the Moscow City University, Moscow

Annotation: In the given article the history of development of the domestic microelectronic industry. Briefly listed are the main developments of domestic consumer microelectronics since its inception in our country (1960s). At the end of the article, a brief analysis of the development of the microelectronics center in the framework of today is contained.
Keywords: Microelectronics, microprocessor, integrated circuits (IC), microelectronics center (CM), Zelenograd.





Хорошо забытое старое

В 2013 году в Зеленограде открыт Центр проектирования, каталогизации и производства фотошаблонов (ЦФШ) для изготовления интегральных схем. Центр позволяет проектировать и изготавливать фотошаблоны различных типов и является единственным таким предприятием в РФ.

Россия самостоятельно может выпускать процессоры по нормам не менее 65 нанометров, хотя оборудование для техпроцесса используется зарубежное. Своего оборудования у нас нет, и бессмысленно говорить о внедрении техпроцессов более высоких уровней.

“ Без импорта нам пока не обойтись. Крупнейшими источниками импорта в РФ электронных компонентов (микросхем, полупроводников, транзисторов, резисторов, диодов) являются страны Восточной и Юго-Восточной Азии ”

Все они специализируются на разработке и производстве изделий промышленной электронной техники, полупроводников, полупроводниковых модулей СВЧ-приборов, микросхем с техпроцессом на 100 нанометров и менее, а также оптоэлектроники, авионики, систем управления, электронных материалов и оборудования для их изготовления и телекоммуникационного оборудования связи, спутниковой связи, средств локации.

С клеймом Тайваня

Это значительно снизит наше отставание. Хотя у конкурентов размеры еще меньше – 10–14 нанометров. Можно добавить, что этот процессор создан именно в России, в части военных поставок. Однако без импорта нам пока не обойтись. Крупнейшими поставщиками электронных компонентов (микросхем, полупроводников, транзисторов, резисторов, диодов) являются страны Восточной и Юго-Восточной Азии.

Сообщалось также о разработке оптической системы и ее элементов для фотолитографических установок, работающих на длине волны 13,5 нанометра. Теоретически при таком размере при использовании околорентгеновского излучения с длиной волны 13,5 нанометра и меньше становится достижимым разрешение системы на уровне нескольких нанометров, как у самых современных установок EUV-фотолитографии.

Сегодня в установках ASML применяется излучение длиной волны 13,5 нанометра (EUV, сверхжесткий ультрафиолет). Для экспонирования здесь используются не линзы, а зеркала и вакуум в качестве среды. Источник излучения создается в Институте спектроскопии (ИСАН) РАН в подмосковном Троицке.

Прототипом самой установки занимаются в Институте физики микроструктур (ИМФ) РАН в Нижнем Новгороде. Сегодня институт занимает одно из лидирующих мест в мире в рентген-оптике. По некоторым оценкам, стоимость самостоятельной разработки оборудования для EUV-литографии на сегодня составляет порядка 100 миллиардов рублей и около 10 лет работы, что вполне подъемно для государства.

Как нам развивать микроэлектронику

Стоит отметить, что в американской статье российская микроэлектроника вообще не упоминается, при том что перспективам ее развития в других странах уделено много внимания, что и понятно: доля российской электроники в мировом производстве составляет какие-то доли процента. А ведь Советский Союз был второй или третьей микроэлектронной державой мира и единственной страной, выпускавшей практически всю номенклатуру изделий микроэлектроники и оборудования, необходимого для ее производства.

К сожалению, приходится констатировать, что в России в течение тридцати лет, прошедших после развала Советского Союза, практически никакого внимания микроэлектронике не уделялось

В начале статьи Эзелл отмечает, что полупроводниковая промышленность — одна из самых важных на сегодняшний день отраслей экономики, которая поддерживает современный цифровой мир и стимулирует инновации и производительность практически во всех остальных секторах экономики. Существует легенда, что примерно те же аргументы приводили Дэн Сяопину японские предприниматели, у которых он поинтересовался, какую отрасль промышленности Китаю стоит развивать в первую очередь. К сожалению, приходится констатировать, что в России в течение тридцати лет, прошедших после развала Советского Союза, практически никакого внимания микроэлектронике не уделялось. Факт запущенности микроэлектроники и электронной промышленности в целом в стране в очередной раз признал и председатель правительства РФ Михаил Мишустин на встрече с руководством Государственной думы и лидерами парламентских фракций 26 октября. И правительство приняло решение поддержать микроэлектронику: в этом году принята Стратегия развития электронной промышленности до 2030 года. В ее рамках предусмотрены серьезные вложения в эту отрасль: в ближайшие два года инфраструктурные инвестиции составят 142 млрд рублей, а общие инвестиции в отрасли, связанные с микроэлектроникой, до 2024 года намечены в размере примерно 266 млрд рублей.

ЭЗЕЛЛ.jpg

Стивен Эзелл (Stephen Ezell), вице президент аналитического центра The Information Technology and Innovation Foundation (ITIF)

Что предлагает Стивен Эзелл для США

Основные выводы статьи Эзелла можно свести к следующим основным пунктам.

1. Растущие расходы, сложность и масштабы, необходимые для внедрения инноваций и производства полупроводников, означают, что ни одна страна или предприятие не может действовать в одиночку. Перед лицом вызовов со стороны Китая сотрудничество в области полупроводников имеет решающее значение.

3. Некоторые страны сосредоточили свои усилия на создании своих внутренних полупроводниковых экосистем, но история успеха американской промышленности показывает, как эффективно использовать глобальные цепочки поставок для взаимной выгоды.

4. Страны, которые будут стремиться к самодостаточности в этом секторе, рискуют нанести значительный ущерб отрасли в своей стране, замедляя глобальные полупроводниковые инновации.

5. Соединенным Штатам следует увеличить финансирование совместных с их союзниками доконкурентных НИОКР и стимулы для увеличения внутреннего производства.

Обосновывая пункт 4 своих выводов, автор предлагает обратиться к сравнению путей развития микроэлектроники в США и Японии. Он напоминает, что еще в 1990-е между полупроводниковой промышленностью США и Японии был паритет с эквивалентным уровнем их доли на мировом рынке. С тех пор Соединенные Штаты (то есть предприятия со штаб-квартирой в США) сохранили около половины мирового рынка полупроводников, а доля Японии упала менее чем 10%.

Дело в том, что в 1990-е годы в этих странах, как и в СССР, производители микроэлектроники были вертикально интегрированными компаниями и включали в себя как разработку, так и производство, причем часто не только собственно ЭКБ, но и необходимого оборудования. Но с тех пор в США ситуация радикально изменилась: ключевой стала модель разделения компаний в микроэлектронике на fabless-компании, то есть те, которые занимаются только проектированием и продажей и владеют правами на свои разработки, и foundry — компании, производящие микроэлектронику. И одновременно выделилось в самостоятельную отрасль электронное машиностроение. Это, как указывает Эзелл, дало отрасли возможность распределить риски своих капитальных вложений, переложив их на производственные компании, причем в разных странах мира, позволяя им, особенно на Тайване, специализироваться на производстве, сборке, тестировании и упаковке, в то время как компании со штаб-квартирой в США в основном специализировались на проектной деятельности с более высокой добавленной стоимостью.

Принята Стратегия развития электронной промышленности до 2030 года, в рамках которой предусмотрены инфраструктурные инвестиции в размере 142 млрд рублей. Общие инвестиции в отрасли, связанные с микроэлектроникой, до 2024 года намечены в размере примерно 266 млрд рублей

В результате экосистема полупроводниковой промышленности в США из набора полностью интегрированных фирм, как это было в 1950–1970-е годы, превратилась в глобальный набор компаний, которые к 2010-м годам специализировались на отдельных видах деятельности, таких как НИОКР, проектирование, изготовление станков, компоненты, литейное производство, сборка, тестирование и упаковка.

А японские компании, отмечает Эзелл, по-настоящему так и не воспользовались преимуществами глобальных цепочек создания стоимости, предпочитая держать бо́льшую часть своих производственных мощностей в Японии. За последние три десятилетия это привело к тому, что возникла принципиальная разница между полупроводниковыми секторами США и Японии: американские фирмы смогли поддерживать более низкие производственные затраты, что делало их более конкурентоспособными. А их специализированные производственные партнеры сосредоточились на усовершенствовании производственного процесса.

Российская стратегия

Внимательное прочтение отечественной стратегии развития микроэлектроники показывает, что о построении глобальных цепочек Россия не задумывается. Напротив, стремление построить у себя полный комплект фабрик на все проектные нормы, от 45 нм до 5 нм, чего пока нет даже у США, ясно говорит, что мы собираемся обеспечить полную автономию в разработке и производстве микроэлектроники. И понятно почему. Современная политическая обстановка, развернутые против России санкции, делают маловероятной возможность построения глобальных цепочек для российских компаний. Более того, российская стратегия фактически не предусматривает даже серьезного выхода отрасли на внешние рынки со своей продукцией. Если общий объем производства и продаж на внутреннем и внешнем рынках продукции, основывающейся в том числе на отечественных технологиях новых поколений микроэлектроники и создания ЭКБ, должен составить, согласно стратегии, 486,4 млрд рублей в 2024 году и 818,8 млрд рублей в 2030-м, то объем продаж этой продукции на внешнем рынке должен составить 20,4 млрд рублей в 2024 году и 48,8 млрд 2030-м. То есть в районе 5% от общего объема производства. Если исходить из соображений, высказанных Эзеллом, одно это делает российскую стратегию трудновыполнимой и экономически неэффективной. И это ставит перед российской микроэлектроникой задачу найти союзников для своего развития.

Предложения по развитию российской микроэлектроники
— Определение перспективных направлений развития электронной промышленности.
— Увязывание развития микроэлектроники с развитием электронной промышленности и выбор направлений ее развития.
— Определение важнейших направлений развития технологий микроэлектроники, нуждающихся в самостоятельном развитии, и на этой основе — направлений самостоятельного развития электронного машиностроения.
— Поиск возможных зарубежных партнеров в развитии электронной промышленности, микроэлектроники и электронного машиностроения.
— Налаживание международной кооперации.

И такие союзники могут найтись. В первую очередь это, конечно, Китай, что видно даже из статьи Эзелла — хотя бы потому, что, призывая к глобальной кооперации, он имеет в виду европейских союзников США и дружественные страны на других континентах, заведомо исключая из этой кооперации Китай, что следует из первого пункта его выводов. И это исключение уже стало политикой нынешней американской администрации в отношении Китая и его компаний: не случайно администрация Трампа наложила санкции на ведущие китайские компании — производители микроэлектроники Fujian Jinhua Integrated Circuit Company и Huawei. А также оказала давление на ведущего мирового производителя фотолитографического оборудования, критически важного для производства микроэлектроники, голландскую компанию ASML, чтобы не допустить продажи этого оборудования китайским производителям микроэлектроники. Все это оправдывается противодействием нерыночной стратегии Китая по развитию своего полупроводникового сектора и его практике хищения интеллектуальной собственности. Ясно, что Штаты не позволят — уже не позволяют — и России приобрести такое оборудование.

Японские компании по-настоящему так и не воспользовались преимуществами глобальных цепочек создания стоимости, предпочитая держать большую часть своих производственных мощностей в Японии

При этом Эзелл отмечает резкий рост, как абсолютный, так и относительный, производства китайской микроэлектроники. Так, доля Китая в мировой добавленной стоимости в полупроводниковой промышленности с 2001 по 2016 год выросла почти в четыре раза, с 8 до 31%, в то время как доля Соединенных Штатов упала с 28 до 22%, Японии — с 30 до 8%. И Китай, в отличие от США, взял курс на самодостаточное развитие микроэлектроники, рассчитывая, видимо, на гигантский объем своего собственного рынка. Получится у него или нет, сказать пока невозможно, но ясно, что пока Китай зависит от поставок оборудования.

ГРАФ1.jpg

Планы Китая

По состоянию на 2019 год на Китай приходилось 17% мирового производства полупроводниковых чипов, и ожидается, что эта доля вырастет до 28% к 2030 году, отчасти благодаря тому, что правительство Китая в настоящее время финансирует строительство более 60 новых полупроводниковых заводов.

Хотя аналитики ожидают, что к 2035 году КНР вряд ли достигнет своей цели — 70% самообеспеченности, а сможет удовлетворить не более 25–40% внутреннего спроса за счет полупроводников местного производства, Китай рассматривает полупроводниковый сектор как стержень своего цифрового развития и основу самых масштабных планов экономического роста. А, как отмечает Эзелл, Китай уже показал, что готов использовать все имеющиеся в его распоряжении инструменты для развития полупроводниковой промышленности мирового класса.

ГРАФ2.jpg

В одной лодке

Конечно, Китай быстро развивается, но пока у России есть что предложить ему в науке и технологиях. И об одной из таких возможностей мы расскажем ниже.

Главное — определиться какая микроэлектроника нам нужна, кто может быть нашим партнером в ее развитии и на какие рынки мы можем рассчитывать

Конечно, в этом случае мы вступим в конкуренцию с тем же Китаем, но, видимо, некое сочетание сотрудничества и конкуренции во взаимоотношениях с Китаем неизбежно.

ПАВЛЮК.jpg

Кстати сказать, именно такой подход способен прояснить, какая именно микроэлектроника нужна России, потому что нынешний замах на создание фабрик с проектными нормами вплоть до 5 нм не подкреплен в той же стратегии расчетами и объяснениями, для какой электронной аппаратуры, производимой именно в России, такая микроэлектроника нужна и на какие рынки она может рассчитывать.

Понятно, что США могут составлять планы развития микроэлектроники, не думая о рынках ее сбыта, перед ними весь мировой рынок. России развивать микроэлектронику без одновременного создания рынков, которые в ней нуждаются, — это пускать деньги на ветер.

У автономного развития микроэлектроники в России есть еще одно препятствие — фактическое отсутствие собственного электронного машиностроения, которого как отрасли в России не осталось, а то, что все-таки производится, годится лишь для мелких производств нестандартных устройств. Это общая проблема для нас с Китаем, для ее решения мы можем объединиться и на этой основе договориться о сотрудничестве в третьих странах.

АСМЛ.jpg

Проблемы электронного машиностроения

В мирово электронном машиностроении произошли процессы специализации производства, характерные для микроэлектроники в целом и для большинства отраслей машиностроения, например станкостроения.

Эзелл в качестве примера приводит цепочку поставок, которые обеспечивают производство фотолитографических машин в крайнем ультрафиолетовом диапазоне на нидерландской фирме ASML, ведущего мирового производителя таких машин. Доля ASML на мировом рынке фотолитографических машин с 2005 года увеличилась вдвое и составила 62% (оставшуюся часть разделили ее конкуренты Canon и Nikon). При этом базирующаяся в Германии компания Carl Zeiss производит оптику для этих машин; VDL, нидерландская компания, производит роботизированные манипуляторы, которые загружают пластины в машину, а источники света — компания Cymer, расположенная в Сан-Диего, штат Калифорния. И сама EUV-технология , лежащая в основе современной фотолитографии, является результатом пятнадцатилетних исследований и совокупных инвестиций в исследования и разработки в размере около 20 млрд долларов, сделанных компаниями из разных стран, например Intel, Samsung и TSMC. По мнению Эзелла, без глобальных цепочек поставок и обеспечиваемой ими специализации быстрое развитие технологии EUV-литографии было бы невозможно.

Эзелл не случайно выбрал для иллюстрации развития электронного машиностроения пример именно фотолитографической машины. Дело в том, что в производстве процессоров можно выделить две ключевые технологии: фотолитография и травление. И без машин для их реализации современная микроэлектроника невозможна. А по оценкам специалистов, в себестоимости производства самых современных процессоров фотолитография составляет до 70%.

Но оказывается, что в России есть группы разработчиков, у которых имеются оригинальные предложения мирового уровня по разработке машин для выполнения этих операций.

Оказывается, в России есть группы разработчиков, у которых имеются оригинальные предложения мирового уровня по разработке машин для выполнения этих операций

Наш журнал уже рассказывал о работах, проводимых тем же коллективом Института физики микроструктур РАН, по созданию прорывной безмасочной фотолитографической установки, которая существенно проще и дешевле нидерландских разработок. И у ученых уже есть серьезные достижения.

К сожалению, некоторые разработки наших ученых и инженеров ушли за рубеж, хотя сотрудничество с этими группами специалистов все еще возможно. В ближайшее время мы расскажем еще об одном направлении разработок фотолитографических установок, основанное на использовании голографии, которое ведет — к сожалению, в Швейцарии — команда российских ученых и инженеров под руководством доктора физико-математических наук Вадима Раховского. И эта разработка тоже обещает быть значительно более простой и дешевой, чем голландские машины.

Мы рассказываем это в подтверждении нашего тезиса, что в России есть что предложить нашим возможным партнерам в развитии микроэлектроники. Причем это только одно направление, хотя и важнейшее, а в России занимаются решением и других задач микроэлектроники.

ПОКРОВСКИЙ.jpg

Читайте также: