Разрушающий и неразрушающий контроль доклад

Обновлено: 04.07.2024

Для обеспечения высокого качества строительства необходим эффективный контроль, позволяющий обнаружить дефекты. Существуют два вида контроля качества: разрушающий и неразрушающий.

Разрушающий контроль приводит к полному разрушению или повреждению объекта контроля. Так, на заводах стройиндустрии производятся выборочные испытания отдельных изделий, входящих в состав изготовленных партий. После испытаний разрушенные изделия выбрасывают или перерабатывают для повторного использования составляющих материалов. Это вызывает дополнительные материальные и трудовые затраты и, кроме того, разрушающий контроль не может дать полной уверенности в высоком качестве всей партии изделий, так как осуществляется выборочно.

Вместе с тем разрушающий контроль дает непосредственную оценку прочности, жесткости и трещиностойкости конструкции, а также механических характеристик материалов.

Неразрушающий контроль позволяет без разрушения контролировать качество всех изделий как при изготовлении, так и в процессе эксплуатации, что невозможно при разрушающем контроле. Неразрушающий контроль может быть применен для выявления дефектов, определения прочности и плотности бетона, наличия, положения и диаметра арматуры, толщинометрии и т. д.

Неразрушающий контроль при проведении обследований может быть полностью автоматизирован. Его недостатком является отсутствие прямой связи наблюдаемых результатов контроля с параметрами конструкции; обычно эта связь осуществляется опосредованно, через изменение какой-либо физической величины (например, скорости прохождения ультразвука, интенсивности поглощения радиационных излучений и др.). Поэтому требуется градуировка приборов неразрушающего контроля (построение градуировочных зависимостей).

Неразрушающий контроль незаменим при проведении массового контроля качества строительных конструкций на заводах стройиндустрии; при выявлении фактического состояния конструкций, узлов, элементов в процессе эксплуатации и при реконструкции. Положительным примером может служить контроль всей сети железных дорог у нас в стране, осуществляемый 30 раз в год с помощью дефектоскопов, установленных на вагонах и тележках. Средства, вкладываемые при применении автоматизированного неразрушающего контроля, окупаются очень быстро, а надежность контролируемых изделий резко повышается.

Вместе с тем в ряде случаев неразрушающий контроль не может дать нужной информации: например, выявить фактическую прочность, жесткость, трещиностойкость конструкций, особенно в процессе научно-исследовательских работ, когда изучают новые материалы, конструктивные формы.

Наиболее полные данные о качестве конструкций и параметрах предельных состояний I и II групп можно получить путем комплексного применения неразрушающего и разрушающего контролей.

В настоящее время для неразрушающего контроля используют новейшие достижения физики, электро- и радиотехники, электроники, автоматики и вычислительной техники. В соответствии с ГОСТ 18353—79, различают такие методы неразрушающего контроля: склерометрические, акустические, капиллярные, магнитные, оптические, радиационные, радиоволновые, тепловые, течеисканием, электрические, электромагнитные.

Указанные виды неразрушающего контроля позволяют определить комплекс показателей качества строительных конструкций: дефекты, их размеры и места расположения; плотность, прочность и неоднородность структуры; толщину изделий и немагнитных покрытий на ферромагнитных изделиях; механические напряжения; влажность; наличие, диаметр и положение арматуры в бетоне и др. Иногда одни и те же показатели могут быть получены разными методами с различной точностью.

Для получения наиболее полной информации о состоянии конструкций и сооружений используют в комплексе два и более метода неразрушающего контроля, каждый из которых взаимодополняет друг друга и позволяет частично проконтролировать полученные данные. Менее точные методы неразрушающего контроля используют для экспресс- оценки качества конструкций. Подробные данные о применении методов неразрушающего контроля изложены в соответствующих ГОСТах (см. список рекомендуемой литературы). В строительстве применяют также механические и комплексные методы.

При осуществлении неразрушающего контроля должны соблюдаться требования охраны труда и техники безопасности. К работе допускается только специально обученный персонал, прошедший вводный инструктаж по охране труда и инструктаж на рабочем месте. При радиационном методе неразрушающего контроля должны соблюдаться соответствующие требования санитарных норм и правил. Используют также дозиметрический контроль, эффективные защитные приспособления и средства защиты.

Действующие стандарты лаконично определяют НК, как контроль, который не разрушает. В соответствии с ГОСТ 56542-2015 и в зависимости от лежащих в его основе физических процессов, он подразделяется на несколько видов:

  1. Магнитный, применяющийся в дефектоскопии ферромагнитных материалов для фиксации магнитных полей и свойств контролируемого объекта
  2. Визуально-измерительный (оптический) – наиболее востребован для контроля и обнаружения мельчайших повреждений в прозрачных изделиях и материалах
  3. Электрический – фиксирует электрополя и характеристики, образующиеся в контролируемом объекте под влиянием внешнего воздействия
  4. Вихретоковый (электромагнитный) – применяется в дефектоскопии электропроводящих материалов, посредством исследования неоднородностей поверхностного вихревого поля объекта
  5. Тепловой – подразумевает мониторинг тепловых полей, контрастов и потоков любых материалов для выявления неисправностей и дефектов
  6. Радиоволновой – применяется в контроле диэлектриков (керамика, стекловолокно), полупроводниковых и тонкостенных материалов
  7. Ультразвуковой (акустический) – применим ко всем материалам, беспрепятственно проводящим звуковые волны в целях решения проблем контроля и диагностики
  8. Радиационный (радиографический) – построен на взаимодействии ионизирующего излучения с контролируемым объектом из любых материалов и любых габаритов
  9. Капиллярный (проникающими веществами) – применяется для обнаружения течей и микроповреждений посредством наполнения индикаторным веществом внутренних полостей, контролируемого объекта
  10. Вибрационный — необходим для поиска дефектов в машинах и механизмах. Диагностирует неисправности путем оценки колебаний в основных узлах

Каждый вид НК реализуется с помощью методов неразрушающего контроля (МНК), которые классифицируются:

  • По способу взаимодействия различных веществ и полей с объектом контроля (магнитный, капиллярный)
  • По показателям первичной информации (намагниченность, газовый)
  • По форме получения первичной информации (индукционный, люминесцентный)

Разрушающие методы контроля качества сварных соединений

Разрушающие испытания проводят на образцах-свидетелях, моделях и реже на самих изделиях для получения информации, прямо характеризующей прочность, качество или надежность соединений. К их числу относятся: механические испытания, металлографические исследования, химический анализ и специальные испытания. Эти методы применяют главным образом при разработке технологии изготовления металлических конструкций или для выборочного контроля готовой продукции.

Механические испытания предусматривают статические испытания различных участков сварного соединения на растяжение, изгиб, твердость и динамические испытания на ударный изгиб и усталостную прочность.

Металлографические исследования проводят для установления структуры металла сварного соединения и наличия дефектов.

Читать также: Наточить нож мясорубки своими руками

При макроструктурном методе определяют характер и расположение видимых дефектов в разных зонах сварных соединений путем изучения макрошлифов и изломов металла невооруженным глазом или с помощью лупы.

При микроструктурном анализе исследуют структуру металла на полированных и травленных реактивами шлифах при увеличении в 50. 2000 раз. Такие исследования позволяют обнаружить пережог металла, наличие окислов по границам зерен, сульфидных и оксидных включений, размеры зерна, микроскопические трещины и другие дефекты структуры.

Химический анализ позволяет установить состав основного и наплавленного металла, электродов и их соответствие ТУ на изготовление сварного соединения.

Специальные испытания проводят для получения характеристик сварных соединений, учитывающих условия эксплуатации (коррозионная стойкость, ползучесть металла при воздействии повышенных температур и др.).

Зачем проводят НК?

В ходе производственно-эксплуатационных процессов техническое состояние любого объекта (здания, оборудования, их отдельные конструкции и элементы) требует регулярной оценки. НК позволяет проводить оценочные мероприятия без приостановки, демонтажа и отбора образцов, которые стоят достаточно дорого.

Применение методов НК в обследовании объекта не требует вынужденных простоев и позволяет обнаружить и устранить его усталость и различные дефекты на ранней стадии. Поэтому главные цели проведения НК направлены:

  • На минимизацию аварийных рисков и повышение уровня эксплуатационной безопасности оборудования на опасных производственных объектах (ОПО)
  • На проверку соответствия контролируемого объекта требованиям действующих нормативов и технической документации
  • На количественно-качественную оценку обнаруженных отклонений и установление уровня их опасности
  • На своевременное выявление различных неисправностей на разных стадиях возведения объектов капстроительства

Проведение неразрушающего контроля при запуске объекта в эксплуатацию почти всегда гарантирует увеличение расходов, обусловленных устранением выявленных дефектов. Но отказ от процедур может обернуться аварией с гораздо большими финансовыми потерями, в разы превышающими затраты на проведение превентивных мероприятий

Проведение аттестации и обучение специалистов по неразрушающему контролю

Сферы применения

Методы неразрушающего контроля применяются сегодня практически в каждой сфере хозяйственной деятельности от автомастерской и судоверфи до атомных реакторов и предприятий, использующих ОПО:

  • Емкости, функционирующие под избыточным давлением
  • Трубопроводы систем газораспределения
  • Оборудование с подъемными устройствами и механизмами
  • Резервуары для хранения нефтепродуктов
  • Буровое оборудование
  • Химически и взрывопожароопасные производства
  • Армокаменные, железобетонные и прочие разновидности строительных конструкций

Разнообразие средств и методов НК используется для:

  • Контроля надежности сварочных швов и герметичности сосудов, функционирующих под высоким давлением
  • Определения качества покрытия лакокрасочными материалами
  • Обнаружения деформаций и отклонений важных узлов и деталей
  • Дефектоскопии оборудования с продолжительным эксплуатационным сроком
  • Проведения исследований и выявления дефектов в различных структурах для дальнейшего совершенствования технологий
  • Постоянный мониторинг и контроль возможного возникновения дефектов и неисправностей на ОПО в целях их своевременного устранения

Применение НК позволяет предприятиям сэкономить на проведении тестирований на разрушение, что благотворно отражается на потребительской цене и качестве готовой продукции

Для каких узлов и деталей чаще всего заказывают НК?

Исследования востребованы в самых разных отраслях промышленности, включая строительство, которым раньше всех были опробированы и взяты на вооружение щадящие методы контроля. Практика свидетельствует, что исследованиям в рамках НК чаще всего подвергаются:

  • Любые разновидности сварочных швов и соединений
  • Строительные конструкции
  • Объекты капстроительства, их отдельные узлы и компоненты
  • Черные и цветные металлы, а также их сплавы
  • Ферромагнитные металлы и сплавы
  • Трубопроводы
  • Турбины и роторы
  • Корпусное оборудование
  • Листовой прокат
  • Аппараты высокого давления
  • Стенки котлов
  • Днища многомерных судов
  • Детали любых форм и размеров
  • Подъемные механизмы
  • Узлы и агрегаты любых видов транспорта
  • Керамика, изделия из стекла и фарфора
  • Многослойные конструкции, их отдельные элементы и соединения между ними
  • Изделия из стекла, пластмассы и неферромагнитных материалов любых форм и габаритов
  • Паяные, резьбовые и разъемные типы соединений

Применение методов неразрушающего контроля позволяет определить уровень качества, фактическую толщину, плотность и однородность массы, швов или покрытия вышеперечисленных конструкций и изделий в целях устранения выявленных отклонений

Приборы для проведения неразрушающего контроля

Выбор оборудования, применяемого в рамках проведения НК, зависит от поставленных задач, выбранного метода и параметров контролируемого объекта (наличия повреждений, толщины стен или покрытия).

  1. Визуально-измерительный контроль (ВИК) является не только базовым, но и одним из самых недорогих, скоростных и информативных методов НК. Его проведение регламентируется инструкцией РД 03-606-03, предполагающей применение несложных сертифицированных средств измерения:
  • Лупы
  • Эндоскопы
  • Фонарики
  • Щупы
  • Линейки
  • Рулетки
  • Зеркала
  • Термостойкий мел
  • Сварочные шаблоны
  • Фотоаппарат с возможностью микроскопической съемки
  • Ультразвуковой контроль, относящийся к основным видам НК, регламентируется ГОСТом 23829-85, которым предусматривается наличие, предварительно проверенных:
  • Дефектоскопов общего или специального применения
  • Ультразвуковых резонансных и эхо-импульсных измерителей толщины
  • Ультразвуковых твердомеров
  • Пьезоэлектрических преобразователей (ПЭП)
  • Контактных жидкостей и гелей
  • Рентгеновских аппаратов, выбор которых зависит от толщины контролируемого материала или изделия и чувствительности, указанной в ТУ используемого прибора
  • Гамма-дефектоскопов (в труднодоступных местах)
  • Усиливающих экранов
  • Рентгеновской пленки
  • Компьютерной радиографии
  • Наборов капиллярной дефектоскопии, укомплектованных пенетрантами, проявителями, очистителями
  • Пневмопистолетов для жидкостей
  • Пульверизаторов
  • Источники ультрафиолета
  • Образцы для контроля
  • Оптических устройств
  • Ультрафиолетовых ламп
  • Магнитного порошка или суспензии
  • Магнитогуммированной пасты
  • Газовые
  • Жидкостные
  • Тепловизора
  • Пирометра
  • Логгеров данных
  • Измерителей плотности температур и тепловых потоков
  • Механических средств (термокарандаши, теплоотводящая паста, высокотемпературная краска)
  • Вихретоковые преобразователи и дефектоскопы
  • Структуроскопы
  • Измерители толщины

Каждый метод и прибор используются НК для выявления мельчайших деформаций и повреждений, а также изъянов различного происхождения, включая коррозию, грибок, растрескивание или расслоение. Чрезвычайная востребованность НМК объясняется достоинствами методов, а также их соответствием современным требованиям промышленной безопасности.

Методы разрушающего контроля

Разрушающий контроль служит для количественного определения максимальной нагрузки на предмет, после которой наступает разрушение. Испытания могут носить разный характер: статические нагрузки позволяют точно измерить силу воздействия на образец и подробно описать процесс деформации. Динамические испытания служат для определения вязкости или хрупкости материала: это разного рода удары, при которых возникают инерционные силы в частях образца и испытательной машины. Испытания на усталость – это многократные нагрузки небольшой силы, вплоть до разрушения. Испытания на твердость служат для измерения силы, с которой более твердое тело (например, алмазный наконечник ударника) внедряется в поверхность образца. Испытания на изнашивание и истирание позволяют определить изменения свойств поверхности материала при длительном воздействии трения. Комплексные испытания позволяют описывать основные конструкционные и технологические свойства материала, регламентировать максимально допустимые нагрузки для изделия.

Для определения характеристик механической прочности используют разрывные машины. Например, WEB 600, производства TIME Group Inc.: она способна развивать усилие 600 кН. Машины для технологических испытаний, такие как ИА 5073-100, ИХ 5133, ИХ 5092 отечественного производства, поставляемые , служат для испытаний на скручивание проволоки, выдавливание листового металла, перегибов проволоки и так далее.

Есть несколько методов определения твердости металла: по Виккерсу, когда в поверхность вдавливается четырехгранная алмазная пирамидка под действием нагрузки в 5, 10, 20, 30, 50 и 100 кгс. Затем отпечаток измеряют по диагоналям квадрата, и по таблице определяют число твердости. Машины для определения твердости – твердомеры. Например ИТ 5010 – машина для определения твердости по Виккерсу.

Читать также: Оцинковка авто своими руками

Благодарственные письма наших клиентов

Рентгеновский контроль

Этот метод обыкновенно используется для дефектоскопии крупных сварных металлических конструкций, подверженных коррозионному воздействию атмосферы: трубопроводов, опор и несущих и любых других металлических конструкций. Рентгеновские аппараты могут быть стационарные (кабельного и моноблочного типа), переносные или монтироваться на кроулеры. Кроулер – самоходный, дистанционно управляемый робот, несущий автономный рентгеновский комплекс. Он предназначен для контроля качества сварных соединений трубопроводов. Такой аппарат по команде извне перемещается в трубопроводе, останавливается и снимает рентгенограмму. Экспонирующее устройство кроулера работает полностью независимо. Одни рентгеновские аппараты требуют экспонирования и проявки специальной пленки, другие отражают информацию сразу в цифровом виде.

Сегодня не существует одного универсального метода, который позволял бы измерить все свойства металлического изделия разом. Поэтому методы контроля качества применяются в комплексе: на стадиях разработки и изготовления – разрушающие, в процессе эксплуатации – различные неразрушающие. Выбор конкретного способа контроля зависит не только от специфики и назначения металлической конструкции, но и от многочисленных внешних факторов, которые непременно учитываются специалистами.

О сновная задача любой системы контроля – выявление дефектов и определение пределов прочности и надежности. Дефекты могут возникнуть в результате ошибки при конструировании, производстве или эксплуатации: дефекты литья, усталостное разрушение, атмосферная коррозия, изнашивание сопряженных деталей, дефекты при нанесении покрытий, дефекты неразъемных соединений металла и так далее. В каждом конкретном случае применяются специальные методики, позволяющие определить степень влияния дефекта на качество изделия: насколько уменьшится надежность, рабочие характеристики, как изменятся сроки и условия эксплуатации, или дефект является критичным и предмет не может быть допущен к использованию. Различают две основные группы испытаний: разрушающего и неразрушающего контроля.

Методы разрушающего контроля

Разрушающий контроль служит для количественного определения максимальной нагрузки на предмет, после которой наступает разрушение. Испытания могут носить разный характер: статические нагрузки позволяют точно измерить силу воздействия на образец и подробно описать процесс деформации. Динамические испытания служат для определения вязкости или хрупкости материала: это разного рода удары, при которых возникают инерционные силы в частях образца и испытательной машины. Испытания на усталость – это многократные нагрузки небольшой силы, вплоть до разрушения. Испытания на твердость служат для измерения силы, с которой более твердое тело (например, алмазный наконечник ударника) внедряется в поверхность образца. Испытания на изнашивание и истирание позволяют определить изменения свойств поверхности материала при длительном воздействии трения. Комплексные испытания позволяют описывать основные конструкционные и технологические свойства материала, регламентировать максимально допустимые нагрузки для изделия.

Есть несколько методов определения твердости металла: по Виккерсу, когда в поверхность вдавливается четырехгранная алмазная пирамидка под действием нагрузки в 5, 10, 20, 30, 50 и 100 кгс. Затем отпечаток измеряют по диагоналям квадрата, и по таблице определяют число твердости. Машины для определения твердости – твердомеры. Например ИТ 5010 – машина для определения твердости по Виккерсу.

Методы неразрушающего контроля

Если методы разрушающего контроля применяются только к контрольным образцам, для выяснения общих механических свойств, то неразрушающий контроль служит для массового контроля качества продукции. Работа приборов неразрушающего контроля основывается на принципах изменения свойств предмета при наличии дефектов. Это ультразвуковая дефектоскопия и толщинометрия , радиография , магнитопорошковый и капиллярный контроль, вихретоковый контроль, оптико-визуальный контроль и другие. Например, оборудование ультразвуковой дефектоскопии измеряет разницу в прохождении ультразвука, в зависимости от толщины и плотности металла. Толщиномеры 26МG, 26MG-XT, 26XTDL, 36DLPLUS, производства компании Panametrics служат для определения остаточной толщины стенок труб, котлов и других конструкций, подверженных износу. 36 DL PLUS – современный цифровой эхо-импульсный переносной контактный толщиномер, который позволяет измерять толщину даже тех объектов, к которым можно подойти только с одной стороны. Применяется в энергетике и машиностроении для измерения толщины стенок трубопроводов, сосудов давления, котлов и других объектов.


Один из распространенных методов неразрушающего контроля – вихретоковый. Он основан на измерении возмущений вихревых токов при наведении электрического тока на образец. Даже малейшая трещина или каверна в металле, точечная коррозия или истончение сразу фиксируется в изменении вихревых токов. Современные вихретоковые дефектоскопы служат для контроля посадочных полок дисков колес, ряда крепежных деталей авиационных конструкций, детектирования трещин вблизи крепежных отверстий, а также для отображения С-скана крепежных отверстий, контроля многослойной коррозии в автомобильной, авиационной и аэрокосмической отраслях. Среди оборудования вихретокового контроля можно назвать приборы компании Zetec, которые позволяют выполнять широкий спектр обследований различных конструкций самолетов, узлов двигателей и колес. Например, MIZ®-21SR – многорежимный вихретоковый дефектоскоп и бонд-тестер. Это легкий портативный прибор, использующий два метода вихретоковой дефектоскопии для обнаружения непроклея, расслоения и аномалий плотности. Кроме того, MIZ®-21SR имеет функции измерения проводимости и толщины покрытий. Вся информация отображается на дисплее с высоким разрешением и четкостью изображения.

Рентгеновский контроль

Этот метод обыкновенно используется для дефектоскопии крупных сварных металлических конструкций, подверженных коррозионному воздействию атмосферы: трубопроводов, опор и несущих и любых других металлических конструкций. Рентгеновские аппараты могут быть стационарные (кабельного и моноблочного типа), переносные или монтироваться на кроулеры. Кроулер – самоходный, дистанционно управляемый робот, несущий автономный рентгеновский комплекс. Он предназначен для контроля качества сварных соединений трубопроводов. Такой аппарат по команде извне перемещается в трубопроводе, останавливается и снимает рентгенограмму. Экспонирующее устройство кроулера работает полностью независимо. Одни рентгеновские аппараты требуют экспонирования и проявки специальной пленки, другие отражают информацию сразу в цифровом виде.


Сегодня не существует одного универсального метода, который позволял бы измерить все свойства металлического изделия разом. Поэтому методы контроля качества применяются в комплексе: на стадиях разработки и изготовления – разрушающие, в процессе эксплуатации – различные неразрушающие. Выбор конкретного способа контроля зависит не только от специфики и назначения металлической конструкции, но и от многочисленных внешних факторов, которые непременно учитываются специалистами.

Неразрушающий контроль - это широкая группа методов анализа, используемых для проверки, оценки или тестирования состояния материалов, деталей, компонентов, конструкций, оборудования и различной техники без разрушения исследуемого объекта.

Это очень ценные методы, которые могут значительно сэкономить как деньги, так и время на оценке объекта, поиске и устранении неисправностей, различных измерений и исследований. Методы неразрушающего контроля могут быть применены на металлах, пластмассах, керамике, композитах, металлокерамиках и различных покрытиях для обнаружения трещин, внутренних пустот, полостей поверхности, расслоений, дефектов сварных швов и любых других дефектов, которые могут привести к преждевременному разрушению конструкции или механизма.
Многие методы неразрушающего контроля способны определять параметры дефектов, такие как размер, форма и ориентация.

Обзор методов неразрушающего контроля

Целью неразрушающего контроля является проверка объекта исследования безопасным, надежным и экономичным способом без ущерба для оборудования или необходимости остановки эксплуатации объекта. Это противоречит разрушающим испытаниям, когда испытываемая часть может быть повреждена или разрушена во время процесса проверки.
Методы неразрушающего контроля основаны на использовании преобразования электромагнитного излучения, звука и других сигналов с помощью специального оборудования.

Основные методы неразрушающего контроля:

  • Ультразвуковой метод;
  • Акустический метод;
  • Метод магнитных частиц (магнитопорошковый);
  • Метод контроля проникающими веществами;
  • Вихретоковый метод;
  • Вибродиагностический метод;
  • Электрический метод;
  • Тепловой метод;
  • Радиоволновой метод;
  • Радиационный метод;
  • Оптический метод;
  • Метод визуальных испытаний.

Акустические методы неразрушающего контроля

В акустическом (ультразвуковом) методе неразрушающего контроля для выявления размера и положения дефектов используются звуковые волны, которые генерируются и направляются в исследуемый материал с помощью специального пьезоэлектрического преобразователя и которые отражаются от границы материала или дефектов, если они присутствуют в материале. Далее отраженные волны фиксируются и анализируются преобразователем и на основе проанализированной информации на дисплее прибора можно сделать вывод о наличии или отсутствии дефектов, или отклонений.

Акустический метод неразрушающего контроля может быть использован для исследования и тестирования практически любого материала. При ультразвуковой дефектоскопии используются упругие волны ультразвукового диапазона (выше 20 кГц) и акустический неразрушающий контроль называют ультразвуковым.

В методах акустического неразрушающего контроля можно выделить контроль с применением акустической эмиссии.

Акустическая эмиссия

Тестирование акустической эмиссии (AET) - это метод неразрушающего контроля, основанный на генерации волн, вызванных внезапным перераспределением напряжения в материале.
Когда часть оборудования подвергается внешнему воздействию - изменению давления, нагрузки или температуры, это вызывает высвобождение энергии в виде волн напряжений, которые распространяются на поверхность и регистрируются датчиками. Обнаружение и анализ сигналов акустической эмиссии может предоставить информацию о наличии разрывов в материале.

Из-за своей универсальности метод тестирования акустической эмиссии имеет множество применений в различных отраслях, таких как:

  • Оценка целостности объекта;
  • Обнаружение дефектов;
  • Контроль качества сварки;
  • Обнаружение активной коррозии на дне различных резервуаров для хранения;
  • Обнаружение повреждений в системах высокоэнергетических трубопроводов;
  • Инспекция сосудов под давлением;
  • Обнаружение утечек.

Этот метод особенно эффективный для непрерывного наблюдения(мониторинга) за несущими конструкциями.

nk2.jpg

Магнитопорошковые методы неразрушающего контроля

Магнитопорошковый метод контроля или метод тестирования магнитных частиц (MT) использует одно или несколько магнитных полей для обнаружения поверхностных или лежащих около поверхности пор, разрывов и трещин в ферромагнитных материалах. При использовании этого метода неразрушающего контроля металлический исследуемый объект подвергается воздействию сильного магнитного поля. Магнитное поле может применяться с постоянным магнитом или электромагнитом. При использовании электромагнита поле присутствует только при подаче тока.

Поскольку линии магнитного потока плохо перемещаются в воздухе, то на краях пор и трещин магнитное поле концентрируется и вызывает притягивание очень мелких цветных ферромагнитных частиц, которые наносятся на поверхность объекта. После прекращения действия магнитного поля на краях разрывов и пор будет наблюдаться концентрация этих частиц, производя видимую индикацию места дефекта на поверхности детали. Магнитные частицы могут быть сухим порошком или жидким раствором магнитного порошка, также они могут быть окрашены цветным или флуоресцентным красителем, который флуоресцирует под ультрафиолетовым светом. Для выявления всех дефектов проводят 2 проверки – первая перпендикулярно поверхности, вторая – с ориентацией на 90 градусов к первому положению.

Методы неразрушающего контроля проникающими веществами

Контроль жидкостного пенетранта является эффективным инструментом для оценки поверхностей сварных швов, отливок и других компонентов, которые нельзя разобрать или разрушить. В дополнение к проверке на наличие трещин и пор, его также можно использовать для определения других характеристик поверхности, таких как пористость. Неразрушающий контроль проникающими веществами долгое время остается одним из самых надежных, эффективных и экономически выгодных методов для обнаружения поверхностных дефектов в непористых материалах.

Основным принципом испытаний на проникновение жидкости является то, что при нанесении на поверхность детали очень специальной жидкости (пенетранта) она проникает в открытые на поверхности трещины и пустоты. После нанесения жидкого красителя и обеспечения надлежащего времени выдержки часть жидкости очищается и наносится проявляющий порошок. Инспектор, который проводит анализ извлекает жидкость, просачивающуюся в трещины или поры, что приводит к появлению видимых следов, идентифицирующих дефекты.

При проведении осмотра проникающими веществами необходимо, чтобы испытуемая поверхность была чистой и не содержала каких-либо посторонних материалов или жидкостей, которые могли бы блокировать проникновение пенетранта в открытые пустоты или трещины.

Вихретоковые методы контроля

Вихретоковое тестирование является эффективным и точным методом. Вихретоковый метод контроля основан на анализе взаимодействия электромагнитного поля вихретокового преобразователя с электромагнитным полем вихревых токов, проходящих по исследуемому образцу.

Вихревые токи могут использоваться для обнаружения трещин, измерения толщины материала или покрытия, измерения проводимости для идентификации материала, контроля термообработки. Методы вихревых токов обычно используются для неразрушающего контроля и мониторинга состояния большого разнообразия металлических конструкций, включая трубы теплообменников, фюзеляжи самолетов и конструктивные элементы летательных аппаратов.

К преимуществам вихретокового контроля относятся:

  • Чувствительность к небольшим трещинам и другим дефектам;
  • Способность обнаруживать поверхностные и около поверхностные дефекты,
  • Результаты в режиме онлайн;
  • Переносное компактное оборудование;
  • Широкий спектр использования;
  • Минимальная подготовка деталей;
  • Отсутствие необходимости контакта с проверяемой деталью (зазор до 2мм);
  • Возможностью проверки сложных форм и размеров исследуемого объекта.

Виброакустический метод контроля

Виброакустические методы неразрушающего контроля относятся к процессу мониторинга сигнатур вибраций оборудования или конструкции, характерных для части вращающегося механизма, и анализа этой информации для определения состояния этого оборудования.
Обычно используются три типа датчиков:

  • Датчики смещения;
  • Датчики скорости;
  • Акселерометры.

Электрические методы неразрушающего контроля

Электрические методы неразрушающего контроля основаны на фиксации показателей электрического поля, взаимодействующего с исследуемым объектом или возникающем в контролируемом объекте в следствии стороннего воздействия. Электрический метод неразрушающего контроля позволяет определять некоторые характеристики материала: плотность, степень полимеризации, толщину материалов и покрытий.

nk.jpg

Тепловой метод неразрушающего контроля

Радиоволновые методы неразрушающего контроля

Неразрушающий контроль с использованием принципов радиоволнового исследования состоит в фиксации изменений параметров радиомагнитных волн, которые взаимодействуют с исследуемым объектом.

Радиационные методы неразрушающего контроля

Радиографическое тестирование (RT) - метод неразрушающего контроля, который включает использование либо рентгеновских лучей, либо гамма-лучей для просмотра внутренней структуры компонента. В нефтехимической промышленности радиографическое тестирование часто используется для проверки механизмов, таких как сосуды под высоким давлением и клапаны, для обнаружения дефектов. Радиографическое тестирование также используется для проверки качества сварных швов.

По сравнению с другими методами неразрушающий контроль качества с помощью рентгенографии имеет ряд преимуществ.

  • Метод может использоваться на различных материалах;
  • Собранные данные могут храниться для последующего анализа.

Радиография - эффективный инструмент, который требует очень небольшой подготовки поверхности. Многие радиографические системы компактны и имеют автономное питание, что позволяет использовать их в полевых условиях.

Типы радиографии

Существуют различные виды неразрушающего контроля с помощью радиографии, включая обычную рентгенографию и множественные формы цифрового радиографического тестирования.
Все эти виды неразрушающего контроля работают по-разному и имеют свой собственный набор преимуществ и недостатков.

  • Обычная рентгенография. В обычной радиографии используется чувствительная пленка, которая реагирует на излучение объекта для захвата изображения испытываемой части. Затем это изображение может быть проверено на предмет наличия повреждений или недостатков. Самое большое ограничение этого метода заключается в том, что пленки можно использовать только один раз, и они занимают много времени для обработки и интерпретации.
  • Цифровая радиография. В отличие от обычной радиографии технология цифровой радиографии не требует пленки. Вместо этого он использует цифровой детектор для отображения рентгенографических изображений на экране компьютера почти мгновенно. Это позволяет значительно сократить время экспозиции, чтобы изображения могли быть интерпретированы быстрее. Цифровые изображения значительно выше по качеству, чем обычные рентгенографические изображения. Благодаря возможности получения высококачественных изображений технология может быть использована для выявления дефектов материала, посторонних предметов в конструкции, изучения качества сварных швов и проверки предметов на коррозию под изоляцией.

Визуальное и оптическое тестирование, как способы неразрушающего контроля

Визуальное тестирование является наиболее часто используемым методом тестирования в промышленности. Поскольку большинство методов тестирования требуют, чтобы оператор смотрел на поверхность проверяемой детали, визуальный осмотр присущ большинству других методов испытаний. Как следует из названия, визуальный контроль включает в себя визуальное наблюдение поверхности исследуемого объекта для оценки наличия видимых дефектов и отклонений. Проверки с использованием визуального контроля могут проводиться с помощью прямого просмотра с использованием зрения или могут быть улучшены с использованием оптических инструментов, таких как увеличительные стекла, зеркала, бороскопы, видеоэндоскопы и компьютерные системы просмотра.

Портативный блок видеонаблюдения с зумом позволяет осмотреть большие резервуары и суда, железнодорожные цистерны, канализационные линии.
Роботизированные сканеры допускают наблюдение в опасных зонах, таких как воздуховоды, реакторы, трубопроводы.
Коррозия, несоосность деталей, физические разрывы и трещины являются лишь некоторыми из дефектов, которые могут быть обнаружены с помощью технологии визуального и оптического тестирования.

Сравнение методов неразрушающего контроля

Ни один метод неразрушающего контроля не будет работать для всех задач обнаружения дефектов или измерений. Каждый из методов имеет преимущества и недостатки по сравнению с другими методами. В приведенной ниже таблице приведены основные виды неразрушающего контроля, общие сферы применения, преимущества и недостатки некоторых из наиболее часто используемых методов неразрушающего контроля.

Методы неразрушающего контроля проникающими веществами Магнитные методы неразрушающего контроля Акустические методы неразрушающего контроля Вихретоковые методы неразрушающего контроля Радиационные методы неразрушающего контроля
Основное использование
Используется для обнаружения трещин, пористости и других дефектов, которые находятся на поверхности материала и имеют достаточный объем для заливки и удерживания проникающего материала. Используется для проверки ферромагнитных материалов (тех, которые могут быть намагничены) для дефектов, которые приводят к переходу в магнитную проницаемость материала. Проверка магнитных частиц может обнаруживать дефекты поверхности Используется для обнаружения поверхностных и внутренних дефектов во многих материалах, включая металлы и пластмассы. Ультразвуковой контроль также используется для измерения толщины материалов и в других случаях характеризует свойства материала на основе измерений скорости звука и затухания. Используется для обнаружения поверхностных и около поверхностных дефектов в проводящих материалах, таких как металлы. Вихретоковый контроль также измеряет толщину тонких листов металла и непроводящих покрытий, таких как краска. Используется для контроля почти любого материала для внутренних дефектов. Рентгеновские лучи могут также использоваться для обнаружения и измерения внутренних характеристик, подтверждения местоположения скрытых деталей в сборке и измерения толщины материалов.
Основные преимущества
Можно быстро и недорого осмотреть большие площади поверхности или большие объемы деталей / материалов Детали со сложной геометрией регулярно проверяются. Показания производятся непосредственно на поверхности детали, обеспечивая визуальный образ разрыва. Инвестиции в оборудование минимальны. Большие поверхности сложных деталей можно быстро проверять. Может обнаруживать поверхностные и около поверхностные дефекты. Показания магнитных частиц производятся непосредственно на поверхности детали и образуют изображение разрыва. Стоимость оборудования относительно низкая. Глубина проникновения для обнаружения дефектов или измерения превосходит другие методы. Требуется только односторонний доступ. Предоставляет информацию о глубине залегания дефекта. Требуется подготовка детали. Метод может использоваться гораздо больше, чем просто обнаружение дефектов. Обнаруживает дефекты поверхности. Датчик не нуждается в контакте с деталью. Метод может использоваться для обнаружения различных дефектов. Требуется минимальная подготовка детали. Может использоваться для проверки практически всех материалов. Обнаруживает скрытые внутренние дефекты. Возможность проверки сложных форм и многослойных конструкций без разборки. Требуется минимальная подготовка детали.
Недостатки
Способ обнаруживает только дефекты разрушения поверхности. Подготовка поверхности имеет решающее значение, поскольку загрязняющие вещества могут маскировать дефекты. Требуется относительно гладкая и непористая поверхность. Могут быть проверены только ферромагнитные материалы. Правильное выравнивание магнитного поля и дефекта является критическим. Большие токи необходимы для очень больших деталей. Требуется относительно гладкая поверхность. Поверхность должна быть доступна для зонда и муфты. Поверхность и шероховатость могут мешать проверке. Линейные дефекты, ориентированные параллельно звуковому лучу, могут оставаться незамеченными. Могут быть проверены только проводящие материалы. Ферромагнитные материалы требуют специальной обработки для устранения магнитной проницаемости. Глубина проникновения ограничена.Недостатки, которые лежат параллельно направлению обмотки катушки контрольного зонда, могут оставаться незамеченными. Приборы и методы неразрушающего контроля с помощью радиографии требуют хорошей подготовки. Обычно требуется доступ к обеим сторонам структуры. Ориентация пучка излучения на объемные дефекты имеет решающее значение. Требуется относительно дорогостоящее инвестирование в оборудование. Возможная радиационная опасность для персонала.

В нашей компании представлено все необходимое оборудование и приборы для проведения полного цикла исследования объектов с помощью методов неразрушающего контроля, которое Вы можете купить или взять в аренду по выгодной цене.

Квалифицированные менеджеры всегда готовы помочь выбрать оборудование для неразрушающего контроля оптимально подходящее под Ваши задачи.


online

Читайте также: