Переменный ток доклад 9 класс

Обновлено: 05.07.2024


Из курса физики за 11 класс известно, что электрический ток — это движение по проводнику заряженных частиц. Ток может быть постоянным и переменным. Рассмотрим особенности переменного электрического тока.

Постоянный и переменный электрический ток

Действие электрического тока состоит в том, что носители заряда движутся по цепи под действием электрического поля источника тока и совершают работу на сопротивлении нагрузки (энергия при этом выделяется в виде тепла). Исторически первыми источниками тока были гальванические элементы. В таких элементах электрическое поле не меняет направление. В цепи, подключенной к гальваническому элементу, носители движутся также в одном направлении.

Гальванические элементы

Рис. 1. Гальванические элементы.

Однако это не единственная возможность движения носителей. Носители могут не совершать поступательное движение, а колебаться вокруг некоторого среднего положения. При этом на сопротивлении нагрузки также будет выделяться мощность.

Электрический ток, в котором носители заряда движутся в одном направлении, называется постоянным. Если носители заряда не движутся в одном направлении, а совершают гармонические колебания вокруг некоторого среднего положения, такой электрический ток называется переменным.

Постоянный и переменный ток

Рис. 2. Постоянный и переменный ток.

Электрические параметры переменного тока

Переменный ток, так же, как и постоянный, имеет все электрические параметры: напряжение, силу тока, мощность. Мгновенные значения этих параметров имеют то же самое выражение и смысл. Однако в случае переменного тока мгновенные значения параметров постоянно меняются во времени. Поэтому они неудобны для использования.

Для практического применения удобно взять такие параметры переменного тока, при которых он совершал бы такое же тепловое и механическое действие, как и постоянный. Такие параметры называются действующими.

То есть для нахождения действующих значений переменного тока исходят из равенства средних мощностей. Если постоянный ток на нагрузке выделяет некоторую мощность, то действующие значения переменного тока должны быть таковы, чтобы на той же нагрузке средняя мощность, выделяемая переменным током, была той же.

Если посчитать среднюю мощность переменного тока за один период колебания на активном сопротивлении, используя мгновенные значения силы тока, получим формулу:

Из этой формулы можно получить действующее значение силы тока. Оно должно быть таким, чтобы на том же сопротивлении R выделялась та же мощность:

Действующее значение напряжения находится аналогично:

Отметим, что формула электрической мощности переменного тока для сопротивления с реактивной составляющей сложнее и включает учет сдвига фаз между током и напряжением. Эта тема рассматривается отдельно.

Для переменного тока действующие значения напряжения и силы тока в $\sqrt 2$ раза меньше амплитудных. Именно эти значения указываются на всех приборах переменного тока. В обычной осветительной сети переменного тока 220 В — это действующее значение. Реально мгновенное значение напряжения может превышать 310 В.


Рис. 3. Амплитудные и действующие значения.

Что мы узнали?

Ток, при котором носители заряда движутся не постоянно в одном направлении, а колеблются вокруг некоторого среднего положения, называется переменным. Он характеризуется теми же параметрами что и постоянный ток, однако при этом используются действующие значения напряжения и тока, которые в $\sqrt 2$ раз меньше амплитудных.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Описание презентации по отдельным слайдам:

Повторим: опыты Фарадея

Повторим: опыты Фарадея

Повторим При каком условии в катушке, замкнутой на гальванометр, возникает ток?

Повторим При каком условии в катушке, замкнутой на гальванометр, возникает ток?

Повторим При каком условии возникает ток в катушке, замкнутой на гальванометр?

Повторим При каком условии возникает ток в катушке, замкнутой на гальванометр?

Повторим Как называют ток, возникающий в замкнутом контуре в вышеприведённых.

Повторим Как называют ток, возникающий в замкнутом контуре в вышеприведённых опытах? Какое условие является определяющим во всех опытах для появления индукционного тока в замкнутом проводящем контуре?

Повторим В чём заключается явление электромагнитной индукции? При всяком изме.

Повторим В чём заключается явление электромагнитной индукции? При всяком изменении магнитного потока, пронизывающего контур замкнутого проводника, в этом проводнике возникает электрический ток, существующий во время всего процесса изменения магнитного потока.

Повторим Почему при взаимном перемещении катушек в катушке В возникнет индукц.

Повторим Почему при взаимном перемещении катушек в катушке В возникнет индукционный ток?

Повторим При каком условии в катушке В возникнет индукционный ток? Ответ пояс.

Повторим При каком условии в катушке В возникнет индукционный ток? Ответ пояснить. Рассмотрите разные случаи.

Повторим Почему при замыкании цепи стрелка гальванометра отклоняется?

Повторим Почему при замыкании цепи стрелка гальванометра отклоняется?

Повторим При каком условии в рамке возникнет индукционный ток?

Повторим При каком условии в рамке возникнет индукционный ток?

Повторим При каком условии в рамке возникнет индукционный ток?

Повторим При каком условии в рамке возникнет индукционный ток?

Переменный ток Переменный ток – это электрический ток, периодически меняющийс.

Переменный ток Переменный ток – это электрический ток, периодически меняющийся со временем по модулю и направлению.

Переменный ток, в отличие от тока постоянного, непрерывно изменяется как по в.

Переменный ток, в отличие от тока постоянного, непрерывно изменяется как по величине, так и по направлению, причем изменения эти происходят периодически, т. е. точно повторяются через равные промежутки времени. Переменный ток

Переменный ток Колебания напряжения можно обнаружить с помощью осциллографа.

Переменный ток Колебания напряжения можно обнаружить с помощью осциллографа. Временная развёртка на экране – синусоида.

Получение переменного тока Переменный ток получают с помощью генераторов пере.

Получение переменного тока Переменный ток получают с помощью генераторов переменного тока. Простейшая модель генератора - проволочная рамка, вращающаяся в магнитном поле.

Электромеханический индукционный генератор - устройство для получения перемен.

Электромеханический индукционный генератор - устройство для получения переменного тока. В нём механическая энергия превращается в электрическую. Их действие основано на явлении электромагнитной индукции.

Электромеханический генератор переменного тока Статор – неподвижная часть Рот.

Электромеханический генератор переменного тока Статор – неподвижная часть Ротор – вращающаяся часть Кольца Щётки – подвижные контакты

Промышленный генератор

Статор - стальная станина цилиндрической формы, неподвижная часть генератора.

Статор - стальная станина цилиндрической формы, неподвижная часть генератора, аналогичная контуру. Основная несущая часть генератора, на ней монтируются все рабочие узлы и механизмы. В пазах станины укладываются витки толстого медного провода. В них индуцируется ток.

Ротор Постоянный магнит или электромагнит. На стальной сердечник сложной форм.

Ротор Постоянный магнит или электромагнит. На стальной сердечник сложной формы надета обмотка, по которой протекает постоянный ток. Этот ток подводится через кольца и щётки. При вращении ротора его магнитное поле тоже вращается и магнитный поток, пронизывающий витки обмотки статора, изменяется. В них индуцируется ток.

Гидрогенератор

Схема устройства гидрогенератора Статор Ротор Водяная турбина

Схема устройства гидрогенератора Статор Ротор Водяная турбина

Устройство гидрогенератора Чем приводится в движение ротор гидрогенератора? П.

Устройство гидрогенератора Чем приводится в движение ротор гидрогенератора? Почему в гидрогенераторе используют многополюсные роторы? Как зависит частота переменного тока от количества полюсов гидрогенератора? Почему полюса ротора чередуются? Сколько пар полюсов должен иметь гидрогенератор при частоте переменного тока 60 Гц?

http://www.pomogala.ru/teplovoz/teplovoz_26.html http://electricalschool.info.

  • подготовка к ЕГЭ/ОГЭ и ВПР
  • по всем предметам 1-11 классов

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания


Курс повышения квалификации

Инструменты онлайн-обучения на примере программ Zoom, Skype, Microsoft Teams, Bandicam

  • Курс добавлен 31.01.2022
  • Сейчас обучается 25 человек из 18 регионов

Курс повышения квалификации

Педагогическая деятельность в контексте профессионального стандарта педагога и ФГОС

  • ЗП до 91 000 руб.
  • Гибкий график
  • Удаленная работа

Дистанционные курсы для педагогов

Свидетельство и скидка на обучение каждому участнику

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 605 007 материалов в базе

Материал подходит для УМК

§ 42 Получение и передача переменного электрического тока. Трансформатор

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

Свидетельство и скидка на обучение каждому участнику

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

  • 17.11.2020 1045
  • PPTX 1.8 мбайт
  • 174 скачивания
  • Оцените материал:

Настоящий материал опубликован пользователем Сидореня Галина Ивановна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

40%

  • Подготовка к ЕГЭ/ОГЭ и ВПР
  • Для учеников 1-11 классов

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Новые курсы: функциональная грамотность, ФГОС НОО, инклюзивное обучение и другие

Время чтения: 15 минут

Ленобласть распределит в школы прибывающих из Донбасса детей

Время чтения: 1 минута

Онлайн-тренинг: нейрогимнастика для успешной учёбы и комфортной жизни

Время чтения: 2 минуты

Минобрнауки и Минпросвещения запустили горячие линии по оказанию психологической помощи

Время чтения: 1 минута

В Россию приехали 10 тысяч детей из Луганской и Донецкой Народных республик

Время чтения: 2 минуты

Школы граничащих с Украиной районов Крыма досрочно уйдут на каникулы

Время чтения: 0 минут

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.


На этом уроке мы узнаем, что называют переменным электрическим током, как его можно получить и где он используется. Выясним, каковы преимущества переменного тока перед постоянным. Познакомимся с устройством и принципом действия трансформатора и узнаем, для чего он служит. Научимся рассчитывать коэффициент трансформации. А также узнаем, каким образом электрический ток от электростанций поступает в наши дома и квартиры.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Получение переменного электрического тока. Трансформатор"

Рассмотрим ещё раз получение индукционного тока при помощи рамки и подковообразного магнита. Как вы помните, при вращении рамки в однородном магнитном поле, в ней возникает индукционный ток.


При этом стрелка гальванометра отклоняется то в одну то во вторую сторону. Это свидетельствует о том, что направление индукционного тока, как и его сила, непрерывно меняются от своего наибольшего значения, когда рамка с током расположена вдоль линий магнитной индукции, до нуля, когда плоскость рамки перпендикулярна линиям магнитной индукции.

Если в качестве индикатора использовать не гальванометр, а, например, осциллограф, и повторить эксперимент, то при вращении рамки в магнитном поле осциллограф запишет все изменения тока. Нетрудно увидеть, что ток, возникающий в рамке, изменяется синусоидально.


Так вот, ток, периодически меняющийся со временем как по модулю, так и по направлению, называется переменным током.

Именно переменный ток используется в настоящее время в осветительной сети наших домов, а также во многих отраслях промышленности.

Рассмотренный нами опыт представляет собой пример работы простейшего генератора электрического тока. В настоящее время переменный ток получают в основном с помощью электромеханических индукционных генераторов, преобразующих механическую энергию в электрическую.


Индукционными они называются потому, что их действие основано на явлении электромагнитной индукции. Только в этих генераторах вращается не обмотка, в которой индуцируется переменный ток, а электромагнит. Вращающаяся часть генератора называется ротором и является источником магнитного поля.


Ротор располагается внутри стальной станины цилиндрической формы, называемой статором.


Во внутренней части статора имеются специальные пазы, в которые укладывается медный провод в виде витков. При вращении ротора в этих витках индуцируется переменный ток.

Ротор также имеет сложную форму и представляет собой стальной сердечник с навитой на него обмоткой, по которой протекает постоянный электрический ток. Создаваемое этим током магнитное поле вращается вместе с ротором.


Ротор генератора вращается при помощи какого-либо двигателя: на тепловых электростанциях с помощью паровой турбины, в небольших переносных генераторах — при помощи двигателя внутреннего сгорания, а на гидроэлектростанциях — с помощью гидротурбины.


Обратите внимание на то, что ротор гидрогенератора имеет не одну, а несколько пар магнитных полюсов. Дело в том, что на современных гидроэлектростанциях падающая вода вращает вал электрогенератора с частотой один — два оборота в секунду. Таким образом, если бы якорь генератора имел только одну обмотку, то получался бы переменный ток частотой 1—2 Гц. А стандартная частота переменного тока, используемого в электрических сетях России и странах Европы, равна 50 Гц. Кстати, это означает, что примерно через каждые 0,02 секунды направление тока меняется на противоположное. Такая частота переменного тока была выбрана с участием русского учёного Михаила Осиповича Доливо-Добровольского.

Однако, например, в США по рекомендации известного сербского учёного Николы Тесла, стандартная частота переменного тока равна 60 Гц.

Поэтому для получения переменного тока промышленной частоты якорь должен содержать несколько обмоток, позволяющих увеличить частоту вырабатываемого тока до необходимой величины.

И так, электрическую энергию производят на электростанциях. А для её передачи потребителям, часто находящимся очень далеко от станции, строят линии электропередач. Но при передаче электроэнергии неизбежны потери, связанные с нагреванием проводов: чем дальше от электростанции находится потребитель тока, тем больше энергии тратится на нагревание проводов и тем меньше её доходит до потребителя.


Потери на нагревание определяются законом Джоуля-Ленца:


Из него следует, что уменьшить потери можно двумя способами: это либо уменьшить сопротивление проводов, либо уменьшить силу тока в них.

Из восьмого класса вы знаете, что сопротивление будет тем меньше, чем больше площадь поперечного сечения проводника, и чем меньше его длина и удельное сопротивление металла, из которого он изготовлен.


Уменьшить длину проводов не предоставляется возможным. Из относительно недорогих металлов наименьшим удельным сопротивлением обладает медь и алюминий, из которых собственно и делают провода. Увеличивать же толщину проводов экономически невыгодно, так как это ведёт к перерасходу дорогостоящего цветного металла.

Следовательно, снижение потерь можно добиться только за счёт уменьшения силы тока. Но, чтобы не снижать мощности тока, уменьшение силы тока возможно только при увеличении напряжения.


Так, например, электроэнергия Волжской ГЭС передаётся в Москву при напряжении около 500 кВ, а от Саяно-Шушенской ГЭС — при напряжении около 750 кВ. Хотя на самих электростанциях генераторы вырабатывают электрическую энергию при напряжениях, не превышающих 20 кВ. Без такого преобразования силы тока и напряжения передача электроэнергии на большие расстояния становится невыгодной из-за существенных потерь.


Решение этой важнейшей технической задачи стало возможным только после изобретения трансформатора — устройства, служащего для преобразования силы и напряжения переменного тока при неизменной частоте.

Первый трансформатор был изобретён в тысяча восемьсот семьдесят шестом году русским учёным Павлом Николаевичем Яблочковым для питания изобретённых им же электрических свечей — нового в то время источника света.


Простейший трансформатор представляет собой две изолированные друг от друга катушки (их ещё называют обмотками), намотанные на общий замкнутый сердечник. По одной из обмоток (первичной) пропускается преобразуемый переменный ток, а вторичная обмотка соединяется с потребителем. Обратите внимание, что число витков в обмотках отличаются.


Протекающий по первичной обмотке переменный ток, создаёт в замкнутом сердечнике магнитное поле. Для уменьшения потерь энергии, сердечник ламинируют, то есть изготавливают из тонких, изолированных друг от друга пластин. Изолирующее покрытие пластин ограничивает индукционные токи в пределах каждого слоя, что заметно снижает силу индукционного тока. Таким образом, сердечник концентрирует магнитное поле так, что магнитный поток существует практически только внутри него и одинаков во всех его сечениях. Этот магнитный поток возбуждает ток самоиндукции в каждом витке первичной катушки. Этот же магнитный поток пронизывает витки вторичной катушки и создаёт в каждом её витке индукционный ток. В результате на концах вторичной обмотки возникает переменное напряжение. Значение этого напряжения определяется коэффициентом трансформации.

Коэффициентом трансформации называется отношение числа витков в первичной обмотке к числу витков во вторичной обмотке. В старших классах будет показано, что коэффициент трансформации можно определить и как отношение входного и выходного напряжений.


Как видно из формулы, в зависимости от числа витков в обмотках, коэффициент трансформации может быть меньше или больше единицы. В зависимости от этого различают повышающий трансформатор и понижающий…


Закрепления материала.


Но вернёмся к вопросу о передаче электроэнергии от электростанции к месту её потребления. Как мы говорили ранее, напряжение, вырабатываемое генератором, обычно не превышает 20 кВ. А для оптимальной передачи электроэнергии на большие расстояния требуется напряжение порядка сотен киловольт. Поэтому ток с электростанции сначала подаётся на расположенную неподалёку повышающую трансформаторную подстанцию, а затем подаётся в линии электропередач. Поскольку очень высокое напряжение не может быть предложено потребителю, то в конце линии его подают поочерёдно на несколько трансформаторных подстанций, понижающих напряжение до 380 В или 220 В, а затем — на предприятия или в жилые дома.

Производство и передача переменного электрического тока

Переменным током называется ток, величина и направление которого периодически меняются. Именно благодаря переменному току в наших домах сегодня есть свет и тепло. Только благодаря переменному току работают все промышленные предприятия и производства нашего времени. Не будь переменного тока, технологический прогресс современной цивилизации был бы попросту невозможен.

Устройство генератора

Для получения переменного тока используются электромеханические устройства, называемые индукционными генераторами. В них получаемая тем или иным способом механическая энергия передается ротору, ротор вращается, в результате механическая энергия вращения ротора преобразуется в электрическую энергию посредством электромагнитной индукции.

Напомним, что если вращать магнит внутри проводящей рамки, то в рамке будет индуцироваться переменный ток. На этом принципе и работает генератор. Только в промышленном генераторе роль рамки играет статор, а роль магнита — ротор с намагничивающей обмоткой, по сути — вращающийся электромагнит.

В промышленном генераторе статор представляет собой огромную стальную конструкцию в виде кольца с пазами на его внутренней стороне. В эти пазы уложена медная трехфазная обмотка. Магнитное поле, как мы уже сказали, создается ротором, который представляет собой стальной сердечник с парой (или с несколькими парами, в зависимости от номинальной скорости вращения ротора) полюсов, формируемых током обмотки ротора. Постоянный ток подается к обмотке ротора от возбудителя.

Генератор на электростанции

По принципиальной схеме двухполюсного индукционного генератора переменного тока легко понять, что силовые линии магнитного поля ротора пересекают витки обмотки статора, при этом один раз за один оборот магнитный поток ротора изменяет свое направление по отношению к одним и тем же виткам статора.

Таким образом в обмотке статора получается именно переменный ток, а не пульсирующий постоянный. Если речь идет об атомной электростанции, то механическое вращение ротор генератора получает от пара, который под огромным давлением подается на лопасти турбины сопряженной с ротором. Пар на атомной электростанции получается из воды, которая разогревается теплом от ядерной реакции, подводимым к воде через теплообменник.

В России частота переменного тока в сети равна 50 Гц, это значит, что ротору двухполюсного генератора необходимо совершить 50 оборотов за секунду. Так, на атомной электростанции ротор совершает 3000 оборотов в минуту, что как раз и дает частоту генерируемого тока в 50 Гц. Направление генерируемого тока изменяется по синусоидальному (гармоническому) закону.

Обмотка генератора разделена на три части, поэтому переменный ток получается трехфазным. Это значит, что в каждой из трех частей обмотки статора получаемые ЭДС смещены по фазе относительно друг друга на 120 градусов. Действующее значение генерируемого на электростанции напряжения может быть от 6,3 до 36,75 кВ, в зависимости от вида генератора.

Высоковольтная линия электропередачи

Чтобы передать электрическую энергию на большое расстояние, используются высоковольтные линии электропередач (ЛЭП). Но если электричество передавать без преобразования, при том же напряжении какое выходит с генератора, то потери энергии при передаче окажутся колоссальными, и до конечного потребителя практически ничего не дойдет.

Дело в том, что потери энергии в передающих проводах пропорциональны квадрату величины тока и прямо пропорциональны сопротивлению проводов (см. Закон Джоуля-Ленца). Значит для более эффективной передачи и распределения электроэнергии, напряжение необходимо сначала в несколько раз повысить, чтобы во столько же раз уменьшился ток и следовательно сильно сократились транспортные потери. И только повышенное напряжение имеет смысл передавать на ЛЭП.

Трансформаторная подстанция

Поэтому электричество от электростанции сначала подается на трансформаторную подстанцию. Здесь напряжение повышается до 110-750 кВ и только после — подается на провода ЛЭП. Но потребителю необходимо 220 или 380 вольт, поэтому в конце линии высокое напряжение обратно понижают, при помощи опять же трансформаторных подстанций, до 6-35 кВ.

На подстанции вблизи нашего дома или встроенной в дом, установлен трансформатор. Здесь напряжение снова понижается - от 6-35кВ до 220 (380) вольт, которые уже раздаются потребителям. Через вводно-распределительное устройство в разные помещения расходится сеть проводов и кабелей.

Читайте также: