Особенности теплового излучения человека доклад

Обновлено: 19.05.2024

Нагретые тела излучают электромагнитные волны. Это излучение осуществляется за счет преобразования энергии теплового движения частиц тела в энергию излучения.
Электромагнитное излучение тела, находящегося в состоянии термодинамического равновесия, называют тепловым (температурным) излучением. Иногда под тепловым излучением понимают не только равновесное, но также и неравновесное излучение тел, обусловленное их нагреванием.

Оглавление
Файлы: 1 файл

Реферат по физике.doc

4.Закон Стефана — Больцмана……………………………………………………… ……..6

8. Понятие об оптической пирометрии……………………………………………….. 12

10."Ультpафиолетовая катaстpофа". Гипотеза Планка………………………..17

1. Тепловое излучение

Нагретые тела излучают электромагнитные волны. Это излучение осуществляется за счет преобразования энергии теплового движения частиц тела в энергию излучения.

Электромагнитное излучение тела, находящегося в состоянии термодинамического равновесия, называют тепловым (температурным) излучением. Иногда под тепловым излучением понимают не только равновесное, но также и неравновесное излучение тел, обусловленное их нагреванием.

Такое равновесное излучение осуществляется, например, если излучающее тело находится внутри замкнутой полости с непрозрачными стенками, температура которых равна температуре тела.

В теплоизолированной системе тел, находящихся при одной и той же температуре, теплообмен между телами путем испускания и поглощения теплового излучения не может привести к нарушению термодинамического равновесия системы, так как это противоречило бы, второму началу термодинамики.

Поэтому для теплового излучения тел должно выполняться правило Прево: если два тела при одной и той же температуре поглощают разные количества энергии, то и их тепловое излучение при этой температуре должно быть различным.

Лучеиспускательной (излучательной) способностью или спектральной плотностью энергетической светимости тела называют величину Е n ,т, численно равную поверхностной плотности мощности теплового излучения тела и интервале частот единичной ширины:

где dW - энергии теплового излучения с единицы площади поверхности тела за единицу времени в интервале частот от v до v + dr.

Лучеиспускательная способность Е n ,т, является спектральной характеристикой теплового излучения тела. Она зависит от частоты v, абсолютной температуры Т тела, а также от его материала, формы и состояния поверхности. В системе СИ Е n ,т, измеряется в дж/м2.

Поглощательной способностью или монохроматическим коэффициентом поглощения тела называют величину А n ,т, показывающую, какая доля энергии dWпад, доставляемой за единицу времени на единицу площади поверхности тела падающими на нее электромагнитными волнами с частотами от v до v+dv, поглощается телом:

А n ,т - величина безразмерная. Она зависит, помимо частоты излучения и температуры тела, от его материала, формы и состояния поверхности.

2.АБСОЛЮТНО ЧЕРНОЕ ТЕЛО

АБСОЛЮТНО ЧЕРНОЕ ТЕЛО - понятие теории теплового излучения, означающее тело, которое полностью поглощает любое падающее на его поверхность электро-магнитное излучение, независимо от температуры этого тела. Таким образом, для абсолютно черного тела поглощательная способность (отношение поглощённой энергии к энергии падающегоизлучения) равна 1 при излучениях всех частот, направлений распространения и поляризаций.

Плотность энергии и спектральный состав излучения, испускаемого единицей поверхности абсолютно черного тела, зависят только от его температуры, но не от природы излучающего вещества. Излучение абсолютно черного тела может находиться в равновесии с веществом (при равенстве потоков излучения, испускаемого и поглощаемого абсолютно черным телом, имеющим определенную. температуру), по своим характеристикам такое излучение представляет равновесное излучение и подчиняется закону излучения Планка, определяющему испускательную способность и энергетическую яркость абсолютно черного тела (пропорциональные плотности энергии равновесного излучения).

Понятие абсолютно черного тела введено в 1859 Г. Р. Кирхгофом (G. R. Kirchhoff), установившим связь между испускательной и поглощательной способностями тела, находящегося в равновесии с излучением при определенной температуре (см. закон излучения Кирхгофа). Абсолютно черного тела в природе не существует, однако хорошим приближением к нему является устройство, состоящее из замкнутой полости, внутри поверхность которой нагрета до температуры Т, с отверстием, малым по сравнению с размерами полости. Внутри полости устанавливается практически полное равновесие излучения с веществом, и плотность энергии выходящего из отверстия излучения очень мало отличается от равновесной. Подобные устройства, с высокой точностью моделирующие абсолютно черное тело, применяют в качестве световых эталонов, используют при измерениях высоких температур .

3.Закон излучения Кирхгофа

Закон излучения Кирхгофа — физический закон , установленный немецким физиком Кирхгофом в 1859 году .

В современной формулировке закон звучит следующим образом:

Отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты и не зависит от их формы, химического состава и проч.

Известно, что при падении электромагнитного излучения на некоторое тело часть его отражается, часть поглощается и часть может пропускаться. Доля поглощаемого излучения на данной частоте называется поглощательной способностью тела . С другой стороны, каждое нагретое тело излучает энергию по некоторому закону , именуемым излучательной способностью тела.

Величины и могут сильно меняться при переходе от одного тела к другому, однако согласно закону излучения Кирхгофа отношение испускательной и поглощательной способностей не зависит от природы тела и является универсальной функцией частоты (длины волны) и температуры:

По определению, абсолютно чёрное тело поглощает всё падающее на него излучение, то есть для него . Поэтому функция совпадает с излучательной способностью абсолютно чёрного тела, описываемой законом Стефана — Больцмана , вследствие чего излучательная способность любого тела может быть найдена исходя лишь из его поглощательной способности.

Реальные тела имеют поглощательную способность меньшую единицы, а значит, и меньшую чем у абсолютно чёрного тела излучательную способность. Тела, поглощательная способность которых не зависит от частоты, называются серыми. Их спектр имеет такой же вид, как и у абсолютно чёрного тела. В общем же случае поглощательная способность тел зависит от частоты и температуры, и их спектр может существенно отличаться от спектра абсолютно чёрного тела. Изучение излучательной способности разных поверхностей впервые было проведено шотландским ученым Лесли при помощи его же изобретения — куба Лесли .

Применения закона Кирхгофа

В астрофизике

В астрофизике закон Кирхгофа часто применяется в следующем виде:

где jνкоэффициент излучения (энергия, излучаемая единичным объёмом в единичном интервале частот в единичный телесный угол за единицу времени); ανкоэффициент поглощения с учётом вынужденного испускания (αν = χνρ = 1 / lν, где ρ — плотность вещества, а χν и lν — соответственно непрозрачность и эффективная длина пробега фотонов для частоты ν); Bν(T) — интенсивность излучения абсолютно чёрного тела.

Закон Кирхгофа справедлив только для случаев теплового равновесия . Однако, его часто применяют и для неравновесных систем, когда излучение не находится в равновесии с веществом и его распределение по частотам существенно отличается от планковского. При этом часто (но не всегда) предположение о термодинамическом равновесии между частицами излучающего вещества оказывается хорошим приближением. Степень отклонения от закона Кирхгофа может служить мерой отличия излучения космических объектов от теплового.

4.Закон Стефана — Больцмана

Общая энергия теплового излучения определяется законом Стефана — Больцмана, который гласит:

Мощность излучения абсолютно чёрного тела (интегральная мощность по всему спектру), приходящаяся на единицу площади поверхности, прямо пропорциональна четвёртой степени температуры тела:

где j — мощность на единицу площади излучающей поверхности, а

Вт/(м²·К 4 ) — постоянная Стефана — Больцмана.

Таким образом, абсолютно чёрное тело при T = 100 K излучает 5,67 ватт с квадратного метра своей поверхности. При температуре 1000 К мощность излучения увеличивается до 56,7 киловатт с квадратного метра.

Для нечёрных тел можно приближённо записать:

где ε - степень черноты (для всех веществ ε

Константу Стефана — Больцмана σ можно теоретически вычислить только из квантовых соображений, воспользовавшись формулой Планка. В то же время общий вид формулы может быть получен из классических соображений (что не снимает проблемы ультрафиолетовой катастрофы).

5.Законы Вина

Первый закон излучения Вина

В 1893 году Вильгельм Вин , воспользовавшись, помимо классической термодинамики, электромагнитной теорией света, вывел следующую формулу:

  • uν — плотность энергии излучения
  • ν — частота излучения
  • T — температура излучающего тела
  • f — функция, зависящая только от частоты и температуры. Вид этой функции невозможно установить, исходя только из термодинамических соображений.

Первая формула Вина справедлива для всех частот. Любая более конкретная формула (например, закон Планка) должна удовлетворять первой формуле Вина.

Из первой формулы Вина можно вывести закон смещения Вина (закон максимума) и закон Стефана-Больцмана , но нельзя найти значения постоянных, входящих в эти законы.

Второй закон излучения Вина

В 1896 году Вин на основе дополнительных предположений вывел второй закон:

  • где uν — плотность энергии излучения
  • ν — частота излучения
  • T — температура излучающего тела
  • C1,C2 — константы.

Опыт показывает, что вторая формула Вина справедлива лишь в пределе высоких частот (малых длин волн). Она является частным конкретным случаем первого закона Вина.

Позже Макс Планк показал, что второй закон Вина следует из закона Планка для больших энергий квантов, а также нашёл постоянные C1 и C2. С учётом этого, второй закон Вина можно записать в виде:

Нагретые тела излучают электромагнитные волны. Это излучение осуществляется за счет преобразования энергии теплового движения частиц тела в энергию излучения.

Электромагнитное излучение тела, находящегося в состоянии термодинамического равновесия, называют тепловым (температурным) излучением. Иногда под тепловым излучением понимают не только равновесное, но также и неравновесное излучение тел, обусловленное их нагреванием.

Такое равновесное излучение осуществляется, например, если излучающее тело находится внутри замкнутой полости с непрозрачными стенками, температура которых равна температуре тела.

В теплоизолированной системе тел, находящихся при одной и той же температуре, теплообмен между телами путем испускания и поглощения теплового излучения не может привести к нарушению термодинамического равновесия системы, так как это противоречило бы, второму началу термодинамики.

Поэтому для теплового излучения тел должно выполняться правило Прево: если два тела при одной и той же температуре поглощают разные количества энергии, то и их тепловое излучение при этой температуре должно быть различным.

Лучеиспускательной (излучательной) способностью или спектральной плотностью энергетической светимости тела называют величину Еn,т, численно равную поверхностной плотности мощности теплового излучения тела и интервале частот единичной ширины:



где dW - энергии теплового излучения с единицы площади поверхности тела за единицу времени в интервале частот от v до v + dr.

Лучеиспускательная способность Еn,т, является спектральной характеристикой теплового излучения тела. Она зависит от частоты v, абсолютной температуры Т тела, а также от его материала, формы и состояния поверхности. В системе СИ Еn,т, измеряется в дж/м2.



Поглощательной способностью или монохроматическим коэффициентом поглощения тела называют величину Аn,т, показывающую, какая доля энергии dWпад, доставляемой за единицу времени на единицу площади поверхности тела падающими на нее электромагнитными волнами с частотами от v до v+dv, поглощается телом:

Аn,т - величина безразмерная. Она зависит, помимо частоты излучения и температуры тела, от его материала, формы и состояния поверхности.

Тело называется абсолютно черным, если оно при любой температуре полностью поглощает все падающие на него электромагнитные полны: Аn,т черн = 1.

Реальные тела не являются абсолютно черными, однако некоторые из них по оптическим свойствам близки к абсолютно черному телу (сажа, платиновая чернь, черный бархат в области видимого света имеют Аn,т, мало отличающиеся от единицы)

Тело называют серым ,если его поглощательная способность одинакова для всех частот n и зависит только от температуры, материала и состояния поверхности тела


Между лучеиспускательной Еn,т и поглощательной Аn,т способностями любого непрозрачного тела существует соотношение (закон Киргофа в дифференциальной форме):



Для произвольной частоты и температуры отношение лучеиспускательной способности тела к его поглощательной способности одинаково для всех тел и равно лучеиспускательной способности en,т абсолютно черного тела, являющейся функцией только частоты и температуры (функция Кирхгофа Еn,т = Аn,тen,т = 0).

Интегральная излучательная способность (энергетическая светимость) тела:



представляет собой поверхностную плотность мощности теплового излучения тела, т.е. энергию излучения всех возможных частот, испускаемого с единицы поверхности тела за единицу времени.

Интегральная излучательная способность eТ абсолютно черного тела:


2. Законы излучения абсолютно черного тела

Законы излучения абсолютно черного тела устанавливают зависимость eТ и en,Т от частоты и температуры.



Закон Cmeфана — Болъцмапа:

Величина σ- универсальная постоянная Стефана -Больцмана, равная 5,67 -10-8 вт/м2*град4.

Распределение энергии в спектре излучения абсолютно черного тела, т. е. зависимость en,Т, от частоты при различных температурах, имеет вид, изображенный на рисунке:




где с - скорость света в вакууме, af(v/T) - универсальная функция отношения частоты излучения абсолютно черного тела к его температуре.

Частота излучения nмакс, соответствующая максимальному значению лучеиспускательной способности en,Т абсолютно черного тела, согласно закону Вина равна



где b1 - постоянная величина, зависящая от вида функции f(n/T).

Закон смещения Buнa: частота, соответствующая максимальному значению лучеиспускательной способности en,Т абсолютно черного тела, прямо пропорциональна его абсолютной температуре.

С энергетической точки зрения черное излучение эквивалентно излучению системы бесконечно большого числа не взаимодействующих гармонических осцилляторов, называемых радиационными осцилляторами. Если ε(ν) – средняя энергия радиационного осциллятора с собственной частотой ν, то

ν= и

Согласно классическому закону о равномерном распределении энергии по степеням свободы ε(ν) = kT, где k постоянная Больцмана, и


Это соотношение называют формулой Релея-Джинса. В области больших частот она приводит к резкому расхождению с опытом, носящему название «ультра-Фиолетовой катастрофы: en,Т монотонно возрастает с ростом частоты, не имея максимума, а интегральная лучеиспускательная способность абсолютно черного тела обращается в бесконечность.

Причина вышеуказанных трудностей, возникших при отыскании вида функции Кирхгофа en,Т, связана с одним из основных положений классической физики, согласно которому энергия любой системы может изменяться непрерывно, т. е. может принимать любые сколь угодно близкие значения.

По квантовой теории Планка энергия радиационного осциллятора с собственной частотой v может принимать лишь определенные дискретные (квантованные) значения, отличающиеся на целое число элементарных порций — квантов энергии:


h = б,625-10-34 дж*сек — постоянная Планка (квант действия). В соответствии с этим излучение и поглощение энергии частицами излучающего тела (атомами, молекулами или ионами), обменивающимися энергией с радиационными осцилляторами, должно происходить, не непрерывно, а дискретно - отдельными порциями (квантами).

3. Понятие об оптической пирометрии

Оптической пирометрией называется совокупность методов измерения высоких температур, основанных на использовании зависимости между температурой и лучеиспускательной способностью (интегральной и спектральной) для исследуемого тела. Применяемые для этой цели приборы называют пирометрами излучения.

В радиационных пирометрах регистрируется интегральное излучение исследуемого нагретого тела, а в оптических пирометрах — его излучение в одном или двух узких участках спектра.

Применение пирометров излучения для измерения температуры твердых, жидких или газообразных тел возможно, лишь если с достаточной степенью точности можно считать, что эти тела находятся в состоянии термодинамического равновесия (или в состояниях, достаточно близких к равновесному).

Радиационной температурой Тр данного тела называют температуру такого черного тела, суммарное излучение которого совпадает с излучением исследуемого тела. Истинная температура тела:

Тепловое излучение — это электромагнитные волны, испускаемые электрически заряженными частицами в результате их теплового движения в веществе.

Металлические стержни, нагретые в плавильной печи, светятся ярким светом. Это тепловое излучение. Испускают ли тепловое излучение только тела с очень высокой температурой? Оказывается, любое тело с температурой выше абсолютного нуля является источником этого излучения. Почему же мы не видим этого излучения, исходящего от окружающих нас объектов? Ответ вы найдете в этой статье.

Причины возникновения теплового излучения и его свойства

Все тела с температурой выше абсолютного нуля ( -273,15 ℃, 0К ) испускают тепловое излучение. Электромагнитные волны, падающие на тело, могут быть поглощены им. Чем больше энергии поглощает тело при постоянной температуре, тем больше энергии оно излучает. Отношение поглощенного и испущенного излучения не зависит от природы тела — для всех тел это одна и та же функция температуры и длины волны.

Почему мы видим тепловое излучение только для сильно нагретых тел, таких как металлический стержень в плавильной печи?

Свет — это электромагнитная волна. Каждому цвету света соответствует своя длина волны. Красный свет имеет наибольшую длину волны, синий и фиолетовый — наименьшую. Белый свет — это смесь всех цветов, которые проявляются в радуге, образующейся при расщеплении белого света на капельках воды в атмосфере (рис. 1.).

Радуга

Рис. 1. Радуга. Каждому цвету света соответствует своя длина волны, от самой высокой для красного света до самой низкой для фиолетового

Когда вы нагреваете металлический стержень, например, над газовой горелкой, примерно до 500°C, вы заметите, что он начинает светиться красным светом. По мере увеличения температуры стержня цвет света меняется на оранжевый, желтый и затем белый. Повышение температуры вызывает излучение электромагнитных волн со все более короткой длиной волны. Одновременно с повышением температуры стержень светит все интенсивнее — мы говорим, что увеличивается облученность, т.е. энергия излучения, выделяемая в течение 1 секунды на 1 м 2 поверхности тела.

Все горячие тела светятся. Оказывается, низкотемпературные тела, которые не светятся видимым светом, также испускают излучение, но в диапазоне длин волн больше, чем видимый свет. Это излучение называется инфракрасным излучением. Он невидим для наших глаз, но несет в себе тепловую энергию. Инфракрасное излучение используется, например, для нагревания тела с помощью специальной инфракрасной лампы (рис. 2.). Мы видим, что лампа светит довольно слабым красным светом, но гораздо более интенсивным является ее излучение в инфракрасном диапазоне, невидимом для нас. Мы можем ощущать его воздействие только в виде нагрева тела.

Инфракрасные лампы нагревают тело пациента

Рис. 2. Инфракрасная лечебная лампа испускает тепловое излучение в основном в более длинноволновом диапазоне, чем видимый свет.

Этот пример показывает, что тепловое излучение не ограничивается узким диапазоном длин волн. Тела испускают излучение любой длины волны в очень широком диапазоне от ультрафиолетового до инфракрасного, но максимум этого излучения приходится на определенный диапазон длин волн, зависящий от температуры.

Так, в инфракрасной лампе максимум излучения приходится на диапазон длин волн, соответствующий инфракрасному излучению, а в других диапазонах излучение намного слабее. Когда металлический стержень нагревается до красного цвета, в дополнение к красному свету, который мы видим, также испускается инфракрасное излучение, которое ощущается как ощущение тепла. Дальнейшее повышение температуры приводит к увеличению доли коротких длин волн, в результате чего цвет стержня меняется на желтый, а затем на белый. Стержень по-прежнему излучает красный свет и инфракрасное излучение, но их доля в общем излучении меньше.

Солнечный свет, излучаемый поверхностью Солнца при температуре около 6000 К, содержит видимый свет во всем диапазоне длин волн, а также невидимое для нас ультрафиолетовое излучение (УФ) с длинами волн короче, чем у видимого света. Именно благодаря этому излучению мы загораем.

В чем причина того, что преобладающая длина волны теплового излучения уменьшается с повышением температуры? Повышение температуры означает увеличение средней кинетической энергии молекул и, следовательно, увеличение средней энергии излучения, испускаемого частицами. Чем больше энергия излучения, тем короче длина волны.

Спектр теплового излучения

Столкновение двух галактик запечатлено телескопом хаббл

Рис. 3. Столкновение двух галактик запечатлено телескопом Хаббл. Источник фото — ESA

Из опыта мы знаем, что тела при очень высоких температурах, такие как жидкий металл или фотосфера Солнца, светятся белым светом. Если пропустить этот свет через призму, он расщепляется на разные цвета (рис. 4). Каждый цвет соответствует своей длине электромагнитной волны, от 400 нм для фиолетового света до 700 нм для красного. Разделив белый свет на отдельные цвета, мы получим спектр белого света (рис. 5).

Рис. 4. Свет расщепляется в призме на отдельные цвета, создавая спектр белого света Рис. 5. Спектр белого света

Спектр излучения — это записанное изображение излучения, распределенного по различным длинам волн.

Расщепление белого света показывает, из каких цветов состоит свет, но не дает информации о том, какова мощность излучения во всех последовательных местах цветового спектра. Для более тщательного изучения спектра излучения необходимо перемещать датчик, например, фотоэлемент, вдоль спектра для измерения мощности для каждой длины волны. Измеренное количество энергии излучения в определенных диапазонах длин волн света позволяет построить кривую спектрального распределения (рис. 6.).

Кривая спектрального распределения

Рис. 6. Кривая спектрального распределения показывает измеренную энергию излучения в определенных спектральных диапазонах

На рис. 7 показана кривая спектрального распределения солнечного излучения. На вертикальной оси отмечена энергия излучения в интервале длин волн (λ, λ + Δλ), испускаемая в единицу времени, на горизонтальной оси отмечена длина волны излучения λ с диапазоном длин волн видимого света. Излучение Солнца выходит далеко за пределы этого диапазона. Оно содержит ультрафиолетовое излучение с длиной волны короче, чем у видимого света, и инфракрасное излучение с длиной волны больше, чем у видимого света. В солнечном излучении содержатся все длины волн видимого света, поэтому мы воспринимаем солнечный свет как белый.

Кривая спектрального распределения солнечного излучения

Рис. 7. Кривая спектрального распределения солнечного излучения — зависимость интенсивности излучения от длины волны

Максимум графика находится на длине волны около 500 нм, что соответствует зеленому цвету.

Положение максимума излучения определяется температурой тела, испускающего излучение. Чем выше температура, тем меньше длина волны максимума излучения (рис. 8.). По этой причине, когда нагретое тело начинает светиться, оно сначала светится красным светом, а по мере повышения температуры цвет меняется на желтый и, наконец, на белый, поскольку увеличивается доля света более коротких длин волн.

Кривые спектрального распределения теплового излучения

Рис. 8. Кривые спектрального распределения теплового излучения для различных температур излучающего тела

Излучение, испускаемое людьми и большинством окружающих нас предметов, не видно, поскольку максимум излучения лежит в инфракрасном диапазоне. Наши глаза не могут воспринимать такое излучение, но его можно обнаружить с помощью тепловизионной камеры, которая регистрирует инфракрасное излучение.

Кривые спектрального распределения теплового излучения для более высоких температур выше, чем для более низких. Это означает, что с увеличением температуры тела общая энергия излучения увеличивается. Область под графиком (см. рисунок 7) — это мера общей энергии, излучаемой единицей площади тела. Энергия, излучаемая единичной поверхностью, сильно зависит от температуры. Вот почему тела с очень высокой температурой светятся намного ярче, чем тела с более низкой температурой.

Формулы, которые отражают зависимость теплового излучения от температуры

Итак, максимум кривой спектрального распределения излучения смещается в сторону более коротких длин волн с увеличением температуры. Длина волны λmax, соответствующая максимуму излучения, обратно пропорциональна абсолютной температуре тела: λmax = b / T, где b = 2,898 * 10 -3 м·К — коэффициент пропорциональности (постоянная Вина). Эта формула называется законом смещения Вина.

Анализ графиков на рис. 8 позволяет сделать еще один вывод. Мы видим, что кривые для более высоких температур лежат все выше и выше. Это означает, что с повышением температуры тела общая энергия излучения увеличивается. Эти отношения очень прочные. Энергия излучения прямо пропорциональна T 4 . Зависимость энергии излучения от температуры, называемая законом Стефана — Больцмана, имеет следующий вид: E = σ * T 4 , где

где E — энергия, излучаемая с единицы площади тела и в единицу времени, T — температура по шкале Кельвина, и σ — постоянная Стефана — Больцмана, которая равна: σ = 5,67 — 10 -8 Вт / (м 2 · К 4 ).

Знание кривой спектрального распределения позволяет определить температуру далекого светящегося объекта. Если мы определим длину волны, соответствующую максимуму кривой, затем, после преобразования формулы Вина, получаем значение температуры объекта: T = b / λmax .

Таким образом, не покидая Земли, определяется температура Солнца и других звезд. Оказывается, наше Солнце излучает так, что кривая спектрального распределения соответствует температуре около 5800 К — средней температуре поверхности Солнца.

Если мы знаем расстояние до звезды, мы можем вычислить ее диаметр на основе анализа теплового излучения. Интенсивность излучения уменьшается с расстоянием, но, зная расстояние, мы можем рассчитать полную энергию, излучаемую звездой. Теперь достаточно разделить общую энергию на энергию, излучаемую на единицу площади, полученную из закона Стефана-Больцмана, чтобы получить площадь диска звезды, с которой излучение достигает нас.

Мобильные телефоны, ноутбуки и СВЧ-печи – источники электромагнитного излучения. Какой вред они могут нанести вашему здоровью, и как защитить себя от ЭМ-излучения, рассказывает наш эксперт Александр Кукса.

Содержание

О том, какого мнения современная наука придерживается относительно влияние электромагнитного излучения на организм человека и какие приборы являются самыми значимыми источниками такого излучения, рассказывает

Алексей Кукса

Самыми значимыми источниками электромагнитного поля являются те приборы, которыми мы пользуемся чаще всего и которые располагаются к нам ближе всего. Это:

  • мобильные телефоны
  • персональные компьютеры (и ноутбуки, и планшеты, и стационарные компьютеры)
  • из бытовой техники вне конкуренции СВЧ-печи

Устройства связи дают электромагнитное поле в момент приёма/передачи информации, а из-за того, что они расположены к нам на минимальном расстоянии (например, мобильный телефон находится вообще вплотную к голове), то и значения плотности потока ЭМ поля будет максимальным.

Как правило, чем мощнее потребитель тока, чем он ближе к нам расположен, чем дольше он на нас воздействует и чем менее защищён (экранирован), тем сильнее будут проявляться негативные последствия. Потому что интенсивность излучения от каждого конкретного источника тоже будет разная.

Негативное влияние на организм человека

Чем дольше мы находимся в электромагнитном поле, тем больше шансы на появление каких-либо последствий. Опасность в том, что без специального оборудования, мы никогда и не узнаем, подвергаемся ли мы прямо сейчас воздействию ЭМ-поля или нет. Разве что совсем в критических ситуациях, когда уже и волосы от статических зарядов начинают шевелиться.

Воздействие ЭМ полей может вызывать:

  • головокружения
  • головные боли
  • бессонницу
  • усталость
  • ухудшение концентрации внимания
  • депрессивное состояние
  • повышенную возбудимость
  • раздражительность
  • резкие перепады настроения
  • сильные скачки АД
  • слабость
  • нарушения работы сердечной мышцы
  • ухудшение проводимости миокарда
  • аритмию

Опасность заключается ещё и в том, что заметив у себя любой из описанных выше признаков, человек станет подозревать всё что угодно, но не электромагнитные поля, вызванные, например, скрытой проводкой, идущей вдоль спального места.

Правила безопасности при воздействии электромагнитного излучения на организм человека

Самая качественная защита от ЭМ излучения – это расстояние.

Плотность излучения с расстоянием падает в разы. У каждого источника достаточно ограниченный радиус действия полей, поэтому правильное планирование мест для отдыха/досуга, работы и сна уже залог Вашего здоровья, однако, не стоит забывать и про то, что любой обесточенный источник ЭМ-полей перестаёт таковым являться.

Поэтому не забывайте выключать из сети неиспользуемые приборы, не располагайте рядом с головой мощные источники ЭМИ, следите за состоянием бытовой техники и читайте инструкции по правильной эксплуатации бытовых приборов.

Чем электроника дороже - тем она безопаснее?

Однако стоит учитывать то, что это касается только новой техники, не подвергавшейся физическому воздействию, ремонтам, при правильной эксплуатации, расположении и прочее. Если хоть что-то было нарушено, то интенсивность излучения может измениться в разы.

Какое мнение сейчас принято по данному вопросу в научном сообществе?

Вред электромагнитного излучения для здоровья человека никем не отрицается. Но споры и обсуждения продолжаются касательно предельно допустимых уровней, так как провести однозначно линию, разграничивающую вред и пользу для организма, очень тяжело. В конце концов, есть и лечебные источники ЭМ-полей и диагностическое оборудование.

Читайте также: