Облако оорта доклад по астрономии кратко

Обновлено: 07.07.2024

Облако Оорта - это гипотетически существующая сферическая область ледяных объектов, лежащих за поясом Койпера. Существование этой области научно не подтверждено, есть только факты, косвенно доказывающие наличие Облака Оорта.

Факты об Облаке Оорта

  • Объекты в Облаке Оорта называются транснептуновыми объектами. Это название также относится к объектам в поясе Койпера.
  • Некоторые астрономы предполагают, что Солнце могло захватить кометный материал Облака Оорта с внешних дисков других звезд, которые формировались в той же туманности, что и наша звезда.
  • Облако Оорта - это запас кометных ядер, содержащих льды, образовавшихся в момент происхождения Солнечной системы.
  • Никто не знает наверняка, сколько объектов существует в Облаке Оорта, большинство оценок сходится в цифре в 2 триллиона.
  • Объект Седна, открытый в 2003 году, считается членом внутреннего Облака Оорта.
  • Астрономы считают, что кометы с долгими периодами (те, у которых периоды обращения более 200 лет) происходят из Облака Оорта.

Как образовалось Облако Оорта?

Облако Оорта - это сферическая область из ледяных объектов, которые существуют в самых отдаленных уголках Солнечной системы. Она названа в честь астронома Яна Оорта, который первым теоретизировал его существование.

Объекты в облаке Оорта состоят из водяных, аммиачных и метановых льдов.

Считается, что объекты, составляющие облако Оорта, сформировались около Солнца и были рассеяны далеко в космос гравитационными эффектами планет-гигантов на раннем этапе развития Солнечной системы. Сильное влияние оказал, конечно же, Юпитер, после того, как он объединился и мигрировал в его нынешнее положение. Его гравитационное влияние рассеивает многие ледяные объекты до их нынешнего положения в облаке Оорта.

Облако Оорта находится очень далеко от Солнца, и на него влияют проходящие мимо звезды, туманности и иные события в галактике "Млечный Путь". Они выбивают кометы с их орбит и отправляют в стремительное путешествие по направлению к Солнцу.

Расположение Облака Оорта

Внутренние границы Облака Оорта начинаются на расстоянии около 2000 астрономических единиц от Солнца. Примечательно, что расстояние до Солнца равно четверти расстояния до ближайшей звезды Проксима Центавра. Облако Оорта имеет сферическую форму, оно состоит из внешнего облака и внутреннего облака в форме тора (бублика).

Пояс Койпера и Облако Оорта

Пояс Койпера и Облако Оорта – области Солнечной системы: где находится, описание и характеристика с фото, интересные факты, исследование, открытие, объекты.

Пояс Койпера - крупное скопление ледяных объектов на краю нашей Солнечной системы. Облако Оорта - сферическое образование, в котором расположены кометы и другие объекты.

После обнаружения Плутона в 1930 году ученые стали предполагать, что это не самый отдаленный объект в системы. Со временем они отмечали движения других объектов и в 1992 году нашли новый участок. Давайте рассмотрим интересные факты о Поясе Койпера.

Интересные факты о Поясе Койпера

  • Пояс Койпера способен вмещать сотни тысяч ледяных объектов, чей размер варьируется между небольшими осколками до 100 км в ширину;
  • Большая часть короткопериодических комет поступает из пояса Койпера. Их орбитальный период не превышает 200 лет;
  • В главной части пояса Койпера может скрываться более триллиона комет;
  • Крупнейшими объектами выступают Плутон, Квавар, Макемаке, Хаумеа, Иксион и Варуна;
  • Первая миссия к поясу Койпера отправилась в 2015 году. Это зонд Новые Горизонты, исследовавший Плутон и Харон;
  • Исследователи зафиксировали структуры подобные поясу вокруг других звезд (HD 138664 и HD 53143);
  • Льды в поясе сформировались еще в период создания Солнечной системы. С их помощью можно разобраться в условиях ранней туманности;

Определение Пояса Койпера

Начать объяснение нужно с того, где находится Пояс Койпера. Его можно найти за чертой орбиты планеты Нептун. Напоминает Пояс астероидов между Марсом и Юпитером, потому что располагает остатками от формирования Солнечной системы. Но по размерам в 20-200 раз крупнее него. Если бы не влияние Нептуна, то осколки слились и смогли сформировать планеты.

Обнаружение и имя Пояса Койпера

Впервые о присутствии других объектов заявил Фрекрик Леонард, назвавший их ультра-нептуновыми небесными телами за чертой Плутона. Тогда Армин Лейшнер посчитал, что Плутон может выступать всего лишь одним из многих долгопериодических планетных объектов, которые еще предстоит отыскать. Ниже представлены крупнейшие объекты Пояса Койпера.

Крупнейшие объекты пояса Койпера

В 1943 году Кеннет Эджворт опубликовал статью. Он писал, что материал за Нептуном слишком рассредоточен, поэтому не может слиться в более крупное тело. В 1951 году в обсуждение вступает Джерард Койпер. Он пишет о диске, появившемся в начале эволюции Солнечной системы. Идея с поясом всем понравилась, потому что она объясняла откуда прибывают кометы.

В 1980 году Хулио Фернандес определил, что Пояс Койпера находится на удаленности в 35-50 а.е. В 1988 году появляются компьютерные модели на основе его расчетов, которые показали, что Облако Оорта не может отвечать за все кометы, поэтому идея с поясом Койпера обретала больше смысла.

В 1987 году Дэвид Джуитт и Джейн Лу занялись активными поисками объектов, используя телескопы в Национальной обсерватории Кит-Пика и Обсерваторию Серро-Тололо. В 1992 году они объявили об открытии 1992 QB1, а через 6 месяцев – 1993 FW.

Во многих статьях авторы начали называть гипотетический участок поясом Койпера, которое и закрепилось как официальное наименование.

Состав Пояса Койпера

Как выглядит состав Пояса Койпера? На территории пояса проживают тысячи объектов, а в теории насчитывают 100000 с диаметром, превышающим 100 км. Полагают, что все они состоят из льда – смесь легких углеводородов, аммиака и водяного льда.

Изображение крупнейших объектов Пояса Койпера

Изображение крупнейших объектов Пояса Койпера

На некоторых объектах нашли водяной лед, а в 2005 году Майкл Браун определил, что на 50000 Кваваре есть водяной лед и гидрат аммиака. Оба этих вещества исчезли в процессе развития Солнечной системы, а значит на объекте есть тектоническая активность или же произошло метеоритное падение.

В поясе зафиксировали крупные небесные тела: Квавар, Макемаке, Хаумеа, Орк и Эриду. Они и стали причиной того, что Плутон сместили в категорию карликовых планет.

Изучение Пояса Койпера

О поясе Койпера мало информации, поэтому он скрывает огромное количество комет. Наиболее известная – комета Галлея с периодичностью в 16000-200000 лет.

Будущее Пояса Койпера

Облако Оорта

Джерард Койпер полагал, что ТНО не будут существовать вечно. Пояс охватывает в небе примерно 45 градусов. Объектов много, и они постоянно сталкиваются, превращаясь в пыль. Многие считают, что пройдут сотни миллионов лет и от пояса ничего не останется. Будем надеяться, что миссия Новые Горизонты доберется раньше!

Тысячелетиями человечество наблюдало за прибытием комет и пыталось понять, откуда они берутся. Если при сближении со звездой ледяной покров испаряется, то они должны располагаться на большой отдаленности.

Со временем ученые пришли к выводу, что за чертой планетарных орбит находится масштабное облако с ледяными и каменными телами. Его назвали Облаком Оорта, но оно все еще существует в теории, потому что мы не можем его увидеть.

Определение Облака Оорта

Облако Оорта - теоретическое сферическое формирование, наполненное ледяными объектами. Находится на расстоянии 100000 а.е. от Солнца, из-за чего охватывает межзвездное пространство. Как и пояс Койпера, это хранилище транс-нептуновых объектов. О его существовании впервые заговорил Эрнест Опик, считавший, что кометы могут прилетать из области на краю Солнечной системы.

В 1950-м году Ян Оорт оживил концепцию и сумел даже объяснить принципы поведения долгосрочных комет. Существование облака не доказано, но его признали в научных кругах.

Структура и состав облака Оорта

Полагают, что облако способно располагаться в 100000-200000 а.е. от Солнца. Состав Облака Оорта включает две части: сферическое внешнее облако (20000-50000 а.е.) и дисковое внутреннее (2000-20000 а.е.). Во внешнем проживают триллионы тел с диаметром в 1 км и миллиарды 20-километровых. Сведений об общей массе нет. Но если комета Галлея выступает типичным телом, то подсчеты выводят на цифру в 3 х 10 25 кг (5 земель). Ниже представлен рисунок строения Облака Оорта.

Строение облака Оорта

Строение облака Оорта

Большая часть комет наполнена водой, этаном, аммиаком, метаном, цианидом водорода и монооксидом углерода. На 1-2% может состоять из астероидных объектов.

Происхождение облака Оорта

Есть мнение, что Облако Оорта - остаток от изначального протопланетного диска, сформировавшегося вокруг звезды Солнца 4.6 млрд. лет назад. Объекты могли сливаться ближе к Солнцу, но из-за контакта с масштабными газовыми гигантами были вытолкнуты на большою удаленность.

Исследование от ученых НАСА показало, что огромный объем облачных объектов выступает результатом обмена между Солнцем и соседними звездами. Компьютерные модели показывают, что галактические и звездные приливы меняют кометные орбиты, делая их более круглыми. Возможно, именно поэтому Облако Оорта принимает форму сферы.

Симуляции также подтверждают, что создание внешнего облака согласуется с идеей того, будто Солнце появилось в скоплении из 200-400 звезд. Древние объекты могли повлиять на формирование, потому что их было больше и чаще сталкивались.

Кометы из Облака Оорта

Полагают, что эти объекты спокойно дрейфуют в Облаке Оорта, пока не выйдут из привычного маршрута из-за гравитационного толчка. Так они становятся долгопериодическими кометами и наведываются во внешнюю систему.

Сравнение размеров облака Оорта и Пояса Койпера

Сравнение размеров облака Оорта и Пояса Койпера

Орбита короткопериодических комет охватывает пару сотен лет, а вот у долгопериодических растягивается на десятки тысяч лет. Первые прибывают из пояса Койпера, а вторые – гости из облака. Но есть исключения.

Есть кометы Юпитера и Галлея. Вторые короткопериодические, но пребывают из Облака Оорта. Ранее они обладали длительным периодом, но попали под воздействие газового гиганта.

Изучение облака Оорта

Нам все еще не удалось добраться к поясу Койпера, а Облако Оорта расположено еще дальше. Дальше всех вылетел Вояджер-1, но ему все еще далеко. Если учитывать теперешнее ускорение, то у аппарата (сейчас в межзвездном пространстве) уйдет еще 300 лет, чтобы прибыть к началу, и 30000 лет, чтобы полностью миновать облако.

За ним следуют Пионер-10 и 11, Вояджер-2, а также Новые Горизонты. Но они выйдут из строя и не смогут передать нам сигнал.

Итак, главная трудность в исследовании – огромная удаленность. Пока зонд доберется, у нас минуют века. Сейчас мы можем лишь рассматривать прибывающие кометы. Теперь вы узнали, где находятся Пояс Койпера и Облако Оорта, а также получили представление об объектах и их движении по Солнечной системе.

Иногда в окрестностях Солнца появляются небесные тела, вещество которых вблизи Солнца начинает испаряться и отбрасываться солнечным ветром от Солнца. Это кометы. Их сильно вытянутые орбиты свидетельствует в пользу того, что они приходят из очень далёких областей Солнечной системы. Каждый год наблюдается в среднем 10 комет. Самые яркие из них обращают на себя внимание не только астрономов.

В 1950 г. голландец Ян Оорт предположил, что кометы рождаются в облаке, которое окружает внутреннюю, планетную, часть Солнечной системы. Это облако - остаток той туманности, из которой путём "слипания" частичек (под действием взаимного тяготения) образовались Солнце и планеты. Первичная туманность обладала большей плотностью вблизи центра, и здесь процесс планетообразования пошёл быстрее. Что же касается внешних, разреженных, частей, то там сходный процесс не завершился и до настоящего времени.

На основании изучения 19 комет Оорт выяснил, что кометы, как правило, приходят из области в 20 000 а.е., где они первоначально имели скорость порядка 1 км/с. Такая скорость говорит о том, что кометы - это составная часть Солнечной системы, так как "чужие" тела (например, ближайшие к Солнцу звёзды) имеют относительно Солнца скорость порядка 20 км/с [Марочник и др., 1987].

Считается, что в облаке Оорта сосредоточены многие миллиарды кометных "зародышей" - тел, которые вращаются по различным орбитам и пока ни разу не приближались к Солнцу. По Оорту [Марочник и др., 1987], таких тел должно быть порядка 10 в одиннадцатой степени. Есть там и миллиарды настоящих комет, которые уже успели "навестить" Солнце. Орбиты комет должны зависеть от случайных сближений кометных "зародышей" друг с другом, от притяжения соседних с Солнцем звёзд, от притяжения существующих по некоторым предположениям планетоподобных или даже тёмных звёздоподобных тел в самом облаке Оорта (гипотеза существования Немезиды). Кометные тела могут длительно кружиться в облаке Оорта, могут выбрасываться из Солнечной системы, а могут устремляться в окрестности Солнца, превращаясь в настоящие хвостатые кометы.

По современным представлениям, облако Оорта простирается на расстояние до 2 световых лет от Солнца (почти половина или треть расстояния до ближайших звёзд). Если учесть, что до Плутона свет доходит за 5 с половиной часов, то это означает, что возможный радиус облака Оорта в 3000 раз превышает радиус орбиты Плутона. Есть указания, что масса облака Оорта превышает суммарную массу планет и пояса Койпера. Это означает, что Солнечную систему нельзя считать сформировавшейся даже в первом приближении.

Считается, что облако Оорта резко различается по своим свойствам на разном расстоянии от Солнца. Начинается оно не сразу за орбитой Плутона и поясом Койпера, а отделено широкой щелью. Далее находится внутренняя часть облака, где кометные тела движутся, в основном, в той же плоскости, что и планеты. Орбиты их более или менее стабильные и до какой-то степени круговые. Во внешнем облаке кометные тела движутся в любых плоскостях по случайным орбитам, подчиняясь притяжению не только Солнца, но других звёзд [Как устроена Солнечная система, 1988]. Известно, например, что через 26 000 лет звезда альфа Центавра заметно приблизится к Солнечной системе, и тогда Землю и другие планеты начнут бомбить многочисленные кометы, уклонившиеся со своих круговых орбит в облаке Оорта [Сурдин, 1994]. Не исключено, что такие периоды резкого усиления кометной активности были и раньше. Тогда центральные области Солнечной системы пополнялись новым веществом, то есть усиливалось планетообразование.

Есть расчёты, согласно которым, за время существования планетной системы "чужие" звёзды раз десять прошли через внутренний кометный "банк", вызвав учащения комет в 1000 раз. Такое событие длится примерно 400 000 лет. За это время на Землю выпадает до 200 комет (в среднем 1 комета в 2000 лет). В масштабах человеческой жизни это, конечно, не особенно ощутимо, но в геологических масштабах можно говорить о "кометном ливне". Такие "ливни" пытались связать с массовыми вымираниями видов на нашей планете [Марочник и др., 1987].

Есть сведения, что массовые вымирания происходят периодично - раз в 26 миллионов лет, и учащения бомбардировок якобы тоже имеют такую периодичность (по возрасту ударных кратеров). Периодичность пытались связать с пересечением галактической плоскости Солнцем, что происходит один раз в 30 миллионов лет. В плоскости Галактики могут быть массивные облака пыли и газа, которые, как и звёзды, должны "возмущать" кометное облако. Кроме того, разгадку периодичности объясняли существованием Немезиды - тёмной звезды массой в несколько сотых солнечной. Немезида, согласно этой гипотезе, движется вокруг Солнца по вытянутой орбите и каждые 26 миллионов лет входит в кометное облако [Марочник и др., 1987]. Впрочем, станция "Пионер-10", находясь на окраинах планетной системы, не испытала дополнительного ускорения, которое можно было бы объяснить влиянием Немезиды или крупной планеты размером с Юпитер, хотя влияние тела в 3 - 5 масс Земли не исключается [Снова о десятой планете, 1988].

Солнечная система, таким образом, состоит из четырёх частей:

планетная система (пояс планет земной группы, первый пояс малых планет, пояс планет-гигантов);

щель, или пояс Койпера (если он занимает всю щель);

внутренняя часть облака Оорта;

внешняя часть облака Оорта.

Интересно, что каждая из перечисленных частей во много раз больше предыдущих.

Предположение о том, что гамма-всплески, наблюдаемые в Солнечной системе, связаны со столкновением комет в облаке Оорта, не подтвердилось. Источник этих всплесков находится вне Солнечной системы и даже вне Галактики. Это слияние нейтронных звёзд [Трубников, 1998].

Немного предыстории для понимания сути

Расстояние до облака Оорта

Расстояние до облака Оорта по сравнению с остальной частью Солнечной системы

Нередко поблизости Солнца можно наблюдать небесные тела, материя которых в окрестностях самой жаркой звезды испаряется и уносятся от нее космическими ветрами. Эти испаряющиеся небесные тела и есть кометы. Свидетельством того, что кометы держат свой путь из весьма удаленных участков Солнечной системы, является их вытянутая форма орбит. Ежегодно астрономами фиксируется движение около десятка комет. Но не астрономы одни любят наблюдать за небесными телами. Так, именно астрофизик Ян Оорт выдвинул следующую гипотезу: все кометы появляются в далеком облаке, которым окружена внешняя часть Солнечной системы.

Что из себя представляет облако?

Общий вид

Облако Оорта – ничто иное, как остаток протосолнечной туманности, давшей жизнь планетам и Солнцу. Каким образом? Да элементарно просто: путем слипания мельчайших частиц при помощи силы взаимного тяготения. Первичная туманность около центра была гораздо плотнее, поэтому планеты сформировались довольно быстро. В то время как ее внешние области были более разрежены, поэтому сходный процесс в них никак не завершался. Оорт изучил 19 различных комет и сделал вывод, что зачастую они следуют из некой области, расположенной в 20000 а.е. (астрономических единиц), имея при этом начальную скорость в 1км/с. Подобная скорость позволяет утверждать, что место рождения комет расположено в пределах Солнечной системы, поскольку чужеродные ей тела обладают скоростью в среднем 20 км/с.

Что происходит с небесными телами внутри облака?

Седна

Седна, кандидат в объекты внутреннего облака Оорта

Если заглянуть внутрь облака Оорта, можно понять, что кометные тела внутри него могут довольно долго просто свободно кружиться по нему, могут вырываться за пределы Солнечной системы, а могут устремляться к Солнцу. В последнем случае мы как раз и имеем возможность наблюдать самые настоящие кометы с хвостами. Современные исследования ученых позволяют заявлять, что облако простирается от Солнца на расстояние в 2 световых года. Этот факт говорит также и, что орбита облака Оорта имеет радиус, превышающий в 3000 раз радиус орбиты планеты Плутон. Кроме того, есть сведения, что сумма масс всех планет меньше предполагаемой массы облака. А это значит, что сегодня пока рано говорить об окончательном формировании Солнечной системы и ее неизменности в будущем.

Есть ли особенности у этого необычного облака?

Схема

Оказывается, особенностей более чем достаточно. Прежде всего, стоит сказать, что свойства облака Оорта различны на разной удаленности от Солнца. Отметим, что за Плутоном и поясом Койпера еще далеко не начало облака Оорта. Внешние его границы отделены довольно внушительной щелью, за которой следует внутреннее пространство облака. В этом месте движение кометных тел ничем не отличается от привычного движения планет. Они обладают стабильными и, в большинстве случаев, круговыми орбитами. А вот во внешней части облака кометы движутся как им вздумается: в разных плоскостях, ведомые притяжением Солнца или других звезд. Есть информация, что через каких-то 26000 лет к Солнцу настолько близко подберется Альфа Центавра, что к Земле и прочим планетам устремится поток комет, отклонившихся от своих орбит в облаке Оорта.

Снимки обнаруженных объектов из Облака Оорта

Наблюдение

На вопрос о том, можно ли увидеть облако Оорта своими глазами, отвечаем, что сделать это пока не удалось. Во-первых, потому что оно слишком разрежено, во-вторых, практически не освещается Солнцем, но главная причина в том, что мы с вами находимся непосредственно внутри него. Тем не менее, ученым посчастливилось наблюдать другие подобные облаку Оорта туманности. Они зарегистрировали едва заметные диски с такими же щелями около близ расположенных к нам звезд. Отсюда можно утверждать, что Солнечная система разделена на 4 части. То есть в ее состав входят планетная система, щель либо пояс Койпера и еще две составляющие – это внутренняя и внешняя области облака Оорта.

Пояс Койпера и облако Оорта

В состав Солнечной системы, помимо самой звезды, планет и их спутников, входят астероиды, кометы, карликовые планеты, а замыкает все это пояс Койпера и облако Оорта.

Пояс Койпера представляет собой большое кольцо, состоящее из ледяных небесных тел. В нашей системе есть еще один похожий объект, который находится между Марсом и Юпитером. Он известен вам как пояс астероидов. Сегодня в эту область входит и Плутон, который, как вы знаете, больше не считается планетой.

Обнаружение и название

Первым существование объектов далеко за Нептуном предположил астроном Фредерик Леонард в 1930 году. По его мнению, Плутон – далеко не самый далекий объект Солнечной системы. И он оказался прав. 13-ю годами позже, еще один астроном Кеннет Эджворт подтвердил слова Леонарда, выдвинув свою гипотезу о том, что на границе нашей системы находится туманность, наполненная мелкими телами, которые так и не собрались в единую планету.

Иронично, что Джерард Койпер, в честь которого назван пояс, в отличие от других предполагал, что никакого пояса там вообще нет. В 1951 году, когда он сделал это заявление, считалось, что Плутон гораздо больше, чем он есть на самом деле. Поэтому астроном предположил, что, если пояс и был, то он не мог сохраниться до наших дней.

Джерард Койпер

Джерард Койпер

Помимо комет и астероидов в поясе Койпера были обнаружены даже карликовые планеты, такие как Церера и Хаумеа. Самый крупный объект пояса – Плутон.

Изучение

Пояс Койпера активно изучается и по сей день, так как его объекты вполне могут быть остатками ранних аккреционных фаз Солнечной системы, то есть старше всех планет. Также там могут зарождаться короткопериодические кометы, аналогично тому, как в облаке Оорта рождаются долгопериодические.

Будущее пояса Койпера

Предположение Койпера о том, что объекты за Нептуном уже не существуют, не совсем ошибочно. Они не будут существовать вечно, и уже сейчас объекты в поясе сталкиваются между собой и медленно превращаются в пыль. Все через каких-то сто миллионов лет от пояса Койпера не останется и следа.

Пояс Койпера

Пояс Койпера

Интересные факты о поясе Койпера

Самый интересный факт о поясе Койпера заключается в том, что по форме он напоминает пончик. После этого, вам уже нет смысла читать остальные факты, но если вы все же хотите, то вот они:

  • Это старейший объект нашей системы, так как появился в процессе ее зарождения.
  • В нем может насчитываться несколько миллионов различных объектов, от маленьких осколков, до полноценных карликовых планет.
  • Такие же пояса есть и около других звезд, например, HD 138664.
  • В его центральной части может скапливаться до нескольких триллионов комет.
  • Жизни там нет.

Что такое облако Оорта

Облако Оорта представляет собой скопление комет на самом краю нашей системы. Оно получило свое название в честь астронома Яна Оорта. По своей сути это облако – просто рой комет, которых там около сотни миллиардов.

Облако Оорта

Облако Оорта

Структура и состав облака Оорта

Это сферическое скопление комет, в котором преобладают ледяные объекты. Оно представляет собой границу Солнечной системы, состоящую из двух частей: оболочки и внутреннего диска. Это нетипичное явление для звездных систем, но нельзя точно сказать, что такого больше нигде нет.

Происхождение облака Оорта

Ян Оорт – астроном из Голландии – исследовал разные межзвездные области. Именно он первым высказал предположение о том, что кометы с долгим периодом зарождаются в области на границе Солнечной системы. Скорее всего, это облако образовалось из диска плотного газа, который в свою очередь появился около еще совсем молодого Солнца в начале формирования нашей системы. Таким образом, этому облаку сейчас может быть более 4,5 миллиардов лет. По сути облако Оорта – это продолжение пояса Койпера, но о его существовании до самого Оорта никто даже не догадывался.

Изучение Облака Оорта

К сожалению, учитывая дальность расположения этого объекта, досконально изучить его пока не представляется возможным. Даже Вояджер-1, который запустили в далеком 1977 году все еще туда не долетел и будет там еще не скоро.

Читайте также: