Микромир доклад 10 класс

Обновлено: 04.07.2024

Микромир – мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная размерность которых исчисляется от 10-8 до 10-16 см, а время жизни — от бесконечности до 10-24 сек. В области реально, экспериментально изучаемого мира физики фиксируют размеры порядка 10–16 см (в тысячу раз меньше размеров атомных ядер). Микромир выделяется как объект квантовой механики, в том числе релятивистской, учитывающей одновременно и квантованность, и относительность (релятивность) процессов в микромире, их структурных, пространственно-временных и энергетических характеристик.

Еще с древнейших времен человек пытался познать первооснову мира, то, из чего состоит все. Ранее такой основой считались атомы. Затем выяснилось, что атомы и даже атомные ядра делимы.

Прежде всего был открыт электрон. Его характеристики были определены в 1897 г. Дж. Дж. Томсоном. Было установлено, что ион водорода, который Резерфорд назвал в 1914 г. протоном, является элементарным носителем положительного заряда. В 1920 г. Резерфордом было предсказано существование нейтрона, который был открыт в 1932 г. В том же году был открыт позитрон.

Элементарными (субъядерными) частицами называют такие частицы, которые не удается расщепить на составные части. Они подразделяются на стабильные и нестабильные. Всем элементарным частицам присущи такие основные черты:

1. частицы, пока существуют, неизменны.

2. частицы одного сорта абсолютно одинаковы, неразличимы;

3. частицы могут рождаться и исчезать.

Согласно стандартной модели всё вещество (включая свет) состоит из 12 фундаментальных элементарных частиц и 12 частиц-переносчиков взаимодействий. В это число входят кварки (из которых состоят протоны и нейтроны), электроны, фотоны и другие элементарные частицы.

Пока неизвестны причины того, почему имеется именно такой набор частиц, причины наличия массы у некоторых из них и ряда других параметров. Перед физикой стоит задача построить теорию, в которой свойства частиц вытекали бы из свойств вакуума.

К настоящему времени открыто несколько сотен элементарных частиц. Естественно, что столь большое число элементарных частиц нуждается в конкретной классификации.

Все элементарные частицы характеризуются такими параметрами, как масса покоя (фотон, движущийся со скоростью света, имеет массу покоя равную нулю, электрон – наилегчайший с ненулевой массой покоя, протоны и нейтроны в 2000, а Z-частица в 200000 раз тяжелее электрона), электрический заряд (он всегда кратен заряду электрона, равному –1, либо вовсе отсутствует), спин (момент импульса частицы, у бозонов спины целые – 0, 1, 2, а у фермионов полуцелые – например ½), и время жизни (стабильные – электрон, протон, фотон и нейтрино и нестабильные, с временем жизни от 15 минут до триллионных и более малых долей секунды).

В основе классификации элементарных частиц лежит их возможность участвовать в тех или иных видах фундаментальных взаимодействий.

Классификация элементарных частиц:

1. Фотоны – кванты электромагнитного поля, частицы с нулевой массой покоя, не имеют сильного и слабого взаимодействия, но участвуют в электромагнитном.

2. Лептоны – элементарные частицы, не участвующие в сильном взаимодействии. Класс лептонов состоит из шести частиц (электрон, мюон, тау-лептон и три вида нейтрино) и шести античастиц.

3. Адроны – частицы, которые способны участвовать в сильном взаимодействии. Адронов очень много. Они состоят из кварков, и все их большое разнообразие можно свести к сочетанию кварков — элементарных частиц с дробным электрическим зарядом 1/3 или 2/3. Класс кварков состоит из шести частиц и шести античастиц. Кварки не встречаются в свободном состоянии, а образуют связанные соединения.

Барионы – адроны, образуемые комбинациями трех кварков (протон, нейтрон и др.).

Мезоны–адроны, состоящие из кварка и антикварка, это сильно взаимодействующие нестабильные частицы.

4. Частицы — переносчики взаимодействий: фотон (электромагнитное взаимодействие: фотон не имеет массы, что обусловливает большой радиус этого взаимодействия), мезоны (слабое взаимодействие), глюоны (сильное взаимодействие), гравитоны (гравитационное взаимодействие). Так, электромагнитное взаимодействие передается нейтральным. Переносчики слабого взаимодействия — два промежуточных векторных бозона W± и один нейтральный Z-бозон обладают большой массой и обеспечивают осуществление слабого взаимодействия только на очень коротких расстояниях.

Также элементарные частицы можно классифицировать следующим образом:

1) По спину:на фермионы (полуцелый спин) и бозоны (целый спин).

2) По времени жизни частицы можно разбить на:

1) стабильные (электрон, протон, фотон, нейтрино);

2) квазистабильные — распадающиеся вследствие электромагнитного и слабого взаимодействий (нейтрон);

3) нестабильные — распадающиеся вследствие сильного взаимодействия (π-мезоны).

3) По массевсе частицы разделены на три класса:

· барионы (тяжелые): протон, нейтрон, гипероны, часть резонансов. Из них стабилен протон. Все они — фермионы. Имеют барионный заряд +1. Участвуют во всех типах взаимодействий.

· мезоны (средние, промежуточные): пи-мезоны, ка-мезоны и др. Нестабильны. Являются бозонами (нулевой или целочисленный спин). Барионного заряда нет. Участвуют во всех типах взаимодействий. Барионы + мезоны = адроны.

· лептоны (легкие): мюон, нейтрино, электрон. Мюоны являются фермионами, не участвуют в сильных взаимодействиях и обладают лептонным зарядом.

Вне этих классов находится фотон: не лептон и не адрон. Лептонного заряда нет, в сильных взаимодействиях не участвует. Участвует в электромагнитных взаимодействиях, его спин = 1, а масса покоя = 0.

Основные положения современной атомистики:

1) атом является сложной материальной структурой, представляет собой мельчайшую частицу химического элемента;

2) у каждого элемента существуют разновидности атомов (содержащиеся в природных объектах или искусственно синтезированы);

3) атомы одного элемента могут превращаться в атомы другого; эти процессы осуществляются либо самопроизвольно (естественные радиоактивные превращения), либо искусственным путем (посредством различных ядерных реакций).

Атомы каждого химического элемента имеют в своём составе одно и то же количество протонов, называемое атомным номером или зарядом ядра. Однако количество нейтронов может различаться, поэтому один химический элемент может быть представлен несколькими изотопами. В настоящее время известно свыше 110 элементов, наиболее массивные из которых нестабильны.

Атомы могут взаимодействовать друг с другом, образуя химические вещества. Взаимодействие происходит на уровне их электронных оболочек. Химические вещества чрезвычайно многообразны. Наука пока не решила задачу точного предсказания физических свойств химических веществ.

Вахитова Евгения Владимировна

ВложениеРазмер
mikromir_kto_oni.docx 480.4 КБ

Предварительный просмотр:

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАЛЬНОЕ УЧРЕЖДЕНИЕ

"Средняя общеобразовательная школа № 14"

"Микромир: кто они?"

ученик 9б класса

Вахитова Евгения Владимировна

2. Основная часть

2.1. История изучения микромира

2.2. Разнообразие форм и размеров вирусов.

2.3. Особенности вирусов

2.4 . Строение вируса

2.5. Жизненный цикл вирусов

2.6. Типы вирусных инфекций и способы передачи

2.7. Иммунитет человека и ВИЧ – инфекция

3.1. Результаты анкетирование «Как часто вы болеете

Цель: собрать информацию и обобщить материал о вирусах как представителях неклеточной формы жизни, их строении, особенностях жизнедеятельности.

Я предполагаю, что в природе существует большое разнообразие жизненных форм, одной из которых является неклеточная форма.

История изучения микромира

С давних времен человечество страдало от страшных болезней, в частности черной оспы. Подавляющее большинство заражённых умирали, а у тех, кому посчастливилось выжить, кожа навсегда оставалась грубой и покрытой шрамами от оспенных язв. В 1707 г. В Исландии от черной оспы погибло больше двух третей населения; когда испанские колонизаторы занесли болезнь в Америку, то в одном индейском поселке с более чем тысячным населением живыми остались только четверо.

К концу XIX века биологам были известны, казалось бы, все живые организмы — от микроскопической бактерии и до огромного синего кита. Были известны и химические молекулы самых разных размеров — от двухатомной молекулы водорода до сложных белков. Но между живыми организмами биологов и молекулами химиков зияла глубокая пропасть.

Ничто живое не могло быть меньше, чем микоплазма 150 нм в длину. Крупнейшие из известных химикам молекул имели размер в 22 нм. Царства биологии и химии были полностью разделены.

В 1892 г. Русский ботаник Дмитрий Иосифович Ивановский, изучая мозаичную болезнь растений табака, обнаружил, что при пропускании сока, выделенного из больного растения, через фильтры, задерживающие бактерии, жидкость сохраняла способность вызывать заболевания у здоровых растений. Возбудитель болезни был столь мал, что его и подобные ему структуры, получившие в дальнейшем название вирусы (от лат.virus – яд), стало возможно изучать только после изобретения электронного микроскопа.

Разнообразие форм и размеров вирусов. Особенности вирусов.

Существует несколько вариантов внешности вирусов. Они могут походить на жёсткую палочкообразную или нитевидную спираль, сферические (герпес), овальная форма (вирус оспы), а также бактериофаги, имеющие сложную форму. Вирусы в среднем в 50 раз меньше бактерий. Их нельзя увидеть в световой микроскоп, так как их длины меньше длины световой волны.

Размеры вирусных частиц также варьируют. Наиболее худые нитевидные вирусы имеют диаметр 10 нм, а длина самых протяжённых достигает 2 мкм. Диаметр сферических вирусов колеблется от 20-300 нм. Самые крупные из известных вирусов могут иметь длину до 450 нм и 260 нм в толщину и в ширину. Крупнейший из когда – либо открытых вирусов был обнаружен в водонапорной башне в городе Бредфорде в Англии, он паразитирует в теле амёб.

Во внешней среде многие вирусы имеют форму кристаллов.

Учёные считают, что вирусы как структуры н аходятся на самой границе между живыми и неживыми организмами. Доказательством того, что вирусы живые, является способность их воспроизводить себя. У них есть генетический материал в виде ДНК или РНК. Вирусы обладают наследственностью и изменчивостью. Для них характерна приспособляемость к меняющимся условиям окружающей среды. В то же время вирусы не имеют клеточного строения и не могут воспроизводить себя вне клетки – хозяина.

Они не используют пищу, не могут вырабатывать энергию, не растут, не имеют

обмена веществ. Существование неклеточных структур в природе объясняет связь между простыми молекулами и сложными системами клеток организмов.

По образу жизни вирусы являются внутриклеточными паразитами. Они

проникают внутрь клетки хозяина, нейтрализуют ДНК хозяина, с помощью своей ДНК или РНК способствуют синтезу новых копий вируса.

Вирусы имеют очень простое строение. Они состоит из нуклеиновых кислот (ДНК, или РНК) и белка. Нуклеиновая кислота является генетическим материалом вируса. Она окружена защитной белковой оболочкой – капсидом. Внутри капсида могут находиться собственные вирусные ферменты. Некоторые вирусы, например вирус гриппа и ВИЧ, имеют дополнительную оболочку , которая образуется из клеточной мембраны клетки-хозяина. Капсид вируса, состоящих из многих белковых молекул, обладает высокой степенью симметрии, имея, как правило, спиральную или многогранную форму. Эта особенность строения позволяет отдельным белкам вируса объединяться в полную вирусную частицу путем самосборки.

Поскольку в составе вирусов присутствует всегда один тип нуклеиновой кислоты — ДНК или РНК, вирусы делят также на ДНК-содержащие и РНК-содержащие. ДНК могут иметь линейную и кольцевую структуры, а РНК, как правило, линейную. Подавляющее большинство вирусов относится к РНК-типу (ретровирусы)

Жизненный цикл вирусов

Этапы жизнедеятельности вирусов (размножение вирусов)

1.Прикрепление вируса к клетке – хозяина.

Встреча вирусов с клетками начинается с его адсорбции, то есть прикрепления к клеточной стенки, плазматической мембране клетки. Причём каждый вирион способен прикрепляться лишь к определённым клеткам, имеющие специальные рецепторы. На одной клетке могут адсорбироваться десятки и даже сотни вирионов.

2. Проникновение вируса в клетку.

Зацепившись за бактерию, вирион растворяет её оболочку и, сжимаясь, впрыскивает в глубь клетки свою генетическую информацию, записанную в ДНК или РНК. Причём сам капсид остаётся снаружи клетки.

Также вирус может проникать в клетку целиком (путём эндоцитоза).

3.Редупликация вирусного генома.

Попав в клетку, генетический материал вируса взаимодействует с ДНК хозяина таким образом, что клетка сама начинает синтезировать необходимые вирусы белки. Соответствующие ферменты клетки – хозяина, не отличая вирусной ДНК от генетического материала клетки, становится вирусной частицей. В зараженной клетке ферменты репликации синтезируют комплиментарную ей цепь, которая служит матрицей для образования фаговых ДНК.

4.Синтез вирусных белков и самосборка капсида.

В цитоплазме заражённой клетки начинается самосборка новых вирусных частиц.

5.Выход вируса из клетки.

Готовые вирусные частицы покидают клетку или изменяют её работоспособность и приводят к разрушению.

Типы вирусных инфекций и способы передачи.

В зависимости от продолжительности пребывания вируса в организме различают две группы вирусных инфекций:

1.Инфекции, связанные с непродолжительным пребыванием вируса в организме:

  • Острая инфекция (заканчивается выздоровлением, формированием приобретённого иммунитета и освобождением организма от возбудителя);
  • Бессимптомная инфекция (протекает без каких – либо проявлений и заканчивается также формированием иммунитета).

2. Инфекции, обусловленные длительным пребыванием возбудителя в организме:

  • Латентные ( протекают бессимптомно и могут сопровождаться либо нормальной репродукцией вируса во внешне здоровом организме и выделение его во внешнюю среду, либо сопровождается вирусоносительством, при котором вирус длительно циркулирует в организме);
  • Хронические (характеризуется периодическими состояниями выздоровления и рецидивов);
  • Медленные (характеризуются продолжительным инкубационным периодом, прогрессирующим течением болезни и заканчивается тяжёлыми расстройствами или, чаще смертью).

Способы передачи инфекционных заболеваний

Учёные выделяют несколько основных способов передачи вирусной инфекции.

1. Капельная инфекция .

Это самый обычный способ распространения респираторных заболеваний. Заражение происходит при вдыхании воздуха, кашле, чихании, разговоре в местах большого скопления людей. Мерами профилактики являются использование марлевых повязок во время возникновения эпидемии, проветривание и влажная обработка помещений.

Особенно опасны микроорганизмы, такие как вирус оспы или туберкулёзная палочка. Они устойчивы к повышению температуры, сохраняются в почве, пыли длительное время.

Воздушно – капельным способом распространяются такие заболевания как

грипп разных типов, простуда, свинка, корь, коревая краснуха, полиомиелит.

2. Контактная инфекция

При непосредственном физическом контакте с больными животными и людьми передаются трахома (болезнь глаз в тропиках), обычные бородавки,

раны на коже, эпидемический паратит через рот с заразной слюной, жёлтая лихорадка, переносчиками которой являются клещи, комары.

Микромир – это молекулы, атомы, элементарные частицы — мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная разномерность которых исчисляется от 10—8 до 10—16 см, а время жизни — от бесконечности до 10-24 с.

Макромир — мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время — в секундах, минутах, часах, годах.

Мегамир — это планеты, звездные комплексы, галактики, метагалактики – мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов — миллионами и миллиардами лет.

МИКРОКОСМ (от микро… и космос) — человек как подобие, отражение, зеркало, символ Вселенной — макрокосма. Учение о микрокосме было распространено в древнегреческой философии (Платон, перипатетическая школа, стоицизм), философии Возрождения (Николай Кузанский, Дж. Бруно, Т. Кампанелла, Парацельс), оно присуще пантеистическим учениям И. В. Гете и немецкого романтизма. В философии Г. В. Лейбница — монада.

МАКРОКОСМ(ОС) (от макро… и космос) — Вселенная, универсум, мир в целом, в отличие от микрокосм(ос)а (человека).

Микрургия (от микро… и греч. érgon — работа), микродиссекция (от лат. dissectio — рассечение) — совокупность методических приёмов и технических средств, позволяющих производить под микроскопом операции на очень мелких объектах — микроорганизмах, простейших, клетках многоклеточных организмов или внутриклеточных структурах (ядрах, хромосомах и др.). Микрургия включает в себя также микроизоляции, микроинъекции, микровивисекционные и микрохирургические вмешательства (например, операции на глазном яблоке). Большое развитие Микрургия получила в 20 в. в связи с усовершенствованием микроманипуляторов и специальных микроинструментов — игл, микроэлектродов и др.

Объект помещают в камеру, заполненную физиологическим раствором, вазелиновым маслом, сывороткой крови или другой средой. При помощи Микрургии возможно выделение отдельных клеток, в том числе микробных, разрезание их на части, удаление и пересадка ядер и ядрышек, разрушение отдельных участков и органоидов клетки, введение в клетку микроэлектродов и химических веществ, извлечение из неё органоидов. Микрургия позволяет изучать физико-химические свойства клетки, её физиологическое состояние, пределы реактивности. Особое значение Микрургия приобретает в связи с возможностью пересадки ядер соматических клеток в яйцевые и обратно. Так, Дж. Гёрдон (1963) перенёс ядро из эпителиальной клетки кишечника земноводного в яйцевую клетку того же вида. При Микрургии резко нарушаются строение и жизнедеятельность клетки, поэтому необходим строгий контроль физиологичности производимых операций.

Микро…, микр… (от греч. mikrós — малый, маленький):

1) составная часть сложных слов, указывающая (в противоположность макро…) на малые размеры или малую величину чего-либо (например, микроклимат, микролит, микроорганизмы).

2) Приставка для образования наименований дольных единиц, по размеру равных одной миллионной доле исходных единиц. Обозначения: русское мк, международное m. Пример: 1 мксек (микросекунда) = 10-6сек.

Микромир. Атом

Морфологические и синтаксические свойства

Им. мѝкроми́р мѝкромиры́
Р. мѝкроми́ра мѝкромиро́в
Д. мѝкроми́ру мѝкромира́м
В. мѝкроми́р мѝкромиры́
Тв. мѝкроми́ром мѝкромира́ми
Пр. мѝкроми́ре мѝкромира́х

Существительное, неодушевлённое, мужской род, 2-е склонение (тип склонения 1c по классификации А. А. Зализняка).


СОВРЕМЕННЫЕ ПРОБЛЕМЫ ШКОЛЬНОГО ОБРАЗОВАНИЯ




МИКРОМИР ВОКРУГ НАС


Автор работы награжден дипломом победителя II степени

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

ВВЕДЕНИЕ

На уроках окружающего мира я узнал, что все тела, особенно живые состоят из клеток. И все наши органы тоже состоят из клеток, молекул, атомов. Чтобы я рос, клетки должны делиться. Учитель сказала, что у клетки есть ядро, оболочка и многое другое. Но увидеть это своими глазами мы не можем, так как клетки относятся к микромиру. Что бы увидеть клетку надо специальное оборудование, и самое простое из него – микроскоп.

И вот на день рождение я получаю микроскоп. Теперь я сам могу познакомиться с микромиром. Конечно, только с его малой частью.

Провести исследования различных объектов при помощи микроскопа .

Узнать как устроен микроскоп и как правильно с ним работать.

Познакомиться с особенностями работы с данным прибором в домашних условиях.

Представить собственные исследования объектов окружающего нас мира.

Сделать выводы о возможностях использования микроскопов в домашних условиях.

Гипотеза: можно предположить, что даже с помощью простого домашнего микроскопа возможно получить представление о микромире, узнать как устроена клетки из которых состоят все тела.

С ЧЕГО Я НАЧАЛ ИССЛЕДОВАНИЯ

Все мы знаем, что неизведанное, необычное с древних времён привлекало людей. Получив в подарок на мой день рождения микроскоп, я задумался, как появились микроскопы, для чего они нужны людям, как ими пользоваться и смогу ли я сам использовать в обычной жизни микроскоп?

По информации из Википедии я узнал, что Микроско́п (греч. μικρός — маленький и σκοπέω — смотрю) — прибор, предназначенный для получения увеличенных изображений, а также измерения объектов или деталей структуры, невидимых или плохо видимых невооружённым глазом. [4]

Оказывается, микроскопы с древних времен нашли широкое применение в разных областях, например, в криминалистике, палеонтологии, геологии, медицине. В последнее время всё чаще с их помощью проводят хирургические операции, изучают бактерии и вирусы, определяют возбудителей разных болезней. Приборы встречаются у офтальмологов, дерматологов, стоматологов, хирургов и других областях и в других научных сферах.

Стоит отметить, что история создания микроскопа имеет многовековой период. С того времени этот прибор очень сильно изменился. От простой трубки до высокоточного электронного устройства огромной мощности с большими увеличительными возможностями. Примерно с 1крат до 20.000.000, позволяющие разглядеть атомы и погрузиться в микромир. [3]

Например, микроскоп Titan 80-300 Cubed, созданный международной компанией FEI Company, имеет разрешение 0.5 ангстрема (мера длины) — это меньше размеров атома, который имеет размер 2 ангстрема. Это самый высокий результат исследований микрочастиц на уровне самых мелких структур, молекул ДНК (20 ангстрем) с самым высоким разрешением.

Рис.1. Микроскоп Titan 80-300 Cubed.

Увеличение в микроскопе зависит от количества линз, находящихся в окуляре и в среднем в обычных приборах, в зависимости от целей, может варьироваться от 20-ти кратного увеличения до 1500-3000 раз. В нашем исследовании использовался микроскоп с объективами от х80 и до х800 крат. [2]

В своем исследовании я использовал микроскоп МИКРОМЕД С11, с увеличением от х80 до х800 раз. Он небольшой по размеру, удобен в хранении и использовании в домашних условиях. [5]

Мой микроскоп оснащен встроенным осветителем, который работает от батареек. Это может позволить использовать его на уроках в школе. Так же конструкция осветителя микроскопа может работать от сети 220.

Рис.2. МИКРОМЕД С11.

Работа с микроскопом потребовала от меня большой концентрации внимания и аккуратности. При работе с микроскопом необходимо поставить его на ровную поверхность- установить окулярную трубу(в зависимости от увеличения)- подключить блок питания сначала к разъему на микроскопе- подключить к электросети.

Данный микроскоп имеет 2 вида подсветки:

1. Нижняя- для исследования образцов в верхних лучах света;

2. Верхняя- ручка- фонарик, для исследования в отраженных лучах.

ПРАКТИЧЕСКОЕ ИССЛЕДОВАНИЕ

Для изучения мной выбирались самые разные предметы и частицы.

Мной в объектив было рассмотрено на начальном этапе изучения: нитки, кусок ткани, частицы пыли в поисках живых организмов, листья разных комнатных растений, пищевых продуктов и другие объекты.

Кроме того для проведения исследований необходимы некоторые дополнительные приборы и вещества. Так в зависимости от вида исследования может пригодиться спирт, вода, йод и пищевой краситель для окрашиваний, чашка Петри (плоская баночка из стекла с крышкой), но для каждого исследования просто необходимы: предметное и покровное стекло, пинцет, пипетка, тонкая игла.

Каждое исследование требовало основательного и аккуратного подхода. Например, чтобы рассмотреть плесень, я вырастил её при определённой температуре и в определённой влажности. Чтобы рассмотреть инфузорию туфельку ее необходимо вырастить в определенной среде и поддерживать благоприятные для ее размножения условия, чтобы не погибли новые колонии. Даже для того чтобы рассмотреть лист комнатного растения, нужно очень аккуратно и осторожно снять тончайший слой.

При работе с микроскопом расположение его имеет очень важное значение. Я размещал прибор на столе при достаточно хорошем освещении. Для использования объекта исследования достаточно до 5мм материала или 1-2 капель жидкости. И только когда я всё подготовил, то смог насладиться красотой целого микрокосмоса, необъятного мира в глазок объектива. И главной задачей моего проекта стоит показать предметы моих исследований и то, какими способами они были выполнены.

Хотелось бы отметить, что все фотографии, представленные в работе, были выполнены через объектив фотокамеры на телефоне. Подкрашивание объектов не понадобилось, т.к. они имеют довольно четкие очертания и яркие цвета.

В рамках проекта будет освещена только малая часть тех открытий, которые были уже проведены в домашних условиях. Итак:

3.1. Фикус Бенджамина.

Рис. 3. Увеличение листа фикуса в х80 раз.

Для этого мне понадобился живой лист и выполнен тонкий срез ткани. Срезанная часть аккуратно пинцетом была расправлена на покровном стекле. При наведении объектива в увеличение в х80 раз было видно как клеточный сок движется и циркулирует между клеток. На рис.3 отчетливо видно клетки (островки) и клеточный сок (зеленые дорожки). Соковыделение прекратилось и застыло через 2-3 минуты после среза. Видны клетки и отчетливо тёмными пятнами можно увидеть клеточное ядро.

3.2.Чешуя фиолетового лука.

Рис. 4. Увеличение частицы чешуи в х80 раз.

Для этого мне понадобилось покровное стекло, капля воды из пипетки и небольшой срез сочной чешуи фиолетового лука, который мы аккуратно отделили от его кожицы. При увеличении в х800 раз было хорошо видно ядро клетки и ее оболочка.

3.3. Плесень лимона.

Для исследования плесени, нам понадобилось ее вырастить.

Рис. 5. Увеличение спор в жидкости в х80 раз.

3.4.Инфузория туфелька.

Для такого исследования необходимо было вырастить в домашних условиях живой организм, так как в естественной среде инфузория обитает в пресных водоемах, лужах и питается водорослями и бактериями.

Для создания необходимой среды, богатой бактериями и растительными организмами, нам понадобилась кружка, мелко порезанные очистки картофеля, примерно чайная ложка земли из горшка с комнатным растением и 100 мл воды комнатной температуры. Всё тщательно перемешано и выставлено на подоконник, закрытый от попадания прямых солнечных лучей. Спустя неделю, раствор приобрел специфический гнилостный запах, как в водоеме. Пипеткой образец жидкости был нанесен на покрывное стекло и помещено под объектив с увеличением х80 раз. (Рис.6).

Рис. 6. Инфузория туфелька при увеличении х80 раз

При 800-кратном увеличении (Рис.7) отчетливо видно количество и очертания живых инфузорий. При рассмотрении было видно, с какой скоростью они передвигались. Опыт был повторен в другой день, где скорость передвижений живых организмов отличалась, отчего был сделан вывод, что скорость передвижения и их жизнедеятельность зависит от температуры окружающей среды, так как в этот день за окном было значительно холоднее, чем в предыдущий день. На рисунке видно какую форму имеет инфузория и сложное строение внутри организма.

Рис. 7. Инфузория туфелька при увеличении х800 раз.

3.5. Пылевой клещ.

Иногда удивительные образцы окружают нас в повседневной жизни. Так случайно на стекле экрана планшета был обнаружен пылевой клещ.

Такое насекомое обитает в большинстве домов, даже если соблюдается стерильная чистота, насекомое питается микрочастицами человеческой кожи.

Это микроскопическое насекомое имеет размер примерно 0,5 мм и полупрозрачное тело. Найденный образец был сразу помещен на покрывное стекло под объектив микроскопа с увеличением в х200 раз. На рис.8 видно, что клещ относится к классу паукообразных и имеет 8 ног, покрытые чешуйками и имеющие волоски, на передних ногах видны щупальца. Туловище цельное, но имеет выраженную форму головы.

Рис. 8. Пылевой клещ при увеличении х200 раз.

ЗАКЛЮЧЕНИЕ

Как уже было сказано выше, под объективом микроскопа было исследовано множество образцов. Следует отметить, что кроме представленных выше под объектив моего микроскопа попали различные образцы простых предметов, окружающих нас в быту. Мною были исследованы самые обычные вещи, которые у каждого из нас в доме: ткань цветная, плотная, с тонкими и сложными переплетениями, полиэтилен тонкий, толстый и плотный. Еда, самая разная: кожицы фруктов и овощей, хлеб, дрожжи с ее спорами, очень похожие на споры плесени. Текстуры и поверхности предметов и обломков кристаллы сахара, соли и песка.

С появлением микроскопа для меня открылся невиданный и сложный мир. Я увидел и узнал, что такое клетка. Теперь я представляю, из чего состоят тела. В то же время, я специально не ставил задачу рассказать подробно о каждом исследуемом объекте, его строении и составе, чтобы не углубляться в научные и подробные описания. Мне еще это предстоит изучить и разобраться на уроках биологии, химии и физики. Я лишь описал, то как я проводил опыты и показал как выглядит тот или иной образец в объектив микроскопа, как сложен, казалось бы, простой предмет, но в объективе это целый новый мир в клетке, где есть своя форма, структура, состав.

Это лишь начало моих исследований, которые открывают новые знания и желание изучать, исследовать, наблюдать. Эти навыки помогут мне в дальнейшем на уроках биологии, химии и физики, а также в других областях, ведь микромиру и нанооткрытиям, уделяется сейчас большое внимание. Подобным исследованиям всегда будет место, для микроскопа всегда найдутся объекты для рассмотрения и изучения.

Проведенные мною исследования позволили мне подтвердить мою гипотезу: я узнал, что с помощью микроскопа можно исследовать простые предметы окружающего мира, разглядеть отдельные клетки, ядра клеток представленных образцов.

По результатам работы можно сделать следующие выводы:

Я узнал, как устроен мой микроскоп и как с ним правильно работать.

Микроскоп полезен в домашних условиях для исследования различных объектов, проведения опытов и экспериментов.

В ходе работы над проектом поставленные задачи были решены, цель достигнута.

СПИСОК ЛИТЕРАТУРЫ

Читайте также: