Криптографические средства защиты информации доклад

Обновлено: 02.07.2024

Криптографические методы защиты информации – это мощное оружие в борьбе за информационную безопасность.

Криптография (от древне-греч. κρυπτος – скрытый и γραϕω – пишу) – наука о методах обеспечения конфиденциальности и аутентичности информации.

Криптография представляет собой совокупность методов преобразования данных, направленных на то, чтобы сделать эти данные бесполезными для злоумышленника. Такие преобразования позволяют решить два главных вопроса, касающихся безопасности информации:

  • защиту конфиденциальности;
  • защиту целостности.

Проблемы защиты конфиденциальности и целостности информации тесно связаны между собой, поэтому методы решения одной из них часто применимы для решения другой.

Известны различные подходы к классификации методов криптографического преобразования информации. По виду воздействия на исходную информацию методы криптографического преобразования информации могут быть разделены на четыре группы:

Классификация методов криптографического преобразования информации

Процесс шифрования заключается в проведении обратимых математических, логических, комбинаторных и других преобразований исходной информации, в результате которых зашифрованная информация представляет собой хаотический набор букв, цифр, других символов и двоичных кодов.

Для шифрования информации используются алгоритм преобразования и ключ. Как правило, алгоритм для определенного метода шифрования является неизменным. Исходными данными для алгоритма шифрования служит информация, подлежащая зашифрованию, и ключ шифрования. Ключ содержит управляющую информацию, которая определяет выбор преобразования на определенных шагах алгоритма и величины операндов, используемых при реализации алгоритма шифрования. Операнд – это константа, переменная, функция, выражение и другой объект языка программирования, над которым производятся операции.

В отличие от других методов криптографического преобразования информации, методы стеганографии позволяют скрыть не только смысл хранящейся или передаваемой информации, но и сам факт хранения или передачи закрытой информации. В основе всех методов стеганографии лежит маскирование закрытой информации среди открытых файлов, т.е. скрываются секретные данные, при этом создаются реалистичные данные, которые невозможно отличить от настоящих. Обработка мультимедийных файлов в информационных системах открыла практически неограниченные возможности перед стеганографией.

Скрытый файл также может быть зашифрован. Если кто-то случайно обнаружит скрытый файл, то зашифрованная информация будет воспринята как сбой в работе системы. Комплексное использование стеганографии и шифрования многократно повышает сложность решения задачи обнаружения и раскрытия конфиденциальной информации.

Сжатие информации может быть отнесено к методам криптографического преобразования информации с определенными оговорками. Целью сжатия является сокращение объема информации. В то же время сжатая информация не может быть прочитана или использована без обратного преобразования. Учитывая доступность средств сжатия и обратного преобразования, эти методы нельзя рассматривать как надежные средства криптографического преобразования информации. Даже если держать в секрете алгоритмы, то они могут быть сравнительно легко раскрыты статистическими методами обработки. Поэтому сжатые файлы конфиденциальной информации подвергаются последующему шифрованию. Для сокращения времени передачи данных целесообразно совмещать процесс сжатия и шифрования информации.

Основным видом криптографического преобразования информации в компьютерных сетях является шифрование . Под шифрованием понимается процесс преобразования открытой информации в зашифрованную информацию (шифртекст) или процесс обратного преобразования зашифрованной информации в открытую. Процесс преобразования открытой информации в закрытую получил название зашифрование, а процесс преобразования закрытой информации в открытую – расшифрование.

За многовековую историю использования шифрования информации человечеством изобретено множество методов шифрования или шифров. Методом шифрования (шифром) называется совокупность обратимых преобразований открытой информации в закрытую информацию в соответствии с алгоритмом шифрования. Большинство методов шифрования не выдержали проверку временем, а некоторые используются и до сих пор. Появление компьютеров и компьютерных сетей инициировало процесс разработки новых шифров, учитывающих возможности использования компьютерной техники как для зашифрования/расшифрования информации, так и для атак на шифр. Атака на шифр (криптоанализ, криптоатака) – это процесс расшифрования закрытой информации без знания ключа и, возможно, при отсутствии сведений об алгоритме шифрования.

Современные методы шифрования должны отвечать следующим требованиям:

  • стойкость шифра противостоять криптоанализу (криптостойкость) должна быть такой, чтобы вскрытие его могло быть осуществлено только путем решения задачи полного перебора ключей;
  • криптостойкость обеспечивается не секретностью алгоритма шифрования, а секретностью ключа;
  • шифртекст не должен существенно превосходить по объему исходную информацию;
  • ошибки, возникающие при шифровании, не должны приводить к искажениям и потерям информации;
  • время шифрования не должно быть большим;
  • стоимость шифрования должна быть согласована со стоимостью закрываемой информации.

Криптостойкость шифра является его основным показателем эффективности. Она измеряется временем или стоимостью средств, необходимых криптоаналитику для получения исходной информации по шифртексту, при условии, что ему неизвестен ключ.

Сохранить в секрете широко используемый алгоритм шифрования практически невозможно. Поэтому алгоритм не должен иметь скрытых слабых мест, которыми могли бы воспользоваться криптоаналитики. Если это условие выполняется, то криптостойкость шифра определяется длиной ключа, так как единственный путь вскрытия зашифрованной информации – перебор комбинаций ключа и выполнение алгоритма расшифрования. Таким образом, время и средства, затрачиваемые на криптоанализ, зависят от длины ключа и сложности алгоритма шифрования.

Работа простой криптосистемы проиллюстрирована на рис. 2.2.

Обобщённая схема криптографической системы

Преобразование Ек выбирается из семейства криптографических преобразований, называемых криптоалгоритмами. Параметр, с помощью которого выбирается отдельное преобразование, называется криптографическим ключом К.

Криптосистема имеет разные варианты реализации: набор инструкций, аппаратные средства, комплекс программ, которые позволяют зашифровать открытый текст и расшифровать шифртекст различными способами, один из которых выбирается с помощью конкретного ключа К.

Преобразование шифрования может быть симметричным и асимметричным относительно преобразования расшифрования. Это важное свойство определяет два класса криптосистем:

  • симметричные (одноключевые) криптосистемы;
  • асимметричные (двухключевые) криптосистемы (с открытым ключом).

Симметричное шифрование

Симметричное шифрование, которое часто называют шифрованием с помощью секретных ключей, в основном используется для обеспечения конфиденциальности данных. Для того чтобы обеспечить конфиденциальность данных, пользователи должны совместно выбрать единый математический алгоритм, который будет использоваться для шифрования и расшифровки данных. Кроме того, им нужно выбрать общий (секретный) ключ, который будет использоваться с принятым ими алгоритмом шифрования/дешифрования, т.е. один и тот же ключ используется и для зашифрования, и для расшифрования (слово "симметричный" означает одинаковый для обеих сторон).

Пример симметричного шифрования показан на рис. 2.2.

  • электронной кодовой книги (Electronic Code Book, ECB);
  • цепочки зашифрованных блоков (Cipher Block Changing, CBC);
  • x-битовой зашифрованной обратной связи (Cipher FeedBack, CFB-x);
  • выходной обратной связи (Output FeedBack, OFB).

Triple DES (3DES) – симметричный блочный шифр, созданный на основе алгоритма DES, с целью устранения главного недостатка последнего – малой длины ключа (56 бит), который может быть взломан методом полного перебора ключа. Скорость работы 3DES в 3 раза ниже, чем у DES, но криптостойкость намного выше. Время, требуемое для криптоанализа 3DES, может быть намного больше, чем время, нужное для вскрытия DES.

Шифрование с помощью секретного ключа часто используется для поддержки конфиденциальности данных и очень эффективно реализуется с помощью неизменяемых "вшитых" программ (firmware). Этот метод можно использовать для аутентификации и поддержания целостности данных.

Гост

ГОСТ

Криптографическая защита информации – это механизм защиты посредством шифрования данных для обеспечения информационной безопасности общества.

Криптографические методы защиты информации активно используются в современной жизни для хранения, обработки и передачи информации по сетям связи и на различных носителях.

Сущность и цели криптографической защиты информации

Сегодня самым надежным способом шифрования при передаче информационных данных на большие расстояния является именно криптографическая защита информации.

Криптография – это наука, изучающая и описывающая модели информационной безопасности (далее – ИБ) данных. Она позволяет разрешить многие проблемы, что присущи информационной безопасности сети: конфиденциальность, аутентификация, контроль и целостность взаимодействующих участников.

Шифрование – это преобразование информационных данных в форму, которая будет не читабельной для программных комплексов и человека без ключа шифрования-расшифровки. Благодаря криптографическим методам защиты информации обеспечиваются средства информационной безопасности, поэтому они являются основной частью концепции ИБ.

Ключевой целью криптографической защиты информации является обеспечение конфиденциальности и защиты информационных данных компьютерных сетей в процессе передачи ее по сети между пользователями системы.

Защита конфиденциальной информации, которая основана на криптографической защите, зашифровывает информационные данные посредством обратимых преобразований, каждое из которых описывается ключом и порядком, что определяет очередность их применения.

Готовые работы на аналогичную тему

Важным компонентом криптографической защиты информации является ключ, отвечающий за выбор преобразования и порядок его реализации.

Ключ – это определенная последовательность символов, которая настраивает шифрующий и дешифрующий алгоритм системы криптозащиты информации. Каждое преобразование определяется ключом, задающим криптографический алгоритм, который обеспечивает безопасность информационной системы и информации в целом.

Каждый алгоритм криптозащиты информации работает в разных режимах, которые обладают, как рядом преимуществ, так и рядом недостатков, что влияют на надежность информационной безопасности государства и средства ИБ.

Средства и методы криптографической защиты информации

К основным средствам криптозащиты информации можно отнести программные, аппаратные и программно-аппаратные средства, которые реализуют криптографические алгоритмы информации с целью:

  • защиты информационных данных при их обработке, использовании и передаче;
  • обеспечения целостности и достоверности обеспечения информации при ее хранении, обработке и передаче (в том числе с применением алгоритмов цифровой подписи);
  • выработки информации, которая используется для аутентификации и идентификации субъектов, пользователей и устройств;
  • выработки информации, которая используется для защиты аутентифицирующих элементов при их хранении, выработке, обработке и передаче.

В настоящее время криптографические методы защиты информации для обеспечения надежной аутентификации сторон информационного обмена являются базовыми. Они предусматривают шифрование и кодирование информации.

Различают два основных метода криптографической защиты информации:

  • симметричный, в котором один и тот же ключ, что хранится в секрете, применяется и для шифровки, и для расшифровки данных;
  • ассиметричный.

В ассиметричных методах криптографической защиты информации используются два ключа:

  1. Несекретный, который может публиковаться вместе с другими сведениями о пользователе, что являются открытыми. Этот ключ применяется для шифрования.
  2. Секретный, который известен только получателю, используется для расшифровки.

Из ассиметричных наиболее известным методом криптографической защиты информации является метод RSA, который основан на операциях с большими (100-значными) простыми числами, а также их произведениями.

Благодаря применению криптографических методов можно надежно контролировать целостность отдельных порций информационных данных и их наборов, гарантировать невозможность отказаться от совершенных действий, а также определять подлинность источников данных.

Основу криптографического контроля целостности составляют два понятия:

Хэш-функция – это одностороння функция или преобразование данных, которое сложно обратить, реализуемое средствами симметричного шифрования посредством связывания блоков. Результат шифрования последнего блока, который зависит от всех предыдущих, и служит результатом хэш-функции.

Для того чтобы защитить коммерческую тайну на отечественном и международном рынке, используются комплекты профессиональной аппаратуры шифрования и технические устройства криптозащиты телефонных и радиопереговоров, а также деловой переписки.

Криптографическая защита информации в РФ решает вопрос целостности посредством добавления определенной контрольной суммы или проверочной комбинации для того, чтобы вычислить целостность данных. Модель информационной безопасности является криптографической, то есть она зависит от ключа. По оценкам информационной безопасности, которая основана на криптографии, зависимость вероятности прочтения данных от секретного ключа является самым надежным инструментом и даже используется в системах государственной информационной безопасности.


СОВРЕМЕННЫЕ ПРОБЛЕМЫ ШКОЛЬНОГО ОБРАЗОВАНИЯ




ИСПОЛЬЗОВАНИЕ КРИПТОГРАФИИ ДЛЯ ЗАЩИТЫ ИНФОРМАЦИИ


Автор работы награжден дипломом победителя III степени

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Проблема защиты информации путем ее преобразования, исключающего ее прочтение посторонним лицом, волновала человеческий ум с давних времен. История криптографии — ровесница истории человеческого языка. Более того, первоначально письменность сама по себе была криптографической системой, так как в древних обществах ею владели только избранные. Священные книги Древнего Египта, Древней Индии и других народов тому являются примером.

Криптографические методы защиты информации — это специальные методы шифрования, кодирования или иного преобразования информации, в результате которого ее содержание становится недоступным для посторонних лиц без предъявления ключа криптограммы и обратного преобразования. Криптографический метод защиты, безусловно, самый надежный метод защиты, так как охраняется непосредственно сама информация, а не доступ к ней (например, зашифрованный файл нельзя прочесть даже в случае кражи носителя). Данный метод защиты информации реализуется в виде программ или пакетов программ.

Актуальность темы очевидна, т.к. информация в современном обществе – одна из самых ценных вещей в жизни, требующая защиты от несанкционированного проникновения лиц, не имеющих к ней доступа.

Объектом изучения в проектной работе является криптография.

Предметом изученияявляются криптографические методы защиты информации.

Задачи исследования:

- изучить основные задачи криптографии;

- изучить способы защиты информации с помощью криптографии.

1. Криптография, её история и основные задачи

1.1 Криптография

Криптография — наука о методах обеспечения конфиденциальности (невозможности прочтения информации посторонними лицами), целостности данных (невозможности незаметного изменения информации), аутентификации (проверки подлинности авторства или иных свойств объекта), а также невозможности отказа от авторства.

Изначально криптография изучала методы шифрования информации — обратимого преобразования открытого (исходного) текста на основе секретного алгоритма или ключа в шифрованный текст (шифротекст). Традиционная криптография образует раздел симметричных криптосистем, в которых зашифровывание и расшифровывание проводится с использованием одного и того же секретного ключа. Помимо этого раздела современная криптография включает в себя асимметричные криптосистемы, системы электронной цифровой подписи (ЭЦП), хеш-функции, управление ключами, получение скрытой информации, квантовую криптографию.

Рис.1. Диск и додекаэдр Энея. Гибрид шифровальной кости, диска и линейки Энея.[ 2]

1.2. История криптографии

История криптографии насчитывает около 4 тысяч лет. В качестве основного критерия периодизации криптографии возможно использовать технологические характеристики используемых методов шифрования.

Первый период (приблизительно с 3-го тысячелетия до н. э.) характеризуется господством моноалфавитных шифров (основной принцип — замена алфавита исходного текста другим алфавитом через замену букв другими буквами или символами). Второй период (хронологические рамки — с IX века на Ближнем Востоке (Ал-Кинди) и с XV века в Европе (Леон Баттиста Альберти) — до начала XX века) ознаменовался введением в обиход полиалфавитных шифров. Третий период (с начала и до середины XX века) характеризуется внедрением электромеханических устройств в работу шифровальщиков. При этом продолжалось использование полиалфавитных шифров.

Современный период развития криптографии (с конца 1970-х годов по настоящее время) отличается зарождением и развитием нового направления — криптография с открытым ключом. Её появление знаменуется не только новыми техническими возможностями, но и сравнительно широким распространением криптографии для использования частными лицами (в предыдущие эпохи использование криптографии было исключительной прерогативой государства). Правовое регулирование использования криптографии частными лицами в разных странах сильно различается — от разрешения до полного запрета.

Современная криптография образует отдельное научное направление на стыке математики и информатики — работы в этой области публикуются в научных журналах, организуются регулярные конференции. Практическое применение криптографии стало неотъемлемой частью жизни современного общества[3].

1.3. Основные задачи криптографии:

Обеспечение конфиденциальности данных (предотвращение несанкционированного доступа к данным). Это одна из основных задач криптографии, для ее решения применяется шифрование данных, т.е. такое их преобразование, при котором прочитать их могут только законные пользователи, обладающие соответствующим ключом

Обеспечение целостности данных— гарантии того, что при передаче или хранении данные не были модифицированы пользователем, не имеющим на это права. Под модификацией понимается вставка, удаление или подмена информации, а также повторная пересылка перехваченного ранее текста. name= ‘more’>

Обеспечение невозможности отказа от авторства - предотвращение возможности отказа субъектов от совершенных ими действий (обычно — невозможности отказа от подписи под документом). Эта задача неотделима от двойственной — обеспечение невозможности приписывания авторства. Наиболее яркий пример ситуации, в которой стоит такая задача — подписание договора двумя или большим количеством лиц, не доверяющих друг другу. В такой ситуации все подписывающие стороны должны быть уверены в том, что в будущем, во-первых, ни один из подписавших не сможет отказаться от своей подписи и, во-вторых, никто не сможет модифицировать, подменить или создать новый документ (договор) и утверждать, что именно этот документ был подписан. Основным способом решения данной проблемы является использование цифровой подписи. [4]

2. Современная криптография и криптосистемы

2.1. Симметричные криптосистемы. Современная криптография включает в себя четыре крупных раздела.

В симметричных криптосистемах и для шифрования, и для дешифрования используется один и тот же ключ. (Шифрование — преобразовательный процесс: исходный текст, который носит также название открытого текста, заменяется шифрованным текстом, дешифрование — обратный шифрованию процесс.На основе ключа шифрованный текст преобразуется в исходный);

Электроная подпись (ЭП) - это программно-криптографическое средство, которое обеспечивает:

проверку целостности документов;

установление лица, отправившего документ

Электронная подпись используется физическими и юридическими лицами в качестве аналога собственноручной подписи для придания электронному документу юридической силы, равной юридической силе документа на бумажном носителе, подписанного собственноручной подписью правомочного лица и скрепленного печатью.

Электронный документ - это любой документ, созданный при помощи компьютерных технологий и хранящийся на носителях информации, обрабатываемых при помощи компьютерной техники, будь то письмо, контракт или финансовый документ, схема, чертеж, рисунок или фотография.

Преимущества использования ЭП

Использование ЭП позволяет:

значительно сократить время, затрачиваемое на оформление сделки и обмен документацией;

усовершенствовать и удешевить процедуру подготовки, доставки, учета и хранения документов;

гарантировать достоверность документации;

минимизировать риск финансовых потерь за счет повышения конфиденциальности информационного обмена;

построить корпоративную систему обмена документами.

Подделать ЭП невозможно - это требует огромного количества вычислений, которые не могут быть реализованы при современном уровне математики и вычислительной техники за приемлемое время, то есть пока информация, содержащаяся в подписанном документе, сохраняет актуальность. Дополнительная защита от подделки обеспечивается сертификацией Удостоверяющим центром открытого ключа подписи.

3. Управление криптографическими ключами

Криптографические ключи различаются согласно алгоритмам, в которых они используются.

- Секретные (Симметричные) ключи — ключи, используемые в симметричных алгоритмах (шифрование, выработка кодов аутентичности). Главное свойство симметричных ключей: для выполнения как прямого, так и обратного криптографического преобразования необходимо использовать один и тот же ключ (либо же ключ для обратного преобразования легко вычисляется из ключа для прямого преобразования, и наоборот).

3.2. Симметричные криптографические алгоритмы.

Классическими примерами таких алгоритмов являются симметричные криптографические алгоритмы, перечисленные ниже:

Одиночная перестановка по ключу

Простая перестановка

Одиночная перестановка по ключу

Более практический метод шифрования, называемый одиночной перестановкой по ключу, очень похож на предыдущий. Он отличается лишь тем, что колонки таблицы переставляются по ключевому слову, фразе или набору чисел длиной в строку таблицы.

Двойная перестановка

Параметры алгоритмов: Существует множество (не менее двух десятков) алгоритмов симметричных шифров, существенными параметрами которых являются:

длина обрабатываемого блока

сложность аппаратной/программной реализации

4. Сравнение с асимметричными криптосистемами

4.1. Достоинства асимметричных криптосистем

скорость шифрования и дешифрования;

простота реализации (за счёт более простых операций);

уменьшение требуемой длины ключа для сопоставимой стойкости

изученность криптосистемы (за счёт большего возраста)

4.2. Основные недостатки

сложность управления ключами в большой сети

сложность обмена ключами. Для применения необходимо решить проблему надёжной передачи ключей каждому абоненту, так как нужен секретный канал для передачи каждого ключа обеим сторонам

Для компенсации недостатков симметричного шифрования в настоящее время широко применяется комбинированная (гибридная) криптографическая схема, где с помощью асимметричного шифрования передаётся сеансовый ключ, используемый сторонами для обмена данными с помощью симметричного шифрования.

Важным недостатком симметричных шифров является невозможность их использования в механизмах формирования электронной цифровой подписи и сертификатов, так как ключ известен каждой стороне. [6]

Схема 1. Симметричное шифрование

Криптосистемы с открытым ключом

Преимущества

Преимущество асимметричных шифров перед симметричными шифрами состоит в отсутствии необходимости предварительной передачи секретного ключа по надёжному каналу.

В симметричной криптографии ключ держится в секрете для обеих сторон, а в асимметричной криптосистеме только один секретный.

При симметричном шифровании необходимо обновлять ключ после каждого факта передачи, тогда как в асимметричных криптосистемах пару (E,D) можно не менять значительное время.

В больших сетях число ключей в асимметричной криптосистеме значительно меньше, чем в симметричной.

Несимметричные алгоритмы используют более длинные ключи, чем симметричные. Ниже приведена таблица, сопоставляющая длину ключа симметричного алгоритма с длиной ключа несимметричного алгоритма с аналогичной криптостойкостью.

Что такое криптографические методы защиты информации

Криптография — это наука о способах конфиденциальности и подлинности информации.

Криптографические методы преобразования данных являются самыми надежными в сфере информационной безопасности.

Криптография составляет целую систему методов, которые направлены на видоизменение персональных данных, чтобы сделать их бесполезными для злоумышленников.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Способы криптографического шифрования позволяют решить две ключевые задачи:

  • обеспечение секретности;
  • защита целостности информации.

Виды криптографической защиты информации

Классификация криптографических методов преобразования информации по типу воздействия на исходные данные включает следующие виды:

  • шифрование;
  • стенография;
  • кодирование;
  • сжатие.

Шифрование

Шифрование предполагает видоизменение исходника посредством логических, математических, комбинаторных и других операций. В итоге таких преобразований первоначальные данные приобретают вид хаотически расположенных символов (цифр, букв и т.д.) и кодов двоичной системы.

Инструментами создания шифра служат алгоритм преобразования и ключ.

В определенных методах шифрования применяется постоянная преобразовательная последовательность. Ключ включает управляющие данные, определяющие выбор видоизменения на конкретных пунктах алгоритма и размер используемых в ходе шифрования операндов.

Шифрование является основным криптографическим способом видоизменения данных в компьютерах. Чтобы обеспечить эффективную борьбу против криптоатак (атак на шифр, криптоанализа), методы шифрования должны отвечать ряду требований:

  1. Криптостойкость (стойкость перед криптоанализом), позволяющая вскрыть шифр лишь через полный перебор ключей.
  2. Стойкость шифра благодаря конфиденциальности ключа, а не алгоритма преобразования.
  3. Соразмерность объемов исходного текста и шифротекста.
  4. Исключение искажений и потерь данных, последовавших за ошибками в ходе шифрования.
  5. Небольшое время шифрования.
  6. Согласованность стоимости шифрования и стоимости исходной информации.

Эффективность шифрования определяется криптостойкостью шифра. Единицей измерения этого показателя могут быть: время; стоимость инструментов, необходимых криптоаналитику на расшифровку без знания ключа.

На схеме изображен механизм работы простейшей криптосистемы:

Шифрование

Ек — один из алгоритмов преобразования, К — это критпографический ключ, который определяет выбор алгоритма, подходящего для конкретного шифрования.

Выделяют два вида шифрования:

  1. Симметричное: с использованием одного криптографического ключа.
  2. Асимметричное: с открытым ключом.

Стенография

Этот метод, единственный среди криптографических способов, позволяет скрыть не только информацию, но и сам факт ее хранения и передачи. В основе стенографии лежит маскирование секретных данных среди общедоступных файлов. Иными словами, закрытая информация скрывается, а вместо нее создаются дубликаты.

Кодирование

Преобразование данных по этой методике происходит по принципу замещения слов и предложений исходника кодами. Закодированные данные могут выглядеть как буквенные, цифровые или буквенно-цифровые комбинации. Для кодирования и раскодирования применяют специальные словари или таблицы.

Рассматриваемый метод удобно использовать в системах с небольшим набором смысловых конструкций. Недостаток кодирования заключается в том, что необходимо хранить и распространять кодировочные таблица, а также достаточно часто их менять во избежание нежелательного рассекречивания информации.

Сжатие

Данный способ представляет собой сокращение объема исходной информации. Понятие сжатия относят к криптографическим с некоторыми оговорками. С одной стороны, сжатые данные требуют обратного преобразования для возможности их прочтения. С другой стороны, средства сжатия и обратного преобразования общедоступны, поэтому этот способ не является надежным в части защиты информации.

Используемые методы технологии

На сегодняшний день широкое применение получили следующие алгоритмы шифрования: Data Encryption Standard (DES), 3DES и International Data Encryption Algorithm (IDEA).

  • электронная кодовая книга (ECB);
  • цепочка из зашифрованных блоков (CBC);
  • x-битовая зашифрованная обратная связь (CFB-x);
  • выходная обратная связь (OFB).

Алгоритм 3DES создан на базе DES, чтобы устранить основной недостаток последнего — возможность взлома ключа посредством перебора из-за его малой длины в 54 бит. Несмотря на то, что 3DES в три раза менее производителен, чем его предшественник, криптостойкость первого значительно выше DES.

Сертифицированные криптографические средства защиты информации в России

Сертификацией средств защиты информации занимается Федеральная служба безопасности России. Криптографические СЗИ определены в следующие классы:

Класс КС1

Средства этого класса могут оказывать сопротивление внешним атакам, которые реализуются методами, неизвестными криптоаналитикам. Данные о системах, использующих средства класса КС1 находятся в общем доступе.

Класс КС2

К рассматриваемой категории относятся криптографические инструменты защиты данных, способные препятствовать атакам за пределами зоны контроля, блокируемым СЗИ класса КС1. При этом атакующие могли получить информацию о физических мерах безопасности данных и пр.

Класс КС3

Средства этой категории могут противодействовать атакам, имея физический доступ к компьютерным системам с установленными криптографическими методами защиты.

КВ1 и КВ2

Средства группы КВ обладают свойством сопротивления атакам, созданным криптоаналитиками и прошедшим лабораторные испытания.

Класс КА

Инструменты данного класса способны защитить от атак, которые разрабатывались с применением знаний о недокументированных возможностях вычислительных систем и конструкторской документацией, а также с доступом к любым компонентам СЗИ.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Министерство образования и молодежной политики Ставропольского края

ГБПОУ Минераловодский региональный многопрофильный колледж

Криптография – наиболее надежный способ защиты информации

Выполнил: Обучающийся 306 группы Василенко Алексей

Минеральные воды, 2016 г.

Введение: Что такое криптография и где она используется

История возникновения криптографии

Методы дешифровки данных

Введение: Что такое криптография и где она используется

Проблема защиты информации путем ее преобразования, исключающего ее прочтение посторонним лицом волновала человеческий ум с давних времен. Криптографические методы защиты информации в автоматизированных системах могут применяться как для защиты информации, обрабатываемой в ЭВМ или хранящейся в различного типа ЗУ, так и для закрытия информации, передаваемой между различными элементами системы по линиям связи.

Криптографическое преобразование как метод предупреждения несанкционированного доступа к информации имеет многовековую историю. В настоящее время разработано большое количество различных методов шифрования, созданы теоретические и практические основы их применения. Подавляющие число этих методов может быть успешно использовано и для закрытия информации.

Почему проблема использования криптографических методов в информационных системах (ИС) стала в настоящий момент особо актуальна?
С одной стороны, расширилось использование компьютерных сетей, в частности глобальной сети Интернет, по которым передаются большие объемы информации государственного, военного, коммерческого и частного характера, не допускающего возможность доступа к ней посторонних лиц.
С другой стороны, появление новых мощных компьютеров, технологий сетевых и нейронных вычислений сделало возможным дискредитацию криптографических систем еще недавно считавшихся практически не раскрываемыми.
Криптография занимается поиском и исследованием математических методов преобразования информации.

Криптогра́фия — наука о методах обеспечения конфиденциальности (невозможности прочтения информации посторонним), целостности данных (невозможности незаметного изменения информации), аутентификации (проверки подлинности авторства или иных свойств объекта), а также невозможности отказа от авторства.

Изначально криптография изучала методы шифрования информации — обратимого преобразования открытого (исходного) текста на основе секретного алгоритма или ключа в шифрованный текст (шифротекст). Традиционная криптография образует раздел симметричных криптосистем, в которых зашифрование и расшифрование проводится с использованием одного и того же секретного ключа. Помимо этого раздела современная криптография включает в себя асимметричные криптосистемы, системы электронной цифровой подписи (ЭЦП), хеш-функции, управление ключами, получение скрытой информации, квантовую криптографию.

История возникновения криптографии

Большинство современных исследователей связывают появление криптографии с появлением письменности, указывая, что эти процессы произошли почти одновременно.

Всю сложность данного вопроса иллюстрирует один пример: найдено множество глиняных табличек с клинописными знаками, записанными в несколько слоев (первоначальная запись замазывалась глиной и поверх нее наносилась новая).

Значительным шагом вперед, по сравнению с предыдущими системами шифрования представлял шифр, предложенный Полибием (ок. II в. до н.э.). Механизм его состоял в следующем: в квадрат определенных размеров (в соответствии с количеством букв алфавита – для латинского 5Х5, для русского 5Х6, при этом некоторые буквы редуцируются) вписываются буквы алфавита. Каждая клетка квадрата имеет двузначные координаты, на которые и заменяется при шифровании. Первоначально буквы записывались в естественном порядке, что значительно снижало стойкость шифра. Позднее буквы стали располагать хаотично, но это требовало наличие записанного ключа, что также было небезопасно. Выход был найден в применении т.н. ключевого слова. Берется какое-либо слово, из него убираются повторяющиеся буквы, а оставшиеся записываются в первые клетки квадрата. Пустые клетки заполняются буквами алфавита в естественном порядке. Полибианский квадрат стал одной из наиболее широко распространенных криптографических систем, когда-либо употреблявшихся. Этому способствовала его достаточно высокая стойкость (во всяком случае до автоматизации дешифрующих систем) – так квадрат 5Х5 для латинского алфавита содержит 15511210043331000000000000 (расчет весьма приблизителен) возможных положений, что практически исключает его дешифрование без знания ключа.

Эти криптографические системы активно применялись в Древней Греции и Риме и надолго определили характер криптографии. В условиях необходимости ручного расшифрования, полибианский квадрат был практически неуязвимым шифром, а сциталла и диск Энея, достаточно простые, тем не менее, позволяли оперативно шифровать и расшифровывать информацию, что делало их применимыми, скажем в полевых условиях для оперативной передачи приказов.

Виды криптографии

Читайте также: