Кодирование звуковой и видеоинформации доклад

Обновлено: 06.07.2024

Глава 2. Что означает дружественный (по отношению к пользователю) интерфейс?

Список использованной литературы

Глава 1. Кодирование звуковой и видеоинформации

Для представления информации могут использоваться разные коды и, соответственно, надо знать определенные правила — законы записи этих кодов, т.е. уметь кодировать [4].

Код- набор условных обозначений для представления информации.

Кодирование- процесс представления информации в виде кода.

Всем известно, что для общения друг с другом мы используем код — русский язык. При разговоре этот код передается звуками, при письме — буквами. Водитель передает сигнал с помощью гудка или миганием фар. Вы встречаетесь с кодированием информации при переходе дороги в виде сигналов светофора. Таким образом, кодирование сводиться к использованию совокупности символов по строго определенным правилам [4].

Нельзя не сказать о том, что одно из основных достоинств компьютера связано с тем, что это удивительно универсальная машина. Каждый, кто хоть когда-нибудь с ним сталкивался, знает, что занятие арифметическими подсчетами составляет совсем не главный метод использования компьютера. Компьютеры прекрасно воспроизводят музыку и видеофильмы, с их помощью можно организовывать речевые и видеоконференции в Интернет, создавать и обрабатывать графические изображения, а возможность использования компьютера в сфере компьютерных игр на первый взгляд выглядит совершенно несовместимой с образом суперарифмометра, перемалывающего сотни миллионов цифр в секунду[1, с.37].

Интересен тот факт, что с начала 90-х годов персональные компьютеры получили возможность работать со звуковой информацией. Каждый компьютер, имеющий звуковую плату, микрофон и колонки, может записывать, сохранять и воспроизводить звуковую информацию [3, с.99].

Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой. Чем больше амплитуда, тем он громче для человека, чем больше частота сигнала, тем выше тон. Программное обеспечение компьютера в настоящее время позволяет непрерывный звуковой сигнал преобразовывать в последовательность электрических импульсов, которые можно представить в двоичной форме, а именно по такой схеме [4]:

Процесс преобразования звуковых волн в двоичный код в памяти компьютера:

Процесс воспроизведения звуковой информации, сохраненной в памяти ЭВМ:

Описанный способ кодирования звуковой информации достаточно универсален, он позволяет представить любой звук и преобразовывать его самыми разными способами. Но бывают случаи, когда выгодней действовать по-иному.

Издавна используется довольно компактный способ представления музыки – нотная запись. В ней специальными символами указывается, какой высоты звук, на каком инструменте и как сыграть. Фактически, ее можно считать алгоритмом для музыканта, записанным на особом формальном языке. В 1983 ведущие производители компьютеров и музыкальных синтезаторов разработали стандарт, определивший такую систему кодов. Он получил название MIDI [4].

Конечно, такая система кодирования позволяет записать далеко не всякий звук, она годится только для инструментальной музыки. Но есть у нее и неоспоримые преимущества: чрезвычайно компактная запись, естественность для музыканта (практически любой MIDI-редактор позволяет работать с музыкой в виде обычных нот), легкость замены инструментов, изменения темпа и тональности мелодии.

Есть и другие, чисто компьютерные, форматы записи музыки. Среди них – формат MP3, позволяющий с очень большим качеством и степенью сжатия кодировать музыку, при этом вместо 18–20 музыкальных композиций на стандартном компакт-диске (CDROM) помещается около 200. Одна песня занимает, примерно, 3,5 Mбайт, что позволяет пользователям сети Интернет легко обмениваться музыкальными композициями [5].

Особое внимание также уделяют кодированию видеоинформации. Чтобы хранить и обрабатывать видео на компьютере, необходимо закодировать его особым образом [1, с.43].

Изображение в видео состоит из отдельных кадров, которые меняются с определенной частотой. Кадр кодируется как обычное растровое изображение, то есть разбивается на множество пикселей. Закодировав отдельные кадры и собрав их вместе, мы сможем описать все видео.

Отметим то, что видеоданные характеризуются частотой кадров и экранным разрешением. Скорость воспроизведения видеосигнала составляет 30 или 25 кадров в секунду, в зависимости от телевизионного стандарта. Наиболее известными из таких стандартов являются: SECAM, принятый в России и Франции, PAL, используемый в Европе, и NTSC, распространенный в Северной Америке и Японии [4].

Разрешение для стандарта NTSC составляет 768 на 484 точек, а для PAL и SECAM – 768 на 576 точек. Но не все пиксели используются для хранения видеоинформации. Так, при стандартном разрешении 768 на 576 пикселей, на экране телевизора отображается всего 704 на 540 пикселей. Поэтому для хранения видеоинформации в компьютере или цифровой видеокамере, размер кадра может отличаться от телевизионного. Например, в формате DigitalVideo или, как его еще называют DV, размер кадра составляет 720 на 576 пикселей. Такое же разрешение имеет кадр стандарта DVDVideo. Размер кадра формата Video-CDсоставляет 352 на 288 пикселей [5].

Если представить каждый кадр изображения как отдельный рисунок, то видеоизображение будет занимать очень большой объем, например, одна секунда записи в системе PAL будет занимать 25 Мбайт, а одна минута – уже 1,5 Гбайт. Поэтому на практике используются различные алгоритмы сжатия для уменьшения скорости и объема потока видеоинформации [3, с.109].

Если использовать сжатие без потерь, то самые эффективные алгоритмы позволяют уменьшить поток информации не более чем в два раза. Для более существенного снижения объемов видеоинформации используют сжатие с потерями.

Среди алгоритмов с потерями одним из наиболее известных является MotionJPEG или MJPEG. Приставка Motion говорит, что алгоритм JPEG используется для сжатия не одного, а нескольких кадров. При кодировании видео принято, что качеству VHS соответствует кодирование MJPEG с потоком около 2 Мбит/с, S-VHS – 4 Мбит/с.

Еще одним методом сжатия видеосигнала является MPEG. Поскольку видеосигнал транслируется в реальном времени, то нет возможности обработать все кадры одновременно. В алгоритме MPEG запоминается несколько кадров. Основной принцип состоит в предположении того, что соседние кадры мало отличаются друг от друга. Поэтому можно сохранить один кадр, который называют исходным, а затем сохраняются только изменения от исходного кадра, называемые предсказуемыми кадрами [3, с.113].

Считается, что за 10-15 кадров картинка изменится настолько, что необходим новый исходный кадр. В результате при использовании MPEG можно добиться уменьшения объема информации более чем в двести раз, хотя это и приводит к некоторой потере качества. В настоящее время используются алгоритм сжатия MPEG-1, разработанный для хранения видео на компакт-дисках с качеством VHS, MPEG-2, используемый в цифровом, спутниковом телевидении и DVD, а также алгоритм MPEG-4, разработанный для передачи информации по компьютерным сетям и широко используемый в цифровых видеокамерах и для домашнего хранения видеофильмов [3, с.115].

Таким образом, кодирование звуковой и видеоинформации помогли человечеству встать на ступень выше в своем развитии, помогли ускорить обмен потока информации, а всем известно, особенно в наше информационное время: тот, кто владеет информацией, владеет миром.

Глава 2. Что означает дружественный (по отношению к пользователю) интерфейс?

кодирование звуковая видеоинформация интерфейс

Интерфейсы являются основой взаимодействия всех современных информационных систем. Если интерфейс какого-либо объекта в нашем случае персонального компьютера не изменяется (стабилен, стандартизирован), это даёт возможность модифицировать сам объект, не перестраивая принципы его взаимодействия с другими объектами [3, с.58].

Именно поэтому большое количество специалистов, дизайнеров и программистов заняты решением этой задачи, которая заключается в том, чтобы найти универсальный дружественный интерфейс для пользователей.

Например, научившись работать с одной программой под Windows, пользователь с легкостью освоит и другие — потому, что они имеют одинаковый интерфейс.

В вычислительной системе взаимодействие может осуществляться на пользовательском, программном и аппаратном уровнях. В соответствии с этой классификацией можно сказать, что интерфейс пользователя — это совокупность средств, при помощи которых пользователь общается с различными устройствами. Среди пользовательского интерфейса выделяют [4]:

Интерфейс командной строки: инструкции компьютеру даются путём ввода с клавиатуры текстовых строк (команд);

Графический интерфейс пользователя: программные функции представляются графическими элементами экрана;

Но самое главное состоит в том, чтобы создать для пользователя удобный, так сказать дружественный интерфейс. То есть разработать его таким образом, чтобы любой человек, проведя немного времени с компьютером, мог с легкостью с ним работать без посторонней помощи.

Самая распространенная ошибка в создании интерфейса, например программы [3, с.60] — использование изображений с множеством мелких деталей, малоконтрастных цветовых гамм, мелкокегельного текста. Соответственно и проектировать его нужно так, чтобы без усилий получить необходимую информацию. Второй бедой являются цветовые гаммы. Буйство красок обычно приводит к образованию непонятно-грязного цветового пятна при взгляде издали и просто рассеиванию внимания при более близком рассмотрении. Таким образом, мы можем сказать, что дружественный интерфейс для пользователя довольно таки сложная вещь, на которую специалисты должны обращать внимание. Интерфейс главным образом должен быть хорошо продуман и удобен, должен быть легко доступен и понятен пользователю.

Список использованной литературы

3. Степанов А.Н. Информатика: учебник для вузов. – 4-е издание. – СПб.: Питер, 2006. – 684с.

Гост

ГОСТ

Кодирование изображений

Как и все виды информации, изображения в компьютере закодированы в виде двоичных последовательностей. Используют два принципиально разных метода кодирования, каждый из которых имеет свои достоинства и недостатки.

И линия, и область состоят из бесконечного числа точек. Цвет каждой из этих точек нам нужно закодировать. Техника формирования изображений из мелких точек является наиболее распространенной и называется растровой.

Представим себе, что на изображение наложена сетка, которая разбивает его на квадратики. Такая сетка называется растром. Теперь для каждого квадратика определим цвет.

У нас получился так называемый растровый рисунок, состоящий из квадратиков-пикселей.

Пиксель (англ. pixel = picture element, элемент рисунка) – это наименьший элемент рисунка, для которого можно задать свой цвет.

Чтобы уменьшить потери информации, нужно уменьшать размер пикселя, то есть увеличивать разрешение.

Разрешение – это количество пикселей, приходящихся на дюйм размера изображения.

Готовые работы на аналогичную тему

Векторные изображения создаются только при помощи компьютера и формируются не из пикселей, а из графических примитивов (линий, многоугольников, окружностей и др.).

Например, чтобы записать на запоминающем устройстве векторное изображение круга, компьютеру достаточно в двоичный код закодировать тип объекта (окружность), координаты его центра на холсте, длину радиуса, толщину и цвет линии, цвет заливки.

В растровой системе пришлось бы кодировать цвет каждого пикселя. И если размер изображения большой, для его хранения понадобилось бы значительно больше места на запоминающем устройстве.

Тем не менее, векторный способ кодирования не позволяет записывать в двоичном коде реалистичные фото. Поэтому все фотокамеры работают только по принципу растровой графики. Рядовому пользователю иметь дело с векторной графикой в повседневной жизни приходится не часто.

Кодирование звуковой информации

Любой звук, слышимый человеком, является колебанием воздуха, которое характеризируется двумя основными показателями: частотой и амплитудой. Амплитуда колебаний - это степень отклонения состояния воздуха от начального при каждом колебании. Она воспринимается нами как громкость звука. Частота колебаний - это количество отклонений состояний воздуха от начального за единицу времени. Она воспринимается как высота звука.

Так, тихий комариный писк - это звук с высокой частотой, но с небольшой амплитудой. Звук грозы наоборот имеет большую амплитуду, но низкую частоту.

Схему работы компьютера со звуком в общих чертах можно описать так. Микрофон превращает колебания воздуха в аналогичные по характеристикам электрических колебаний.

Звуковая карта компьютера преобразовывает электрические колебания в двоичный код, который записывается на запоминающем устройстве. При воспроизведении такой записи происходит обратный процесс (декодирование) - двоичный код преобразуется в электрические колебания, которые поступают в аудиосистему или наушники.

Динамики акустической системы или наушников имеют противоположное микрофону действие. Они превращают электрические колебания в колебания воздуха.

Принцип разделения звуковой волны на мелкие участки лежит в основе двоичного кодирования звука. Аудиокарта компьютера разделяет звук на очень мелкие временные участки и кодирует степень интенсивности каждого из них в двоичный код. Такое дробление звука на части называется дискретизацией.

Одной из важных характеристик процесса кодирования звука является частота дискретизации, которая представляет собой количество измерений уровня сигнала за $1$ секунду. Чем выше частота дискретизации, тем точнее фиксируется геометрия звуковой волны и тем качественней получается запись.

В процессе кодирования звуковой информации непрерывный сигнал заменяется дискретным, то есть преобразуется в последовательность электрических импульсов, состоящих из двоичных нулей и единиц.

Качество записи зависит также от количества битов, используемых компьютером для кодирования каждого участка звука, полученного в результате дискретизации. Количество битов, используемых для кодирования каждого участка звука, полученного при дискретизации, называется глубиной звука.

Кодирование видеозаписи

Поскольку видеоинформация состоит из звуковой и графической компоненты, то и для обработки видеоматериалов требуется очень мощный персональный компьютер. Под обработкой видеоматериалов понимается процесс оцифровки, то есть кодирования видеоинформации.

Представим, что в нашем распоряжении есть какая-либо видеоинформация. Любую видеоинформацию можно дифференцировать, то есть разложить на две ключевые составляющие: звуковую и графическую. Следовательно, операция кодирования видеоинформации будет заключаться в сочетании операций кодирования звуковой информации и кодирования графической информации.

Кодирование звуковой дорожки видеофайла в двоичный код осуществляется по тем же алгоритмам, что и кодирование обычных звуковых данных. Принципы кодирования видеоизображения схожи с кодированием растровой графики, хотя и имеют некоторые особенности.

Как известно, видеозапись - это последовательность быстро меняющихся статических изображений (кадров). Одна секунда видео может состоять из $25$ и больше картинок. При этом, каждый следующий кадр лишь незначительно отличается от предыдущего.

Учитывая эту особенность, алгоритмы кодирования видео, как правило, предусматривают запись лишь первого (базового) кадра. Каждый же последующий кадр формируются путем записи его отличий от предыдущего.

После проведения операции цифрования звука и изображений на выходе получается бинарный, двоичный код, который будет понятен процессору персонального компьютера. Именно в формате двоичного кода наша видеоинформация и будет храниться на электронных носителях.

Если мы захотим проиграть видеоконтент на нашем персональном компьютере или другом устройстве, то нам придется провести операцию восстановления информации, то есть осуществить преобразование информации, записанной в двоичном коде в формат понятный человеку.

Чтобы добиться синхронного исполнения звука и смены графических изображений, процессор персонального компьютера выполняет эти операции в различных потоках. За счет этого происходит запараллеливание двух сигналов: звукового и графического, которые в совокупности образуют видеопоток.

Звук

Звук представляет собой волну с меняющейся интенсивностью и частотой (громкостью и его тональностью соответственно). Чем больше амплитуда, тем громче звук. Чем больше частота, тем больше тон.

Хранение и передача аналогового звукового сигнала осуществляется за счёт представления его в виде электрического сигнала с помощью модуляции.

Звуковой сигнал

Модуляция – процесс изменения одного или нескольких параметров (амплитуды, частоты или фазы) высокочастотного колебания по закону низкочастотного сигнала (несущей частоты).

Существуют разные виды модуляции:

Амплитудная (АМ, amplitude modulation ) – изменение высокочастотных колебаний с частотой, равной частоте звукового сигнала. Например, несущей частотой может быть питание сети – 50 Гц. Или радиоволна СВ (MW) диапазона от 300 кГц до 3 МГц.

Частотная (FM, frequency modulation) – модуляция при которой информационный сигнал управляет несущей частотой. По сравнению с амплитудной модуляцией здесь амплитуда остаётся постоянной.

Цифровой сигнал

Для того чтобы аналоговый (непрерывный) сигнал представить последовательностью чисел определённой разрядности, его необходимо превратить в дискретный (прерывистый) сигнал, а затем подвергнуть квантованию.

На современном ПК карта всегда интегрирована в материнской плате, и имеет разрядность не ниже 24 бит.

Оцифровка звука – дискретизация и квантование аналогового сигнала.

1-й этап: Дискретизация сигнала по времени

Допустим, Вы, с помощью микрофона записали свой голос длительностью 5 сек. Этот фрагмент можно разбить на равные малые временный отрезки, которые в сумме дают нам 5 сек. Получаем частоту дискретизации (f, Гц), которая является обратной величиной времени: t сек. При частоте дискретизации 8 кГц=8 000 Гц, из формулы получаем отрезок, равный 0,000125 сек. или 125 миллисекунд.

2-й этап: Квантование сигнала по уровню

Чем больше уровней будет доступно для кодирования временных отрезков, тем ближе к аналогу будет закодированный файл, но при этом объём файла увеличится.

Например, возьмём 8 уровней, чтобы их закодировать в двоичный код нам достаточно 3 бита, что мы получаем из формулы Хартли:

формула Хартли

2³=8 – комбинаций двоичного ряда чисел от 000 до 111.

Параметр (i) – называется глубина кодирования. 8 бит – 256 уровней, 16 бит – 65 536 уровней, 24 бита – более 16 млн. уровней.

3 этап: Определяем скорость потока звука

Частота дискретизации – 22 кГц, глубина кодирования – 16 бит. Произведение этих двух величин дает нам скорость потока 352 кбит/сек.

скорость потока

Именно такой канал передачи данных потребуется для воспроизведения звукового файла в режиме он-лайн.

Расчёт количество звуковой информации

Для определения информационного объёма звуковой информации, нам необходимы следующие параметры:

Объём звуковой информации

Задача 1:

Одна минута записи цифрового аудиофайла занимает 1,3 МБ, разрядность звуковой платы — 8 бит. С какой частотой дискретизации записан звук?

сетка

Воспользуемся формулой: I=f∙t∙i∙n , из формулы видно что для нахождения частоты дискретизации формула примет вид: f=I/t∙i∙n.

1,3 МБ = 13,31,2 КБ = 1 363 148,8 Байт. Принимая во внимание что 8 бит = 1 Байту, делим 1 363 148,8 на 60, канал у нас записан 1, поэтому n=1.

audacity

Ответ: 22719,1 Гц или 22 050 Гц, см. основные настройки параметров звукового файла в программе Audacity

Задача 2:

Две минуты записи цифрового аудиофайла занимают на диске 5,1 МБ. Частота дискретизации — 22 050 Гц. Какова разрядность аудиоадаптера?

сетка

Решение: 5,1 МБ = 5 347 737,6 Байт, делим по формуле: i = I / f∙ t ∙ n.

5 347 737,6 / 22 050 ∙ 120 = 2,02 Байт.

Ответ: 16 бит.

Кодирование видео

Информация хранится на различных носителях в виде файлов. Файл занимает память и может быть измерен в единицах измерения информации: бит, Байт, КБ и т.д.

Стремительное развитие интернета резко увеличило обмен информацией между людьми, для оптимизации хранения данных люди стали использовать специальные алгоритмы сжатия.

В основе цифрового видео лежит графический и звуковой файлы. Если рассчитать объём видеофайла без сжатия, нам необходимо учитывать тот факт, что человек начинает воспринимать смену кадров (картинок), как непрерывное плавное движение, если за 1 сек. будет мелькать 24 кадра.

Основы ТВ

Для приёма телевизионного сигнала используется антенна и приёмник. Приёмник – это электронная схема, которая преобразует сигнал в изображение на экране. В этом процессе участвует генератор кадровой развёртки и строчной.

Кадровая развёртка формируется на частоте, близкой к частоте переменного тока в бытовых электросетях – 50 Гц.

Кадровая развёртка, в сочетании со строчной служит для преобразования плоского двумерного изображения в одномерную последовательность, то есть, видеосигнал, а в телевизоре или мониторе компьютера для преобразования видеосигнала обратно в изображение на экране.

Для создания такой последовательности, используются специальные стандарты разложения:

480i, 525/60 — стандарт разложения, принятый в США, число активных строк составляет 480.

Существует также прогрессивная (p) кадровая развёртка, где все строки каждого кадра отображаются последовательно. Прогрессивная развертка стала широко распространена с появлением персональных компьютеров. Для комфортного чтения мелкого текста с экрана монитора, чересстрочная развертка стала малопригодна, так как мерцание строк вызывало быстрое утомление глаз.

Помимо развёртки существует ещё и соотношение сторон: аналоговое ТВ – 4:3, цифровое ТВ – 16:9, широкоформатное.

Форматы со сжатием

Давайте для начала посчитает объём видеофайла без сжатия, длительность 1 час 30 мин., 576i, 16:9. Звук записан с частотой дискретизации – 44 100 Гц, глубина кодирования 24 бит.

Решение:

Видео: I = 576 ∙ 1024 ∙ 25 ∙ 5400 ∙ 24 = 1 911 029 760 000 бит = 222,5 ГБ

Звук: I = 44 100 ∙ 5400 ∙ 24 = 5 715 360 000 бит = 681,3 МБ = 0,665 ГБ

Ответ: 223,2 ГБ.

Графический формат JPEG

Алгоритм JPEG (от англ. Joint Photographic Experts Group) в большей степени пригоден для реалистичных изображений с плавными переходами яркости и цвета, таковыми являются фотографии.

В основу алгоритма заложен переход от цветового пространства RGB к цветовому пространству YCbCr. Y – компонент яркости, Cb и Cr – синий и красный цветоразностные компоненты. Суть сжатия состоит в том что для каждого блока пикселей 2х2 записывается не 12 значений, а 6, за счёт использования усреднённого компонента цвета.

Видео и аудио форматы MPEG

Алгоритм MPEG (англ. Moving Picture Experts Group) – стандарты сжатия и передачи цифровой видео и аудио информации. Базовым объектом кодирования в стандарте MPEG является кадр телевизионного изображения. Поскольку в большинстве фрагментов фон изображения остается достаточно стабильным, а действие происходит только на переднем плане, сжатие начинается с создания исходного кадра.

При сжатии аудио используются хорошо разработанные психоакустические модели, чтобы выбросить звуки, которые не слышны человеческому уху.

Современные цифровые стандарты

Современные дисплеи и мониторы уже давно вышли за рамки старых добрых стандартов.

Средства и технологии обработки видеоинформации
Обучающий материал

Кодирование видеоинформации

Чтобы хранить и обрабатывать видео на компьютере, необходимо закодировать его особым образом. При этом кодирование звукового сопровождения видеоинформации ничем не отличается от кодирования звука, описанного в предыдущей теме. Изображение в видео состоит из отдельных кадров, которые меняются с определенной частотой. Кадр кодируется как обычное растровое изображение, то есть разбивается на множество пикселей. Закодировав отдельные кадры и собрав их вместе, можно описать все видео.

Видеоданные характеризуются частотой кадров и экранным разрешением. Скорость воспроизведения видеосигнала составляет 30 или 25 кадров в секунду, в зависимости от телевизионного стандарта. Наиболее известными из таких стандартов являются: SECAM, принятый в России и Франции, PAL, используемый в Европе, и NTSC, распространенный в Северной Америке и Японии. Разрешение для стандарта NTSC составляет 768 на 484 точек, а для PAL и SECAM – 768 на 576 точек. Не все пиксели используются для хранения видеоинформации. Так, при стандартном разрешении 768 на 576 пикселей, на экране телевизора отображается всего 704 на 540 пикселей. Поэтому для хранения видеоинформации в компьютере или цифровой видеокамере, размер кадра может отличаться от телевизионного. Например, в формате Digital Video или, как его еще называют DV, размер кадра составляет 720 на 576 пикселей. Такое же разрешение имеет кадр стандарта DVD Video. Размер кадра формата Video-CD составляет 352 на 288 пикселей.

В основе кодирования цветного видео лежит известная модель RGB. В телевидении же используется другая модель представления цвета изображения, а именно модель YUV. В такой модели цвет кодируется с помощью яркости Y и двух цветоразностных компонент U и V, определяющих цветность. Цветоразностная компонента образуется путем вычитания из яркостной компоненты красного и зеленого цвета. Обычно используется один байт для каждой компоненты цвета, то есть всего для обозначения цвета используется три байта информации. При этом яркость и сигналы цветности имеют равное число независимых значений. Такая модель имеет обозначение 4:4:4.

Опытным путем было установлено, что человеческий глаз менее чувствителен к цветовым изменениям, чем к яркостным. Без видимой потери качества изображения можно уменьшить количество цветовых оттенков в два раза. Такая модель обозначается как 4:2:2 и принята в телевидении. Для бытового видео допускается еще большее уменьшении размерности цветовых составляющих, до 4:2:0.

Если представить каждый кадр изображения как отдельный рисунок указанного выше размера, то видеоизображение будет занимать очень большой объем, например, одна секунда записи в системе PAL будет занимать 25 Мбайт, а одна минута – уже 1,5 Гбайт. Поэтому на практике используются различные алгоритмы сжатия для уменьшения скорости и объема потока видеоинформации. Если использовать сжатие без потерь, то самые эффективные алгоритмы позволяют уменьшить поток информации не более чем в два раза. Для более существенного снижения объемов видеоинформации используют сжатие с потерями.

Среди алгоритмов с потерями одним из наиболее известных является MotionJPEG или MJPEG. Приставка Motion говорит, что алгоритм JPEG используется для сжатия не одного, а нескольких кадров. При кодировании видео принято, что качеству VHS соответствует кодирование MJPEG с потоком около 2 Мбит/с, S-VHS – 4 Мбит/с.

Свое развитие алгоритм MJPEG получил в алгоритме DV, который обеспечивает лучшее качество при таком же потоке данных. Это объясняется тем, что алгоритм DV использует более гибкую схему компрессии, основанную на адаптивном подборе коэффициента сжатия для различных кадров видео и различных частей одного кадра. Для малоинформативных частей кадра, например, краев изображения, сжатие увеличивается, а для блоков с большим количеством мелких деталей уменьшается.

Еще одним методом сжатия видеосигнала является MPEG. Поскольку видеосигнал транслируется в реальном времени, то нет возможности обработать все кадры одновременно. В алгоритме MPEG запоминается несколько кадров. Основной принцип состоит в предположении того, что соседние кадры мало отличаются друг от друга. Поэтому можно сохранить один кадр, который называют исходным, а затем сохраняются только изменения от исходного кадра, называемые предсказуемыми кадрами. Считается, что за 10-15 кадров картинка изменится настолько, что необходим новый исходный кадр. В результате при использовании MPEG можно добиться уменьшения объема информации более чем в двести раз, хотя это и приводит к некоторой потере качества. В настоящее время используются алгоритм сжатия MPEG-1, разработанный для хранения видео на компакт-дисках с качеством VHS, MPEG-2, используемый в цифровом, спутниковом телевидении и DVD, а также алгоритм MPEG-4, разработанный для передачи информации по компьютерным сетям и широко используемый в цифровых видеокамерах и для домашнего хранения видеофильмов.

Видеооборудование и программы

Обычный компьютер не имеет в своем составе оборудования для ввода и обработки видео. Поэтому на него необходимо устанавливать дополнительное оборудование. Это оборудование может быть самым различным в зависимости от того, какие задачи вы хотите решать. Кроме того, сам компьютер должен отвечать определенным требованиям.

Для захвата и обработки видео особых требований к компьютеру не предъявляется, лишь бы он был оборудован звуковой платой и имел жесткий диск достаточного объема и скорости. Следует учитывать, что один час видео в хорошем качестве будет занимать на диске около 20 Гбайт информации. При этом результат работы программы обработки видео необходимо куда-то сохранять, поэтому необходимый объем должен быть больше в два раза. Что касается скорости работы диска, то лучше выбирать жесткие диски, имеющие скорость вращения 7200 оборотов в минуту и больше. Для того чтобы снимать на видео и обрабатывать полученные фильмы на компьютере, прежде всего, необходима видеокамера. В настоящее время используются три разновидности видеокамер: аналоговые, цифровые и Web-камеры.

В аналоговых видеокамерах изображение хранится на магнитной ленте в видеокассете. При записи на магнитную ленту изображение сохраняется в ней будучи преобразованной в магнитные импульсы. При воспроизведении происходит обратное преобразование магнитных импульсов в изображение. Аналоговыми же видеокамеры называют потому, что записанная магнитная информация по возможности наиболее приближена (является аналогом) к оригиналу. Существует несколько стандартов для записи аналогового видеосигнала: VHS, S-VHS, VHS-compact, Video-8, Hi-8 др. Они различаются параметрами записываемых сигналов, формой и размером видеокассеты. Аналоговые камеры могут содержать встроенные возможности редактирования видео.

Выпускаются также устройства видеозахвата, выполненные в виде отдельных устройств, подключаемых к компьютеру по шине USB. Однако пропускная способность шины USB не достаточна для передачи несжатого видео в компьютер. Поэтому все подобные устройства используют сжатие с потерями.

Популярными аналоговыми видеоустройствами являются телевизионные тюнеры, сочетающие в себе телевизионные приемники и платы ввода изображений в компьютер. Телевизионный тюнер позволяет просматривать на экране компьютера телепередачи или видеофильмы, как на полный экран, так и в окне. При этом тюнер работает как обычный телевизор, только в качестве экрана используется монитор компьютера. Данное устройство представляет собой плату расширения, вставляемую внутрь компьютера и содержащую ряд разъемов. Телевизионный тюнер имеет антенный вход для подключения телевизионной антенны, композитный видеовход для подключения бытовых источников видеосигнала, таких как видеокамера, видеомагнитофон или проигрыватель видеодисков. Некоторые модели тюнеров могут принимать и радиосигнал, позволяя слушать передачи радиостанций на компьютере. Фактически, после установки платы тюнера, компьютер становится и телевизором и радиоприемником.

Web-камеры предназначены для общения в Интернете. Эти камеры не содержат средств хранения видеоинформации, а просто транслируют закодированный видеосигнал в компьютер, где он или отображается на экране, или сохраняется на диске. Соединяются такие камеры с компьютером при помощи интерфейса USB. Возможности Web-камер ограничены, и качество получаемого изображения невысокое.

Web-камера


Web-камера

С помощью таких камер и соответствующего программного обеспечения можно общаться с другими людьми в Интернете, устраивая видеоконференции. В этом случае все участники видят друг друга в реальном времени. Используя микрофон, колонки и звуковую карту, собеседники могут также слышать друг друга.

Наибольшего качества можно добиться при использовании цифровых видеокамер. Эти видеокамеры записывают изображение в цифровой форме. Внешне они почти не отличаются от аналоговых видеокамер. Однако по принципу действия эти устройства отличаются принципиально.

Цифровая камера


Цифровая камера

В качестве носителя информации в этих устройствах выступает специальная кассета с магнитной лентой, набор микросхем памяти, жесткий диск, записываемый компакт-диск или записываемый DVD-диск. То, что информация хранится в цифровом виде, позволяет легко переносить эту информацию в компьютер. Существует несколько форматов хранения цифровой видеоинформации: Digital-8, Mini-DV, MPEG-4.

Выпускаются различные варианты цифровых видеокамер от самых простых до профессиональных. В большинстве камер одной серии возможности хранения видео одинаковы, а камеры различаются наличием дополнительных возможностей. Это может быть размер жидкокристаллического экрана для просмотра снятого материала или наличие карты памяти для хранения цифровых фотографий. Некоторые цифровые видеокамеры можно использовать и как цифровые фотоаппараты.

Большинство цифровых камер подключаются к компьютеру с помощью интерфейса IEEE-1394, также называемый FireWire. Вариантом этого интерфейса является I-Link, разработанный фирмой Sony. Данный интерфейс отсутствует в большинстве современных компьютеров, поэтому чтобы подключить цифровую видеокамеру к компьютеру потребуется дополнительная плата, реализующая этот интерфейс.

Подключив цифровую камеру с помощью такой платы, можно много раз переписывать видео с камеры в компьютер и обратно без потери качества, а также управлять видеокамерой с компьютера. При работе как с цифровой камерой, так и с аналоговыми видеосигналами, следует использовать комбинированные устройства видеозахвата. Такие устройства содержат в своем составе интерфейс FireWire IEEE-1394, а также микросхему оцифровки аналогового видеосигнала в цифровой формат DV. На диск информация в любом случае записывается в формате DV. Устройства могут выпускаться как в виде платы, вставляемой в компьютер, так и в виде внешнего устройства, подключаемого к компьютеру по интерфейсу IEEE-1394.

Естественно, для редактирования на компьютере видео потребуется специальное программное обеспечение. Для простейшей работы можно использовать встроенную в Windows Me и Windows XP программу Windows Movie Maker. Для более сложного видеомонтажа можно воспользоваться программой Ulead Media Studio Pro.

Ulead Media Studio Pro


Ulead Media Studio Pro

Видеомонтаж подразумевает получение видеоизображения с одного или нескольких источников, выполнение над видео различных действий и сохранение полученного в результате монтажа видео. Известны два вида монтажа – монтаж сборкой и монтаж вставкой. Монтаж сборкой используется для создания отредактированного видео путем перезаписи из нескольких других записей или источников видеосигнала. Новая сцена добавляется к концу предыдущей. Монтаж вставкой используется для замены одной сцены на другую.

Различают также линейный и нелинейный видеомонтаж. Особенность линейного видеомонтажа состоит в том, что все операции происходят в реальном времени. Чтобы добиться высокой скорости работы, эффекты и операции осуществляют с помощью специальной аппаратуры. В этом случае роль компьютера сводится к координации работы устройств линейного монтажа и автоматизации рутинной ручной работы.

При использовании нелинейного видеомонтажа все фрагменты исходного видео должны быть введены в компьютер, а затем с помощью специальной программы над этим фрагментом выполняются различные операции. При этом в зависимости от используемой программы можно выполнить практически любые преобразования над исходными фрагментами видео. В результате полученное видео можно сохранить на диске компьютера, записать на видеомагнитофон или цифровую камеру.

В настоящее время наиболее распространен нелинейный видеомонтаж. Для нелинейного видеомонтажа используются специальные программы, среди которых упомянутая выше программа Ulead Media Studio Pro, а также программа Adobe Premiere. Эти программы являются универсальными и позволяют оцифровывать видеосигнал, производить его обработку, а также кодировать полученное изображение в различные форматы.

Adobe Premiere


Adobe Premiere

Кроме универсальных программ существует большое количество специализированных, которые решают отдельные задачи.

Любой созданный фильм можно просмотреть не только на экране компьютерного монитора. При наличии платы оцифровки видео, имеющей видеовыход, или видеоадаптера с видеовыходом, можно подключить телевизор и просматривать на нем изображения. Также можно подключить обычный видеомагнитофон, и записать фильм на кассету.

При работе с цифровой видеокамерой можно не только получить с нее отснятый материал, но и записать отредактированный фильм обратно. В дальнейшем имеется возможность просматривать фильм на обычном телевизоре, подключив к нему цифровую видеокамеру. Достоинством данного способа работы является отсутствие дополнительных искажений, вносимых при преобразовании видеоматериала из цифровой формы в аналоговую. Видеофильм будет храниться в цифровом формате.

Существует ряд программ, позволяющих записать видеоинформацию на заготовку CD или DVD. Одной из таких программ является программа Ulead DVD Workshop. Лучше всего записывать видеоинформацию на DVD-диск. Однако можно использовать и устройство CD-RW для записи видео на компакт-диск. Хотя на таком диске поместится не слишком длинный фильм, себестоимость хранения видео будет чрезвычайно низкой, а качество записи достаточно высоким. При этом современные проигрыватели DVD могут воспроизводить как записываемые диски CD-R, так и перезаписываемые диски CD-RW.

Читайте также: