Кислоты доклад для 3 класса

Обновлено: 05.07.2024

Кислоты – это электролиты, в результате диссоциации которых в водных растворах образуется только один вид катионов – катионы водорода Н + (точнее – катионы гидроксония H3O + ):

НCl = Н + + Cl – (НCl + H2O = H3O + + Cl – )
HNO3 = Н + + NO3 – (HNO3 + H2O = H3O + + NO3 – )

Кислоты – вещества молекулярного строения. Атомы в молекулах кислот связаны ковалентными полярными химическими связями. Чем более поляризована связь между атомом водорода, способным отщепляться в виде катиона водорода, и атомом какого–либо другого элемента, тем легче происходит её распад с образованием ионов, тем сильнее кислота.

Классифицировать кислоты можно по разным признакам.

ХИМИЧЕСКИЕ СВОЙСТВА КИСЛОТ

  1. Кислоты реагируют с металлами. Металлы, расположенные в электрохимическом ряду напряжений металлов до водорода H2, вытесняют водород из растворов кислот. Происходит реакция замещения, образуется соль и водород:

Металлы, расположенные в ряду напряжений после водорода, с кислотами не реагируют.

Важное примечание: с серной концентрированной кислотой и с азотной кислотой любой концентрации реакции идут за счёт аниона кислотного остатка, водород в этих случаях не выделяется:

Cu+ 4HNO3 (конц.) = Cu(NO3)2 + 2NO2↑ + 2H2O
Cu+ 2H2SO4 (конц.) = CuSO4 + SO2↑ + 2H2O

  1. Киcлоты реагируют с основными и амфотерными оксидами с образованием соли и воды:


  1. Кислoты реагируют с основаниями и с амфотерными гидроксидами с образованием соли и воды:


(Взаимодействие сильных кислот с сильными основаниями – реакция нейтрализации.)

Al(ОН)3 + 3НCl = AlCl3 + 3H2O
Al(ОН)3 + 3Н + = Al 3+ + 3H2O

(Реакция амфотерного гидроксида с сильной кислотой.)

  1. Сильные кислоты реагируют с солями слабых кислот. Слабые кислоты при этом могут быть вытеснены из солей. Например, сильная соляная кислота НCl вытесняет слабую сероводородную кислоту H2S:

FeS + 2НCl = FeCl2 + H2S↑
FeS + 2Н + = H2S↑ + Fe 2+


Нелетучие кислоты могут вытеснить летучую из её соли. Например, нелетучая серная кислота H2SO4 вытесняет более летучую азотную HNO3. Обе кислоты – сильные. В растворе такая реакция не происходит. Она осуществима, если соль находится в кристаллическом виде (не в растворе), а серная кислота концентрированная:

Аналогично можно получить газообразный хлороводород, раствор которого – соляная кислота.

  1. Кислoты можно обнаружить индикаторами. Индикаторы реагируют на наличие в растворе ионов Н + (H3O + ). Лакмус в кислой среде приобретает красный цвет, метиловый оранжевый – красный, фенолфталеин – бесцветный. Для обнаружения кислот удобно использовать лакмус.

ПОЛУЧЕНИЕ КИСЛОТ


Бескислородные кислоты, состоящие из двух элементов, могут быть получены синтезом простых веществ:

Кислородсодержащие кислоты могут быть получены в результате взаимодействия с водой соответствующих кислотных оксидов:

Р2O5 + 3H2O = 2H3РO4
SO3 + H2O = H2SO4

Слабые или летучие киcлoты могут быть вытеснены из солей более сильными или менее летучими кислотами. Например, сильная соляная кислота НCl вытесняет слабую уксусную кислоту СH3СООН:

CH3COONa + НCl = СH3СООН + NaCl
СH3СОО – + Н + = СH3СООН


Летучие киcлoты могут быть вытеснены из солей менее летучими кислотами. Например, нелетучая серная кислота H2SO4 может вытеснить более летучую соляную НCl. Но в растворе такая реакция не пойдёт (обе киcлoты сильные). Она осуществима, если соль в кристаллическом состоянии (не в растворе) обработать серной концентрированной кислотой:

В результате этой реакции образуется газообразный хлороводород, при растворении которого в воде образуется соляная кислота.

Для получения слабых нелетучих кислот (например, ортофосфорной киcлоты или сернистой кислoты) лучше воспользоваться концентрированной серной кислотой, причём образующаяся сернистая кислота H2SO3 разлагается на сернистый газ SO2 и воду:

Са3(РO4)2 (тв.) + 3H2SO4 (конц.) = 3CaSO4 + 2H3РO4
Na2SO3 (тв.) + H2SO4 (конц.) = Na2SO4 + SO2↑ + H2O

Дополнительные материалы (схемы, таблицы)


кислоты



Перед изучением этого раздела рекомендую прочитать следующую статью:

Кислоты – сложные вещества, которые при взаимодействии с водой образуют в качестве катионов только ионы Н + (или Н3О + ).

По растворимости в воде кислоты можно поделить на растворимые и нерастворимые . Некоторые кислоты самопроизвольно разлагаются и в водном растворе практически не существуют (неустойчивые) . Подробно про классификацию кислот можно прочитать здесь.



1. Взаимодействие кислотных оксидов с водой. При этом с водой реагируют при обычных условиях только те оксиды, которым соответствует кислородсодержащая растворимая кислота.

кислотный оксид + вода = кислота

Например , оксид серы (VI) реагирует с водой с образованием серной кислоты:

При этом оксид кремния (IV) с водой не реагирует:

2. Взаимодействие неметаллов с водородом. Таким образом получают только бескислородные кислоты.

Неметалл + водород = бескислородная кислота

Например , хлор реагирует с водородом:

H2 0 + Cl2 0 → 2 H + Cl —

3. Электролиз растворов солей. Как правило, для получения кислот электролизу подвергают растворы солей, образованных кислотным остатком кислородсодержащих кислот. Более подробно этот вопрос рассмотрен в статье Электролиз.

Например , электролиз раствора сульфата меди (II):

4. Кислоты образуются при взаимодействии других кислот с солями. При этом более сильная кислота вытесняет менее сильную.

Например: карбонат кальция CaCO3 (нерастворимая соль угольной кислоты) может реагировать с более сильной серной кислотой.

5. Кислоты можно получить окислением оксидов, других кислот и неметаллов в водном растворе кислородом или другими окислителями.

Например , концентрированная азотная кислота окисляет фосфор до фосфорной кислоты:

1. В водных растворах кислоты диссоциируют на катионы водорода Н + и анионы кислотных остатков. При этом сильные кислоты диссоциируют почти полностью, а слабые кислоты диссоциируют частично.

Например , соляная кислота диссоциирует почти полностью:

HCl → H + + Cl –

Если говорить точнее, происходит протолиз воды, и в растворе образуются ионы гидроксония:

HCl + H2O → H3O + + Cl –

Многоосновные кислоты диссоциируют cтупенчато.

Например , сернистая кислота диссоциирует в две ступени:

HSO3 – ↔ H + + SO3 2–

2. Кислоты изменяют окраску индикатора. Водный раствор кислот окрашивает лакмус в красный цвет, метилоранж в красный цвет. Фенолфталеин не изменяет окраску в присутствии кислот.

3. Кислоты реагируют с основаниями и основными оксидами .

С нерастворимыми основаниями и соответствующими им оксидами взаимодействуют только растворимые кислоты.

нерастворимое основание + растворимая кислота = соль + вода

основный оксид + растворимая кислота = соль + вода

Например , гидроксид меди (II) взаимодействует с растворимой бромоводородной кислотой:

При этом гидроксид меди (II) не взаимодействует с нерастворимой кремниевой кислотой.

С сильными основаниями (щелочами) и соответствующими им оксидами реагируют любые кислотами.


Щёлочи взаимодействуют с любыми кислотами — и сильными, и слабыми . При этом образуются средняя соль и вода. Эти реакции называются реакциями нейтрализации . Возможно и образование кислой соли, если кислота многоосновная, при определенном соотношении реагентов, либо в избытке кислоты. В избытке щёлочи образуется средняя соль и вода:

щёлочь(избыток)+ кислота = средняя соль + вода

щёлочь + многоосновная кислота(избыток) = кислая соль + вода

Например , гидроксид натрия при взаимодействии с трёхосновной фосфорной кислотой может образовывать 3 типа солей: дигидрофосфаты, фосфаты или гидрофосфаты.

При этом дигидрофосфаты образуются в избытке кислоты, либо при мольном соотношении (соотношении количеств веществ) реагентов 1:1.

При мольном соотношении количества щелочи и кислоты 1:2 образуются гидрофосфаты:

В избытке щелочи, либо при мольном соотношении количества щелочи и кислоты 3:1 образуется фосфат щелочного металла.


4. Растворимые кислоты взаимодействуют с амфотерными оксидами и гидроксидами.

Растворимая кислота + амфотерный оксид = соль + вода

Растворимая кислота + амфотерный гидроксид = соль + вода

Например , уксусная кислота взаимодействует с гидроксидом алюминия:


5. Некоторые кислоты являются сильными восстановителями. Восстановителями являются кислоты, образованные неметаллами в минимальной или промежуточной степени окисления, которые могут повысить свою степень окисления (йодоводород HI, сернистая кислота H2SO3 и др.).

Например , йодоводород можно окислить хлоридом меди (II):

4H I — + 2 Cu +2 Cl2 → 4HCl + 2 Cu + I + I2 0

6. Кислоты взаимодействуют с солями.

Кислоты реагируют с растворимыми солями только при условии, что в продуктах реакции присутствует газ, вода, осадок или другой слабый электролит . Такие реакции протекают по механизму ионного обмена.

Кислота1 + растворимая соль1 = соль2 + кислота2/оксид + вода


Например , соляная кислота взаимодействует с нитратом серебра в растворе:

Ag + NO3 — + H + Cl — → Ag + Cl — ↓ + H + NO3

Кислоты реагируют и с нерастворимыми солями. При этом более сильные кислоты вытесняют менее сильные кислоты из солей .

Например , карбонат кальция (соль угольной кислоты), реагирует с соляной кислотой (более сильной, чем угольная):

7. Кислоты взаимодействуют с кислыми и основными солями. При этом более сильные кислоты вытесняют менее сильные из кислых солей. Либо кислые соли реагируют с кислотами с образованием более кислых солей.

кислая соль1 + кислота1 = средняя соль2 + кислота2/оксид + вода

Например , гидрокарбонат калия реагирует с соляной кислотой с образованием хлорида калия, углекислого газа и воды:

KHCO3 + HCl → KCl + CO2 + H2O

Ещё пример : гидрофосфат калия взаимодействует с фосфорной кислотой с образованием дигидрофосфата калия:

При взаимодействии основных солей с кислотами образуются средние соли. Более сильные кислоты также вытесняют менее сильные из солей.

Например , гидроксокарбонат меди (II) растворяется в серной кислоте:

Основные соли могут взаимодействовать с собственными кислотами. При этом вытеснения кислоты из соли не происходит, а просто образуются более средние соли.

Например , гидроксохлорид алюминия взаимодействует с соляной кислотой:

Al (OH) Cl2 + HCl → AlCl3 + H2O

8. Кислоты взаимодействуют с металлами.

При этом протекает окислительно-восстановительная реакция. Однако минеральные кислоты и кислоты-окислители взаимодействуют по-разному.

К минеральным кислотам относятся соляная кислота HCl, разбавленная серная кислота H2SO4, фосфорная кислота H3PO4, плавиковая кислота HF, бромоводородная HBr и йодоводородная кислоты HI.

Такие кислоты взаимодействуют только с металлами, расположенными в ряду активности до водорода:


При взаимодействии минеральных кислот с металлами образуются соль и водород:

минеральная кислота + металл = соль + H2

Например , железо взаимодействует с соляной кислотой с образованием хлорида железа (II):

Fe + 2 H + Cl → Fe +2 Cl2 + H2 0

Сероводородная кислота H2S, угольная H2CO3, сернистая H2SO3 и кремниевая H2SiO3 с металлами не взаимодействуют.

Кислоты-окислители (азотная кислота HNO3 любой концентрации и серная концентрированная кислота H2SO4(конц)) при взаимодействии с металлами водород не образуют, т.к. окислителем выступает не водород, а азот или сера. Продукты восстановления азотной или серной кислот бывают различными. Определять их лучше по специальным правилам. Эти правила подробно разобраны в статье Окислительно-восстановительные реакции. Я настоятельно рекомендую выучить их наизусть.

9. Некоторые кислоты разлагаются при нагревании.

Угольная H2CO3, сернистая H2SO3 и азотистая HNO2 кислоты разлагаются самопроизвольно, без нагревания:

Кремниевая H2SiO3, йодоводородная HI кислоты разлагаются при нагревании:


Другой очень важный класс неорганических веществ — кислоты. Они встречаются в природе, находят применение в быту, используются для получения различных веществ.

Состав кислот

Вы уже знаете, что в состав молекул кислот входят атомы водорода, способные замещаться атомами металлов, и кислотные остатки.

Примеры кислот: HCl, HNO3, H2SO4, H3PO4. Если число атомов водорода в их молекулах обозначить буквой x, а кислотные остатки — Cl, NO3, SO4, РO4 — буквой А, то состав всех кислот можно выразить общей формулой HxA. Число х чаще всего принимает значения от 1 до 3 и называется основностью кислоты.

Классификация кислот

Поскольку число известных кислот огромно (более 500), их классифицируют по следующим признакам.

1) По числу атомов водорода в молекулах (т. е. по основности) кислоты делятся на:
• одноосновные — с одним атомом водорода в молекулах, например: HCl, HBr, HNO3;
• двухосновные — с двумя атомами водорода в молекулах, например: H2SO4, H2SO3, H2S, H2CO3;
• трехосновные — с тремя атомами водорода в молекулах, например: H3PO4, H3ВO3.

2) По наличию или отсутствию атомов кислорода в молекулах различают кислоты:
• бескислородные — HCl, HBr, H2S;
• кислородсодержащие — HNO3, H2SO4, H2SiO3, H2CO3, H3PO4.

Напомним, что все кислородсодержащие кислоты относятся к кислотным гидроксидам. Например, фосфорная кислота H3PO4 — гидроксид фосфора(V); серная кислота H2SO4 — гидроксид серы(VI).

Кислоты в природе

Кислоты довольно широко распространены в природе. До сих пор вы наиболее часто сталкивались с ними, употребляя в пищу продукты кислого вкуса — фрукты, кефир, квашеную капусту и маринованные овощи, в которых содержатся различные кислоты. Многим из вас, конечно же, кислый вкус не очень нравится, но кислые продукты необходимы организму так же, как и сладкие. Поэтому давайте узнаем, где в природе содержатся эти полезные кислоты. Наиболее часто они образуются в растениях и содержатся в их плодах или листьях, которые мы употребляем в пищу. В разных растениях образуются разные кислоты: в лимонах — лимонная, в яблоках — яблочная, а в щавеле — щавелевая. Известны также природные кислоты, которые содержатся в организмах некоторых насекомых, например муравьев (муравьиная кислота).

Молочная кислота, придающая кислый вкус кефиру, образуется при скисании молока или капусты, а уксусная кислота — при скисании вина. Все эти кислоты относятся к органическим кислотам, с которыми вы познакомитесь позже.

Краткие выводы урока:

  1. Кислоты классифицируются по числу атомов водорода в молекулах (по основности) и по наличию в них атомов кислорода.
  2. Кислоты широко распространены в природе.


От производства лекарств до приготовления пищи — кислоты помогают человеку во многих областях жизни. В этом материале мы рассмотрим типичные свойства и реакции кислот с другими химическими веществами.

О чем эта статья:

8 класс, 9 класс, ЕГЭ/ОГЭ

Кислоты — это сложные химические вещества, состоящие из одного или нескольких атомов водорода, способных замещаться атомами металла, и кислотных остатков.

Кислоты проявляют ряд общих химических свойств: диссоциацию и разложение, взаимодействуют с металлами, основаниями, солями, основными и амфотерными оксидами.

Для ряда кислот характерны специфические свойства. Все кислоты имеют определенную окраску в индикаторах.

Рассмотрим подробнее общие свойства кислот.

Диссоциация

Кислоты — это электролиты, которые при диссоциации образуют катионы водорода и анионы кислотного остатка. Диссоциация кислот происходит ступенчато. По способности к диссоциации кислоты разделяют на две группы:

Хорошо диссоциирующие (сильные): H2SO4, HCl, HBr, HNO3, HClO4, HI.

Разложение

В результате реакций разложения кислородсодержащих кислот образуются кислотный оксид и вода. Бескислородные кислоты образуют простые вещества. Для разложения некоторых кислот необходимо нагревание или излучение (HCl, HNO3, H3PO4) другие же разлагаются самопроизвольно в момент образования (H2CO3, H2SO3, HNO2).

Взаимодействие кислот с металлами

Металл может вытеснять водород из кислоты только в том случае, если металл стоит левее водорода в ряду активности металлов. Продукты реакции — соль и водород.

Ряд активности металлов

При взаимодействии с кислотами-окислителями, например, азотной, образуется продукт восстановления кислоты, хотя протекание реакции также неоднозначно.

Высокая окислительная способность серной и азотной кислот позволяет им вступать в реакции с металлами. Продукты реакции будут зависеть от активности металла и от концентрации кислот.

Таблица: химические свойства кислот-окислителей

На холоду — пассивация

На холоду — пассивация

Реакция не проходит

На холоду — пассивация

На холоду — пассивация

Взаимодействие кислот с основаниями

Кислоты реагируют с основаниями и амфотерными гидроксидами, в результате образуются соль и вода. Взаимодействие кислот с основаниями называют реакцией нейтрализации.

NaOH + HCl = NaCl + H2O

Взаимодействие кислот с солями

Сильные кислоты вытесняют слабые из растворов их солей, при этом образуются новая соль и новая кислота. Условие протекания реакции кислот с солями — одним из продуктов реакции должны быть нерастворимая соль или слабая кислота, вода, газ.

Взаимодействие кислот с основными и амфотерными оксидами

Кислоты вступают в реакцию с основными и амфотерными оксидами (последние ведут себя как основные оксиды). В результате реакции образуется соль и вода.

Восстановительные свойства бескислородных кислот

Бескислородные кислоты (кроме HF) проявляют восстановительные свойства за счет химического элемента, который входит в состав аниона, при действии на них различных окислителей.

Например, в качестве окислителей для всех галогеноводородных кислот выступают диоксид марганца MnO2, перманганат калия KMnO4, дихромат калия K2Cr2O7.

Результат этих реакций — образование свободных галогенов.

Из галогеноводородных кислот наибольшая восстановительная активность — у йодоводородной. Ее могут окислять оксид железа (III) и соль трехвалентного железа.

Высокая восстановительная активность характерна для сероводородной кислоты, она может быть окислена диоксидом серы.

Способность окрашивать индикаторы

Индикаторы кислот — это специальные вещества, при помощи которых определяют наличие кислот в растворе.

Окраска индикатора в разных средах

Вопросы для самоконтроля

С чем реагируют кислоты?

При каких условиях кислоты взаимодействуют с солями? Приведите пример.

Составьте уравнения реакций и назовите продукты реакций:

Разбавленный раствор серной кислоты реагирует с: медью, хлоридом меди, сульфатом меди, цинком?

Читайте также: