Информатика в экономике доклад

Обновлено: 04.07.2024

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Этапы развития вычислительной техники.

История создания Internet.

Применение информатики и ВТ в экономике.

Список используемой литературы.

1. Этапы развития вычислительной техники.

Потребность в вычислениях возникла у человека давно. А по мере роста потребностей и задач, которые ставило перед собой человечество, росло значение и необходимость вычислений. Эта необходимость и заставила искать пути механизации счета.

В отличии от простейших счетных инструментов, типа счетов или абака (доска с вертикальными прорезями, по которым передвигали какие-нибудь предметы), в арифметической машине вместо предметного представления чисел использовалось их представление в виде углового положения оси или колеса, которое несет эта ось. Одна из первых таких машин была создана в 1642 году французским ученым Блезом Паскалем. Для выполнения арифметических операций Паскаль заменил поступательное перемещение костяшек в абаковидных инструментах на вращательное движение оси (колеса), так что в его машине сложению чисел соответствовало сложение пропорциональных им углов. Машина Паскаля была практически первым суммирующим механизмом, построенным на совершенно новом принципе, при котором считают колеса. Она произвела на современников огромное впечатление.

Труды Паскаля оказали заметное влияние на весь дальнейший ход развития вычислительной техники. Они послужили основой для создания большого количества всевозможных систем суммирующих машин.

В 1694 году Лейбниц создает первый в мире арифмометр - машину, предназначенную для выполнения четырех арифметических действий.. В ее основе лежал принцип ступенчатого валика - цилиндра с зубцами разной длины, которые взаимодействовали со счетным колесом. На этом же принципе в 1820 году был построен арифмометр Томаса - первая счетная машина, которая изготовлялась серийно.

Но как не блестяще был век механических арифмометров, но и он исчерпал свои возможности. Людям нужны были более энергичные помощники. Это заставило искать пути совершенствования вычислительной техники, но уже не на механической, а на электромеханической основе.

Огромные заслуги в деле создания вычислительных машин принадлежат англичанину Чарльзу Бэббиджу. В период между 1820 и 1856 годами он предпринял попытку построить “аналитическую машину”, способную производить серию арифметических действий в определенной последовательности. Основные элементы, предложенные Бэббиджем, такие, как данные и команды, вводимые в машину, условная передача управления, основанная на полученных результатах, были так хорошо разработаны, что в первых ЭВМ, появившихся в середине XX века, они были почти такими же, как у Бебиджа. Он не смог до конца реализовать свои замыслы, так как его идеи намного обогнали технические возможности его времени.

В конце XIX века Герман Холлерит в Америке изобрел счетно-перфорационные машины, данные в которые вводились с помощью перфокарт. Он основал фирму, давшую впоследствии начало известной фирме по производству вычислительной техники IBM.

К 30-м годам XX века стала очевидной связь между релейными схемами и алгеброй логики. На электромагнитных реле создавали логические схемы для вычислительных машин, оперирующих перфокартами. Эти машины могли выполнять довольно сложные арифметические действия.

Во время второй мировой войны ускоренными темпами развивалась электронная техника. Первая чисто релейная машина была создана в 1941 году немецким инженером Цузе. Его машина Ц-3 состояла из 2600 электромагнитных реле, на которых было построено арифметическое устройство и память на 64 двоичных числа. Управлялась машина программой, задаваемой перфорированной ленты. Машина ЭНИАК, построенная Дж. В. Мочли и Д. П. Эккертом, начала работать в 1946 г. В США. В ней было использовано свыше 18 тыс. электронных ламп и 1.5 тыс. реле. Современные теоретические основы построения и функционирования ЭВМ были сформулированы выдающимся математиком Джоном фон Нейманом в 1946-1947 гг. В проекте “Принстонской машины”. Здесь была изложена идея представления обрабатываемых данных и программы обработки в числовой форме, идея размещения данных и программы в памяти машины. Для упрощения логических схем машин фон Нейман предложил использовать двоичную систему счисления.

В 1944 году, американский физик и математик Говард Айкен совместно с группой инженеров фирмы IBM закончил работу над первым вариантом своей универсальной машины, известной под названием “Марк-1”. Машина была передана Гарвардскому университету и эксплуатировалась в течении многих лет. Эта программно управляемая вычислительная машина весом 5 т. и стоимостью 500 тыс. долларов предназначалась для баллистических расчетов ВМС США. Как и машины Цузе, она была построена на электромеханических реле и управлялась при помощи команд, закодированных на бумажной перфоленте. Машина производила умножение 23-значных чисел за 3 с и могла легко настраиваться на решение разнообразных задач оборонного характера, возникающих в ходе войны.

Вообще, всю историю развития вычислительной техники можно разделить на эру простейших машин, эру радиоламп, эру транзисторов и эру интегральных схем. Но в настоящее время более распространено иное деление по периодам развития компьютерной техники - по поколениям машин. Каждому поколению свойственны определенные характеристики.

Предки нынешних машин - ЭВМ первого поколения - ламповые гиганты, вобрали в себя все премудрости электроники 40-х и начала 50-х годов нашего столетия. Жили они не очень долго - до середины 50-х годов. Выпускались же они значительно дольше и эксплуатировались вплоть до 70-х годов.

Характерными чертами машин первого поколения можно считать не только использование электронных ламп в триггерах и вспомогательных схемах, но и некоторые другие особенности. Так, в Кембриджской машине “Эдсак”, построенной в начале 50-х годов, была впервые реализована идея иерархической структуры памяти, т. е. Использовано несколько запоминающих устройств, отличающихся по емкости и быстродействию.

Еще, так сказать, в недрах первого поколения стали зарождаться машины нового типа - второго поколения. Здесь главную роль играют уже полупроводники. Вместо громоздких и горячих электронных ламп стали употребляться миниатюрные и “теплые” транзисторы. Машины на транзисторах обладали более высокой надежностью, меньшим употреблением энергии, более высоким быстродействием. Их размеры настолько сократились, что конструкторы стали поговаривать уже о настольных вычислительных машинах. Появились возможности увеличения в сотни раз оперативной памяти, программирования на так называемых алгоритмических языках. Машин также обладали развитой и совершенной системой ввода-вывода. Но появившиеся в начале 70-х годов машин третьего поколения постепенно оттеснили полупроводниковые машины.

Появление новых ЭВМ неразрывно связано с достижением микроэлектроники, основным направлением развития которой явилась интеграция элементов электронных схем. На одном небольшом кристалле полупроводника площадью в несколько квадратных миллиметров стали изготовлять уже не один, а несколько транзисторов и диодов, объединенных в интегральную схему, ставшей основой машин третьего поколения. Прежде всего произошла миниатюризация размеров машин, а вследствие этого появилась возможность каждый раз увеличивать рабочую частоту и, следовательно, быстродействие машины. Но главным достоинством было то, что электронный мозг перерабатывать теперь не только числа, но и слова, фразы, тексты, т. е. оперировать с буквенно-цифровой информацией. Изменилась форма общения человека с машиной, которою разбили на отдельные независимые модули: центральный процессор и процессоры для управления устройствами ввода-вывода. Это позволило и позволило перейти на мультипрограммный режим работы. И наконец еще одна особенность машин третьего поколения: их стали разрабатывать не поодиночке, а семействами. ЭВМ одного семейства могли отличаться быстродействием, объемом памяти, однако все они являлись конструктивно и программно совместимыми.

В конце 70-х с развитием микроэлектроники появилась возможность создания следующего поколения машин - четвертого поколения. В целом система теперь представляла собой гигантскую иерархическую конструкцию. Электронные процессоры, как кирпичи, составляли структуру ЭВМ. Каждый процессор имел прямой доступ к устройствам ввода-вывода и был снабжен своим местным индивидуальным запоминающим устройством небольшой емкости, но с колоссальной скоростью работы. Наконец вся вычислительная система управлялась центральным управляющим процессором - самостоятельным ЭВМ. По своей сути же принцип работы ЭВМ оставался прежним, просто повысилась степень интеграции электронных схем и появились большие интегральные схемы (БИС). Применение БИС привело к новым представлениям о функциональных возможностях элементов и узлов ЭВМ. В зависимости от программы одна и та же универсальная БИС могла теперь выполнять широкий круг обязанностей: быть и радиоприемником, и сумматором ЭВМ, и блоком памяти, и телевизором.

Развитие этого направления и привело к созданию микропроцессоров, построенных на одном или нескольких кристаллах и содержащих в едином миниатюрном приборе арифметическое устройство, устройство управления и память ЭВМ. Появились микропроцессоры в начале 70-х годов и сразу нашли широкое применение в самых различных областях деятельности человека. На базе микропроцессоров стали строить микроЭВМ и микроконтроллеры. МикроЭВМ представляло собой микропроцессор вместе с запоминающим устройством, устройством ввода-вывода информации и устройствами связи. Эти устройства могут выполняться в виде отдельных БИС и составляют при этом вместе с микропроцессором так называемый микропроцессорный наборный комплект. Если же микропроцессор выполняет функцию управления, то его называют контроллером. В настоящий момент нельзя найти область в которой не применялись бы микропроцессоры.

И наконец пятое поколение ЭВМ получило развитие в конце 80-х годов. Это были принципиально такие же машины, в которых начали использовать сверхбольшие интегральные системы, что позволило увеличить объем памяти, быстродействие, универсальность и другие характеристики.

2. История создания ЭВМ.

В 1960-х годах исследователи начали эксперименты по соединению компьютеров друг с другом и с людьми с помощью телефонных линий, используя фонды Агентства Перспективных Проектов Исследований Министерства Обороны США (U.S Defense Department's Advanced Research Projects Agency- ARPA).

Эта сеть явилась предтечей Internet, - она называлась ARPAnet. ARPAnet была экспериментальной сетью, - она создавалась для поддержки научных исследований в военно-промышленной сфере, - в частности, для исследования методов построения сетей, устойчивых к частичным повреждениям, получаемым, например, при бомбардировке авиацией и способных в таких условиях продолжать нормальное функционирование. Это требование дает ключ к пониманию принципов построения и структуры Internet. В модели ARPAnet всегда была связь между компьютером-источником и компьютером-приемником (станцией назначения).

На связывающиеся компьютеры - не только на саму сеть - также возложена ответственность обеспечивать налаживание и поддержание связи. Основной принцип состоял в том, что любой компьютер мог связаться как равный с равным с любым другим компьютером.

Пока Международная Организация по Стандартизации (Organization for International Standartization - ISO) тратила годы, создавая окончательный стандарт для компьютерных сетей, пользователи ждать не желали. Активисты Internet начали устанавливать IP-программное обеспечение на все возможные типы компьютеров. Вскоре это стало единственным приемлемым способом для связи разнородных компьютеров. Такая схема понравилась правительству и университетам, которые проводят политику покупки компьютеров у различных производителей. Каждый покупал тот компьютер, который ему нравился и вправе был ожидать, что сможет работать по сети совместно с другими компьютерами.

Примерно 10 лет спустя после появления ARPAnet появились Локальные Вычислительные Сети например, такие как Ethernet и др. Одновременно появились компьютеры, которые стали называть рабочими станциями. На большинстве рабочих станций была установлена Операционная Система UNIX. Эта ОС имела возможность работы в сети с протоколом Internet (IP). В связи с возникновением принципиально новых задач и методов их решения появилась новая потребность: организации желали подключиться к ARPAnet своей локальной сетью. Примерно в то же время появились другие организации, которые начали создавать свои собственные сети, использующие близкие к IP коммуникационные протоколы. Стало ясно, что все только выиграли бы, если бы эти сети могли общаться все вместе, ведь тогда пользователи из одной сети смогли бы связываться с пользователями другой сети.

Одной из важнейших среди этих новых сетей была NSFNET, разработанная по инициативе Национального Научного Фонда (National Science Foundation - NSF), аналога нашего Министерства Науки. В конце 80-х NSF создал пять суперкомпьютерных центров, сделав их доступными для использования в любых научных учреждениях. Было создано всего лишь пять центров потому, что они очень дороги даже для богатой Америки. Именно поэтому их и следовало использовать кооперативно. Возникла проблема связи: требовался способ соединить эти центры и предоставить доступ к ним различным пользователям. Сначала была сделана попытка использовать коммуникации ARPAnet, но это решение потерпело крах, столкнувшись с бюрократией оборонной отрасли и проблемой обеспечения персоналом.

Важно отметить то, что усилия NSF по развитию сети привели к тому, что любой желающий может получить доступ к сети. Прежде Internet была доступна только для исследователей в области информатики, государственным служащим и подрядчикам. NSF способствовал всеобщей доступности Internet по линии образования, вкладывая деньги в подсоединение учебного заведения к сети, только если то, в свою очередь, имело планы распространять доступ далее по округе. Таким образом, каждый студент четырехлетнего колледжа мог стать пользователем Internet.

И потребности продолжают расти. Большинство таких колледжей на Западе уже подсоединено к Internet, предпринимаются попытки подключить к этому процессу средние и начальные школы. Выпускники колледжей прекрасно осведомлены о преимуществах Internet и рассказывают о них своим работодателям. Вся эта деятельность приводит к непрерывному росту сети, к возникновению и решению проблем этого роста, развитию технологий и системы безопасности сети.

В действительности Internet не просто сеть, - она есть структура, объединяющая обычные сети. Internet- это “Сеть сетей”. Что включает? Ответ на него меняется со временем. Вначале ответ был бы достаточно прост: “все сети, использующие протокол IP, которые кооперируются для формирования единой сети своих пользователей”. Это включало бы различные ведомственные сети, множество региональных сетей, сети учебных заведений и некоторые зарубежные сети (за пределами США).

Чуть позже привлекательность Internet осознали и некоторые не-IP-сети. Они захотели предоставить ее услуги своим клиентам и разработали методы подключения этих “странных” сетей (например, Bitnet, DECnet и т.д.) к Internet. Сначала эти подключения, названные шлюзами, служили только для передачи электронной почты. Однако, некоторые из них разработали способы передачи и других услуг.

В восьмидесятых годах эта сеть сетей, которая стала известна под именем Internet, развилась до невероятной степени. Сотни, а потом и тысячи колледжей, исследовательских организаций и правительственных ведомств стали присоединять свои компьютеры к этой всемирной Сети. Некоторые предприимчивые любители и компании, не желающие платить высокие цены за доступ к Internet (или не имеющие возможности соответствовать жестким правительственным требованиям для получения такого доступа), научились присоединять свои системы к Internet даже только ради электронной почты и конференций. Некоторые из этих систем стали предлагать доступ к Internet для всех.

Теперь любой владелец компьютера и модема - и некоторой толики настойчивости может открыть себе окно в этот мир.

3. Применение информатики и вычислительной техники в экономике.

Мы все живем в эпоху, когда компьютерные технологии проникли абсолютно во все отрасли человеческой деятельности. Не исключением является и экономика.

В основном применяют модели двух видов. Модели, описывающие какое-либо состояние моделируемого положения, называют статическими. Если моделируются последовательности таких состояний и связи между ними, нужны модели динамические, учитывающие фактор времени и разнообразные по уровню сложности моделируемого явления.

В хозяйственной практике, в планово-экономической работе, в теории экономики возникает множество разнообразных задач, которые решают на экономико-математических моделях, если надо достигнуть углубленного понимания реальных хозяйственных процессов. С помощью этих методов можно разрабатывать планы развития производства, давать практические рекомендации по улучшению пропорций экономики и ее отраслей, рационализировать использование материальных и трудовых ресурсов. А это огромная по своим масштабам система экономических показателей, характеризующих основные соотношения, пропорции и темпы развития производства.

В такой системе требуется отыскать сотни миллионов взаимосвязанных неизвестных. Например, у нас выпускается десятки миллионов разных наименований изделий, на разных предприятиях, по разным технологиям, в разных регионах страны. Также, надо учитывать и износ оборудования на производстве, и ограниченность ресурсов, и темпы научно-технического прогресса, и многое, многое другое. По громоздкости расчетов задача трудно вообразимая даже при современном уровне развития ЭВМ и компьютерных технологий. Вот почему предметом глубокого изучения в экономических исследованиях становится информация. Вовремя полученная и точно обработанная она способствует успеху в работе над решением экономических проблем. Поэтому информационно-поисковые и информационно-справочные системы ориентируются и на удовлетворение нужд экономики. Применение в экономике информационно-справочных сетей позволяет вести мониторинг за различными факторами, обязательную обратную связь между объектом управления и результатами исследования, их корректировку.

Нельзя не отметить, что существенной частью управления хозяйством являются информационные технологии. Без них невозможно ни экономическое планирование производства, ни распределение ресурсов, ни выявление с определенной степенью точности пропорций и связей в экономике, ни осуществление руководства, управления и контроля на предприятии, в отрасли, в регионе, в целом в экономике.

4.Список используемой литературы.

М. Г .Мнеян, “Физические принципы работы ЭВМ”, М: Просвещение, 1987г.

В. М. Заварыкин, “Основы информатики и вычислительной техники”, М: Просвещение, 1987 г.

Всегда и во всех сферах своей деятельности человек принимал решения. Важная область принятия решений связана с производством. Чем больше объем производства, тем труднее принять решение и, следовательно, легче допустить ошибку. Возникает естественный вопрос: нельзя ли во избежание таких ошибок использовать ЭВМ? Ответ на этот вопрос дает наука, называемая кибернетика.

Важнейшей отраслью кибернетики является экономическая кибернетика — наука, занимающаяся приложением идей и методов кибернетики к экономическим системам.

Экономическая кибернетика использует совокупность методов исследования процессов управления в экономике, включая экономико- математические методы.

В настоящее время применение ЭВМ в управлении производством достигло больших масштабов. Однако, в большинстве случаев с помощью ЭВМ решают так называемые рутинные задачи, то есть задачи, связанные с обработкой различных данных, которые до применения ЭВМ решались так же, но вручную. Другой класс задач, которые могут быть решены с помощью ЭВМ — это задачи принятия решений. Чтобы использовать ЭВМ для принятия решений, необходимо составить математическую модель.

Так ли необходимо применение ЭВМ при принятии решений?

Возможности человека достаточно разнообразны. Если их упорядочить, то можно выделить два вида: физические и умственные. Так уж устроен человек, что того, чем он обладает, ему мало. И начинается бесконечный процесс увеличения его возможностей. Чтобы больше поднять, появляется одно из первых изобретений — рычаг, чтобы легче перемещать груз — колесо. В этих орудиях пока еще используется только энергия самого человека. Со временем начинается применение внешних источников энергии: пороха, пара, электричества, атомной энергии. Невозможно оценить, насколько используемая энергия внешних источников превышает сегодня физические возможности человека. Что же касается умственных способностей человека, то, как говорится, каждый недоволен своим состоянием, но доволен своим умом. А можно ли сделать человека умнее, чем он есть ? Чтобы ответить на этот вопрос, следует уточнить, что вся интеллектуальная деятельность человека может быть подразделена на формализуемую и неформализуемую.

Подготовка к олимпиаде по экономике. Решение задач

Формализуемой называют такую деятельность, которую выполняют по определенным правилам. Например, выполнение расчетов, поиск в справочниках, графические работы, несомненно могут быть поручены ЭВМ. И как все, что может делать ЭВМ, она это делает лучше, то есть быстрее и качественнее, чем человек.

Неформализуемой называют такую деятельность, которая происходит с применением каких-либо неизвестных нам правил. Мышление, соображение, интуиция, здравый смысл — мы пока еще не знаем, что это такое, и естественно, все это нельзя поручить ЭВМ, хотя бы потому, что мы просто не знаем, что поручать, какую задачу поставить перед ЭВМ.

Современные ЭВМ отвечают самым высоким требованиям. Они способны выполнять миллионы операций в секунду, в их памяти могут быть все необходимые сведения, комбинация дисплей-клавиатура обеспечивает диалог человека и ЭВМ. Однако не следует смешивать успехи в создании ЭВМ с достижениями в области их применения. По сути, все что может ЭВМ — это по заданной человеком программе обеспечить преобразование исходных данных в результат. Надо четко себе представлять, что ЭВМ решения не принимает и принимать не может. Решение может принимать только человек-руководитель, наделенный для этого определенными правами. Но для грамотного руководителя ЭВМ является великолепным помощником, способным выработать и предложить набор самых различных вариантов решений. А из этого набора человек выберет тот вариант который с его точки зрения окажется более пригодным. Конечно, далеко не все задачи принятия решений можно решить с помощью ЭВМ. Тем не менее, даже если решение задачи на ЭВМ и не заканчивается полным успехом, то все равно оказывается полезным, так как способствует более глубокому пониманию этой задачи и более строгой ее постановке.

Этапы решения задачи.

  1. Выбор задачи
  2. Составление модели
  3. Составление алгоритма
  4. Составление программы
  5. Ввод исходных данных
  6. Анализ полученного решения

Чтобы человеку принять решение без ЭВМ, зачастую ничего не надо. Подумал и решил. Человек, хорошо или плохо, решает все возникающие перед ним задачи. Правда никаких гарантий правильности при этом нет. ЭВМ же никаких решений не принимает, а только помогает найти варианты решений. Данный процесс состоит из следующих этапов:

Задача: Решение задач по налогам и налогообложению и ответы на тест

. налог на доходы физических лиц; б) земельный налог; в) транспортный налог; г) акцизы. Какой налог является местным? а) налог на добычу полезных ископаемых; б) налог на добавленную стоимость; в) налог на имущество физических лиц; (К местным налогам относятся: земельный налог; налог на имущество физических лиц; налог на рекламу; налог на .

Решение задачи, особенно достаточно сложной — достаточно трудное дело, требующее много времени. И если задача выбрана неудачно, то это может привести к потере времени и разочарованию в применении ЭВМ для принятия решений. Каким же основным требованиям должна удовлетворять задача ?

  1. Должно существовать как минимум один вариант ее решения, ведь если вариантов решения нет, значит выбирать не из чего.
  2. Надо четко знать, в каком смысле искомое решение должно быть наилучшим, ведь если мы не знаем чего хотим, ЭВМ помочь нам выбрать наилучшее решение не сможет.

Выбор задачи завершается ее содержательной постановкой. Необходимо четко сформулировать задачу на обычном языке, выделить цель исследования, указать ограничения , поставить основные вопросы на которые мы хотим получить ответы в результате решения задачи.

Здесь следует выделить наиболее существенные черты экономического объекта, важнейшие зависимости, которые мы хотим учесть при построении модели. Формируются некоторые гипотезы развития объекта исследования, изучаются выделенные зависимости и соотношения. Когда выбирается задача и производится ее содержательная постановка, приходится иметь дело со специалистами в предметной области (инженерами, технологами, конструкторами и т.д.).

Эти специалисты, как правило, прекрасно знают свой предмет, но не всегда имеют представление о том, что требуется для решения задачи на ЭВМ. Поэтому, содержательная постановка задачи зачастую оказывается перенасыщенной сведениями, которые совершенно излишни для работы на ЭВМ.

2. Составление модели

Под экономико-математической моделью понимается математическое описание исследуемого экономического объекта или процесса, при котором экономические закономерности выражены в абстрактном виде с помощью математических соотношений.

Основные принципы составления модели сводятся к следующим двум концепциям:

  1. При формулировании задачи необходимо достаточно широко охватить моделируемое явление. В противном случае модель не даст глобального оптимума и не будет отражать суть дела. Опасность состоит в том, что оптимизация одной части может осуществляться за счет других и в ущерб общей организации.
  2. Модель должна быть настолько проста, насколько это возможно. Модель должна быть такова, чтобы ее можно было оценить, проверить и понять, а результаты полученные из модели должны быть ясны как ее создателю, так и лицу, принимающему решение.

На практике эти концепции часто вступают в конфликт, прежде всего из-за того, что в сбор и ввод данных, проверку ошибок и интерпретацию результатов включается человеческий элемент, что ограничивает размеры модели, которая может быть проанализирована удовлетворительно. Размеры модели используются как лимитирующий фактор, и если мы хотим увеличить широту охвата, то приходится уменьшать детализацию и наоборот.

Введем понятие иерархии моделей, где широта охвата увеличивается, а детализация уменьшается по мере того, как мы переходим на более высокие уровни иерархии. На более высоких уровнях в свою очередь формируются ограничения и цели для более низких уровней.

Модели экономического прогнозирования

. виды моделей экономического и социального прогнозирования могут классифицироваться . универсальным способом прогнозирования и планирования в условиях, . модели; межотраслевые модели; модели воспроизводства основных фондов; модели движения инвестиционных потоков; модели уровня жизни и структуры потребления; модели распределения заработной платы и доходов и др. При использовании этих моделей необходимо .

При построении модели необходимо учитывать также и временной аспект: горизонт планирования в основном увеличивается с ростом иерархии. Если модель долгосрочного планирования всей корпорации может содержать мало каждодневных текущих деталей то модель планирования производства отдельного подразделения состоит в основном из таких деталей.

При формулировании задачи необходимо учитывать

Если моделируется динамический (многоэтапный) процесс, то размеры модели увеличиваются соответственно числу рассматриваемых периодов времени (этапов).

Такие модели обычно идейно просты, так что основная трудность заключается скорее в возможности решить задачу на ЭВМ за приемлемое время, чем в умении интерпретировать большой объем выходных данных. с Зачастую бывает достаточно построить модель системы в какой-то заданный момент времени, например в фиксированный год, месяц, день, а затем повторять расчеты через определенные промежутки времени. Вообще, наличие ресурсов в динамической модели часто оценивается приближенно и определяется факторами, выходящими за рамки модели. Поэтому необходимо тщательно проанализировать, действительно ли необходимо знать зависимость от времени изменения характеристик модели, или тот же результат можно получить, повторяя статические расчеты для ряда различных фиксированных моментов.

3. Составление алгоритма.

Алгоритм — это конечный набор правил, позволяющих чисто механически решать любую конкретную задачу из некоторого класса однотипных задач. При этом подразумевается:

Примеры похожих учебных работ

Типы моделей экономического человека

. и других психологических факторов, искажающих логику рационального расчета. 3. Краткий обзор альтернативных моделей экономического человека Основное течение, ядром которого является неоклассический подход, господствует в современной западной .

Модели поведения человека и их роль в экономическом развитии. Модель ограниченной .

Модель экономического человека

. определенное (явное или неявное) представление о поведении человека присутствует в любой экономической работе. 1. МОДЕЛЬ ЭКОНОМИЧЕСКОГО ЧЕЛОВЕКА В ОРТОДОКСАЛЬНОМ ЭКОНОМИКСЕ Экономическая теория со времени своего возникновения как самостоятельной .

Модель поведения человека в экономической теории

Задача: Решение задач по налогам и налогообложению и ответы на тест

. налог является федеральным? а) налог на имущество организаций; б) земельный налог; в) налог на прибыль организаций. ( К федеральным налогам и сборам: Налог на добавленную стоимость; Налог на прибыль; Акцизы; Налог на доходы физических лиц; Налог на .

Экономический человек

Гост

ГОСТ

Экономическая информатика — это научное направление, изучающее информационные системы, которые применяются для выработки и принятия решений в области экономики и бизнеса.

Введение

Под экономической информацией понимается информация, характеризующая производственные отношения в сообществе людей. То есть это данные о ресурсных запасах, управленческих действиях и событиях в финансовой сфере. А экономическая информатика это научная дисциплина, которая изучает информационные системы, используемые для анализа и выработки решений в экономической сфере и области бизнеса, и, кроме того, изучает экономические составляющие таких систем.

Экономическая информатика является новой дисциплиной, которая появилась во второй половине двадцатого века. Своим появлением она обязана бурному прогрессу вычислительной техники и повсеместным её внедрением в экономику и практику.

Экономическая информатика обладает некоторой общей зоной с экономической теорией. Эта совместная сфера носит название экономики информации, которая изучает экономические правила формирования и распределения информации в различных организационных структурах. Для экономической информатики она предоставляет оценку информации и влияние рынков информационных достижений на ценность информационных систем.

Предмет экономической информатики и сфера ее применения

Готовые работы на аналогичную тему

Основой экономической информатики считается прикладное знание, которое требуется для создания информационных систем в экономической сфере и сфере управления в любых областях. Это могут быть бизнес - структуры, некоммерческие и государственные организации, другие направления. Информационная система в экономической информатике — это система, которая предназначена для поиска и хранения, трансляции, переработки и отправки информации пользователям при помощи компьютерного и коммуникативного оборудования, программного обеспечения и необходимых специалистов. С помощью терминов бизнес-процессов описывается воздействие информационных систем на экономические показатели компаний, внедряющих и использующих их.

Разработка информационных систем позволяет создавать новейшие информационные технологические сервисы, изменяющие характеристики процессов бизнеса компаний, их качественные параметры и параметры устойчивости, уровень производительности. Как результат, при успешном внедрении, растут текущие прибыли и долговременная конкурентная способность компаний. Это значит, что анализ процессов бизнеса разнообразных компаний и фирм, а также некоммерческих структур является одной из главных сфер деятельности экономической информатики. Эти разработки состоят из изучения и анализа компонентов процессов бизнеса, их качественных и количественных параметров, применяемых ими сервисов информационных технологий, взаимосвязей процессов бизнеса и их итогов со структурным построением и так далее. По итогам таких работ, выполняется решение ряда базовых задач:

  1. Аналитика действующих процессов бизнеса и их граничных условий.
  2. Выполняется оценка способности информационных систем преодолеть существующие границы.
  3. Формирование прогноза зависимости производительности, качественных показателей, стабильности процессов бизнеса и компании в общем, от информационных систем.
  4. Оптимальный выбор между инсорсингом и аутсорсингом информационной системы, и, кроме того, определение формата аутсорсинга.
  5. Анализ набора сервисов информационных технологий, подверженных влиянию выбранной информационной системы.
  6. Формулировка задачи на проектирование и запуск информационной системы и определение их возможностей.
  7. Определение степени реализации сформулированных задач и реального воздействия информационной системы на экономические показатели компании.

Вместе с процессами бизнеса, экономическая информатика анализирует элементы самой информационной системы, а именно информационные технологии, программы и способы управления. Информационные технологии — это инфраструктурная организация, которая обеспечивает выполнение информационных процессов. Она состоит из набора компьютерных устройств, оборудования для телекоммуникаций, системного программного обеспечения, которое управляет действиями системы, а инструментария для поддержки функционирования приложений. Информационные технологии служат в экономической информатике средством улучшения процессов бизнеса и расширения их возможностей. Но следует заметить, что использование информационных технологий не приводит гарантированно к лучшему функционированию процессов бизнеса. Чтобы этого достичь, необходимо параллельно внедрять различные приложения, совершенствовать сами процессы бизнеса, обучать работников компании и оптимизировать управление информационными системами. Существенным элементом информационных технологий являются так называемые платформы, то есть программные системы, на базе которых разрабатываются программные приложения. Под приложениями понимаются программы специального назначения, которые прямо поддерживают различные сервисы информационных технологий, входящих в состав процессов бизнеса. Такие программные приложения бывают как самостоятельные продукты, так и как часть различных систем управления. На сегодняшний день спроектированы программные приложения буквально для каждой области профессиональной работы компаний и структур, а также управления ими.

Читайте также: