Факторы вызывающие мутации в структуре генотипа доклад

Обновлено: 17.05.2024

Мутации возникают в клетках любых тканей многоклеточного организма и на различных стадиях его развития. По типу клеток, в которых мутации произошли, различают: генеративные и соматические мутации [1].

Генеративные мутации возникают в половых клетках, не влияют на признаки данного организма, проявляются только в следующем поколении.

Соматические мутации возникают в соматических клетках, проявляются у данного организма и не передаются потомству при половом размножении. Мутации, возникающие в соматических клетках, наследуются дочерними клетками, которые образуются в процессе митотических делений. Фенотипические последствия таких изменений проявляются только у самой мутантной особи и только в том случае, если возникшие мутации препятствуют осуществлению специфических функций, свойственных данной клетке. Соматические мутации могут содержаться не во всех клетках организма, т.е. нормальные и мутантные клетки сосуществуют у одного индивидуума, что приводит к мозаицизму — наличию в организме клеток, отличающихся по своему генотипу и его фенотипическим проявлениям от других клеток этого же организма. Сохранить соматические мутации можно только путем бесполого размножения (прежде всего вегетативного).

В зависимости от того, выявлен ли мутаген, вызвавший данную мутацию, или нет, различают индуцированные и спонтанные мутации. Обычно спонтанные мутации возникают естественным путем, индуцированные — вызываются искусственно. В зависимости от уровня наследственного материала, на котором произошла мутация, выделяют: генные, хромосомные и геномные мутации.

Соматические мутации по своей природе ничем не отличаются от генеративных. Различие состоит лишь в проявлении и методах их обнаружения. Чем раньше в онтогенезе возникает соматическая мутация, тем больше оказывается участок ткани, несущие данную мутацию, и чем позднее — тем меньше. Соматическая мутация проявляется мозаично. Особи, несущие участки мутантной ткани, называют мозаиками, или химерами. В силу диплоидности набора хромосом в клетках соматической ткани, проявление мутации возможно только в тех случаях, когда мутантная аллель оказывается доминантной или будет рецессивна и будет находиться в гомозиготном состоянии.

Различий в частоте возникновения соматических и генеративных мутаций не обнаружено. Однако есть факты, что ряд генов мутирует с разной скоростью на разных стадиях онтогенеза. Так если у растений дельфиниума ген лавандовой окраски мутирует на поздней стадии развития цветка в лепестках встречаются одиночные клетки с измененной окраской, а при возникновении той же мутации на ранней стадии она может затрагивать большие по размеру участки — половину лепестка или даже целый цветок.

Ярким примером соматической мутации является окраска шерстного покрова у овцы: черное пятно на фоне коричневой окраски. Эта мутация могла проявиться либо как доминантная, либо как рецессивная при потере части или всей гомологичной хромосомы.

Подобные явления часто встречаются у самцов дрозофилы, у которых иногда часть глаза имеет красные фасетки, а часть — белые. Эта мозаичность связана с возникновением рецессивной мутации в локусе white половой хромосомы во время развития имагинальных дисков глаз. Но появляется она не только у самцов, у которых этот ген в Х-хромосоме находится в гомизиготном состоянии, но и у гетерозиготных самок в силу утраты целой хромосомы, несущей доминантную аллель w + , или потери части хромосомы (дефишенси), несущей ту же аллель. В этом случае рецессивная аллель, теперь уже находясь в гомозиготном состоянии, также может проявиться, но эта химерность будет не следствием мутации гена, а следствием изменений в числе или структуре хромосом.

Исследование соматических мутации в настоящее время приобретает важное значение для изучения причин возникновения рака у человека и животных. Предполагают, что ряд злокачественных опухолей возникает по типу соматических мутаций. Соматические мутации имеют прямое отношение также к выяснению причин старения человеческого организма, так как с возрастом может происходить накопление физиологических мутаций в популяции соматических клеток различных органов. Считают, что очень высокая частота заболеваний раком у людей старшего возраста обусловлена в какой-то мере накоплением соматических мутаций.

Наследственные заболеваний человека связаны с мутациями, приводящими к изменению уровней экспрессии генов [3]. Мутации в определенных генах нарушают функционирование биохимических систем, что приводит к развитию соответствующих патологических состояний организма (рисунок 1).

Рисунок 1 - Генетические последствия мутаций, происходящих в геноме соматических клеток человека на разных стадиях эмбриогенеза Черным цветом закрашены места лока-лизации клонов мутантных клеток разных размеров в организме человека [3].

Рисунок 1 — Генетические последствия мутаций, происходящих в геноме соматических клеток человека на разных стадиях эмбриогенеза Черным цветом закрашены места лока-лизации клонов мутантных клеток разных размеров в организме человека [3]. Если мутации происходят в геноме клеток зародышевой линии человека, все соматические клетки организма-потомка, который развивается из мутантной зиготы, образовавшейся от слияния мутантных гамет, будут содержать эту мутацию. Чем позже в онтогенезе возникает соматическая мутация, тем меньше размер клона мутантных клеток во взрослом организме. Если мутация доминантна, то возникает наследственное заболевание. Если мутация рецессивна, можно говорить о предрасположенности организма — гетерозиготы к соответствующему заболеванию и носительстве мутантного гена.

Организм, у которого действие рецессивной мутации маскируется функционированием полноценного аллеля, фенотипически выглядит нормальным, однако имеет больше шансов дать больное потомство в браке с носителем такого же мутантного гена. Кроме того, может произойти соматическая мутация в соответствующем аллельном гене соматических клеток, что станет причиной развития приобретенного генетического заболевания. Примером таких заболеваний может служить ретинобластома [3].

У организмов, размножающихся исключительно половым путем и имеющих раннее обособление зачаткового пути, соматические мутации не играют роли в эволюции и не представляют какой-либо ценности для селекции. Но у тех организмов, у которых есть бесполое размножение, соматические мутации могут иметь огромное значение, особенно в селекции, так как у таких форм из соматической ткани развиваются половые клетки. Так, например у плодовых и ягодных вегетативно размножаемых растений любая соматическая мутация может дать растение и целый клон с новым мутантным признаком.

Одним из видов соматических мутаций у растений являются почковые мутации, возникающие в меристемных клетках точки роста стебля. В этом случае весь побег, развившийся из этой клетки, будет нести мутантный признак. Многие сорта плодовых растений, винограда, картофеля являются соматическими мутантами. Эти сорта сохраняют свои свойства, если их воспроизводят вегетативным путем, к примеру, прививая обработанные мутагенами почки (черенки) в крону немутантных растений; таким путем размножают, к примеру, бессемянные апельсины. Почковые мутации были известны давно и назывались спортами; от такого спорта И. В. Мичурин получил сорт яблони, названный им Антоновка 600-граммовая

Соматические мутации используют для изучения частоты возникновения видимых мутаций. По мозаичности проявления мутантного признака в тканях можно обнаруживать соматические мутации вплоть до одиночных мутантных клеток. Растения чая в природных условиях характеризуются высокой пластичностью. При этом отмечаются как отдельные модификации, проявляющиеся на кусте, так и целиком измененные формы [4]. Спектр соматических мутаций представлен морфологическими (отклонения по длине, ширине, форме, морфологии листа, длине междоузлий), физиологическими (изменения окраски листа, вегетационного периода, генеративной активностью и урожайности) и пластидными (секториальные и периклинальные химеры) модификациями. Интересны формы с измененной фотосинтетической активностью, улучшенными биохимическими и органолептическими показателями [5]. При анализе растений сухумского района был установлен сорт с наибольшей частотой как соматических, так и структурных мутаций [6]. При этом кариологический анализ сорта и мутантных форм имели стандартный диплоидный набор хромосом (2n=30). В итоге в Сухумском районе были отобраны целиком измененные формы и выделены 23 мутантные формы чая с комплексом ценных признаков (урожайность и биохимические показатели).

Высокой пластичностью характеризуется также карельская береза, которая представлена группой переходных морфологических форм и не имеет четкого дендрологического описания. В естественных условиях B. pendula var. carelica представлена различными вариантами, включая деревья высотой до 25 м или сильно ветвящиеся кустарники с приподнимающимися стволиками до 3 м высотой. Биологические особенности карельской березы связаны с наличием аномальных процессов при делении и дифференцировки камбиальных клеток [7].

При выращивании в условиях Беларуси плантационные культуры березы карельской, представляют собой совокупность морфологических форм: высокоствольные (1а — крупноузорчатая и 1б — шаровидноутолщенная), короткоствольные (11а — пятнистоузорчатая и 11б — лироствольная), кустовидная, кустарниковая и безузорчатая. Соотношение узорчатых и безузорчатых растений в насаждениях березы карельской примерно одинаковое 50:50. Такое широкое формовое разнообразие по росту в высоту, диаметру, а, соответственно, и узорчатости древесины указывает на высокую пластичность данной березы, ее способность произрастать в различных условиях [7].

ВЕДЬМИНЫ МЕТЛЫ, СУВЕЛИ И КАПЫ У ДРЕВЕСНЫХ РАСТЕНИЙ

Ведьмины мётлы — фрагменты кроны растения с аномальным морфогенезом (рисунок 2). Проявляется как образование многочисленных тонких побегов, чаще бесплодных, прорастающих из спящих почек. Обильное ветвление приводит к образованию множества укороченных ветвей с недоразвитыми листьями, которые часто формируют плотные скопления в виде шара или бесформенные. Дерево с ведьминой метлой представляет собой химеру [9]. При этом, отношения между компонентами химеры всегда конкурентные. Метлы, образующиеся в кронах взрослых, вполне сформировавшихся, деревьев обычно недолговечны, а возникшие в верхней части кроны сравнительно молодых растений часто подавляют произведшую их крону и полностью замещают ее собой [10].

Рисунок 2 – Ведьмины метлы на сосне обыкновенной (А), лиственнице европейской (Б), берёзе (В) и ели обыкновенной (Г) [9]

Классической точкой зрения на происхождение ведьминой метлы является заражение растений ржавчинными грибами, микоплазмами, грибами рода Тафрина (на вишне, сливе, березе) или вирусами (на картофеле). По другой версии появление ведьминой метлы связано с инфицированием растений группой бактерий — фитоплазмой. Переносчиком которых являются насекомые. Однако кроме патологических встречаются ведьмины метлы с нормальной жизнеспособностью, высокой долговечностью и полным отсутствием каких-либо патогенов или следов их жизнедеятельности (рисунок 3). Причинами их возникновения являются соматические мутации. Такие нарушения играют решающую роль в видообразовании и выведении сортов.

Рисунок 3 – 5-летние ветви Abies sibirica: НК-П – контроль к паразитарной ведьминой метле; ВМ-П – ведьмина метла паразитарная, ВМ-М – ведьмина метла мутационная; НК-М – контроль к мутационной ведьминой метле [11].

Рисунок 3 – 5-летние ветви Abies sibirica: НК-П – контроль к паразитарной ведьминой метле; ВМ-П – ведьмина метла паразитарная, ВМ-М – ведьмина метла мутационная; НК-М – контроль к мутационной ведьминой метле [11]. Клоны ведьминых мётел хвойных растений используются в селекции для создания декоративных сортов так как отличаются ценными свойствами: высокой жизнеспособностью, замедленным ростом, скороплодностью, обильным плодоношением [12]. При этом в семенном потомстве ведьминых мётел, наблюдается расщепление сеянцев на растения с обычным габитусом и обильно ветвящимися карликами [13]. Установлено, что у растений сосны обыкновенной с ведьминой метлой число геномных и хромосомных мутаций выше, чем у нормальных деревьев. Они содержат триплоидные и тетраплоидные клетки, отличаются большей активностью ядрышкообразующих зон, а также нарушением структуры и функций ядрышек в интерфазных ядрах. В митозе отмечены отстающие и хаотически расходящиеся хромосомы, мосты, с-митоз, а в метафазе митоза обнаружены аномальные формы ядрышек [14].

Специфичная, оригинальная форма растений придает им декоративный вид, что используется в селекции, а получаемые сорта используются в ландшафтном дизайне и при озеленении населенных пунктов (рисунок 4 и 5).

Широко распространены в природе капы – тоже шаровидные или почти шаровидные наросты на стволах (чаще в комлевой части) и ветвях деревьев, поверхность капов покрыта многочисленными спящими почками. Скопление придаточных спящих почек и является причиной образования наплывов древесины. Анатомическое строение древесины капов, как и сувелей, сохраняет черты видоспецифичности. Способность образовывать капы, по мнению большинства исследователей [18], является адаптацией к условиям, затрудняющим семенное возобновление. Спящие почки, дающие в определенных условиях побеги, обеспечивают вегетативное возобновление.

Сувели, капы, ведьми метлы являются аномальностью строения, что проявляется во внешней морфологии, в то время как анатомические особенности проводящих элементов в основном сохраняют видовую специфику, меняются преимущественно их количественные и топологические особенности. Например, во вторичной ксилеме сувелей, капов и множества других наростов, образующихся на стеблях древесных растений под влиянием различных агентов и факторов среды, структурные изменения касаются в основном пространственной организации как паренхимных, так и прозенхимных клеток [9].

Подобные аномалии описаны у растений в зоне отчуждения вследствие аварии на Чернобыльской атомной станции в первые годы [20] и наблюдаются в настоящее время (рисунок 6).

Рисунок 6 – Изменение морфологических форм растений, произрастающих на лугу ур. Учитель (внп. Масаны): А – изменение хлорофильной пигментации хвои сеянцев сосны, Б-Г – морфозы сосны, Д – искривление стебля Oenothera biennis L.
(фотографии из личного архива Н.В. Шамаль)

Литература

© Наталья Шамаль, старший научный сотрудник лаборатории моделирования и минимизации антропогенных рисков

Изменения признаков организма, которые определяются генотипом и сохраняются в ряду поколений (мутации). Сходство между комбинативной и мутационной изменчивостью. Химические и физические факторы, вызывающие наследственные изменения - мутагены, их виды.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 05.11.2014
Размер файла 26,4 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

по биологии на тему

Ханнанов Вадим, студент группы 1Э-1

Мутагены и мутации

К наследственной изменчивости относят изменения признаков организма, которые определяются генотипом и сохраняются в ряду поколений. Наследственные изменения называют мутациями.

Мутации возникают вследствие изменения структуры гена или хромосом и служат единственным источником генетического разнообразия внутри вида. Однако бесконечное разнообразие генотипов живых организмов, уникальность каждого генотипа обусловлены комбинативной изменчивостью -- перекомбинацией хромосом в процессе полового размножения и участков хромосом в процессе кроссинговера. При этом типе изменчивости сами гены не изменяются, изменяются их сочетания и характер взаимодействия в генотипе.

Мутации бывают доминантные и рецессивные. Большинство мутаций рецессивны и не проявляются у гетерозигот. Мутации в данных условиях оказываютсявредными, так как вносят нарушения в тонко сбалансированную систему биохимических реакций.

Мутации, резко снижающие жизнеспособность, частично или полностью останавливающие развитие, называются полулетальными или летальными. У человека к таким мутациям относятся ген гемофилии и ген серповидно-клеточной анемии.

Если мутация возникает в половых клетках, то она обнаруживается только в следующем поколении. Такие мутации называют генеративными. Мутации, образующиеся в результате замены одного или нескольких нуклеотидов в пределах одного гена и приводящие к изменению строения белков, называются генными.

Хромосомные мутации возникают вследствие утраты части хромосомы. Если оторвавшийся участок может присоединиться к негомологичной хромосоме, то образуется новая комбинация генов.

К мутациям относится также изменение числа хромосом. Вследствие нерасхождения какой-либо пары гомологичных хромосом в мейозе одна из образовавшихся гамет содержит на одну хромосому меньше, а другая на одну хромосому больше, чем в нормальном гаплоидном наборе. При слиянии с другой гаметой возникает зигота с меньшим или большим числом хромосом по сравнению с диплоидным набором, характерным для вида.

Полиплоидия - увеличение хромосомного набора у простейших и у растений. Она влечет за собой повышение жизнеспособности, плодовитости и других жизненных свойств.

Мутация - это спонтанное изменение генетического материала. Мутации возникают под действием мутагенных факторов:

а) физических (радиация, температура, электромагнитное излучение);

б) химических (бензопирен, нитриты, мельдегид);

в) биологических (вирусы).

Мутации бывают полезные, вредные и нейтральные. Полезные мутации ? мутации, которые приводят к повышенной устойчивости организма. Вредные мутации: глухота, дальтонизм. Нейтральные мутации: мутации никак не отражаются на жизнеспособности организма.

Мутации бывают соматические и генеративные. Соматические возникают в соматических клетках и затрагивают лишь часть тела. Они будут наследоваться следующим поколениям при вегетативном размножении. Генеративные: эти мутации происходят в половых клетках. Генеративные мутации делятся на ядерные и внеядерные.

Мутации подразделяются на генные, хромосомные, геномные.Генные мутации (точковые) происходят в результате потери нуклеотида, вставки нуклеотида, замены одного нуклеотида другим. Может произойти делеция - потеря участка хромосомы, дупликация - удвоение участка хромосомы, инверсия - поворот участка хромосомы на 1800, транслокация - это перенос части или целой хромосомы на другую хромосому. Геномные мутации приводят к изменению числа хромосом. Различают анеуплоидию и полиплоидию. Анеуплоидия связана с изменением числа хромосом на несколько хромосом:

Полиплоидия - это изменение числа хромосом, кратное гаплоидному набору.Организмы могут быть автоплоидными (одинаковые хромосомы) и аллоплоидными (разные наборы хромосом).

Сходство между комбинативной и мутационной изменчивостью заключается в том, что в обоих случаях потомство получает набор генов каждого из родителей. В результате мутаций могут возникать полезные признаки, которые под действием естественного отбора дадут начало новым видам и подвидам.

Спонтанные (случайные) - мутации, возникающие при нормальных условиях жизни. Спонтанные мутации возникают у человека в соматических и генеративных тканях.

Генные (точковые) мутации затрагивают один или несколько нуклеотидов, при этом один нуклеотид может превратиться в другой, может выпасть, продублироваться, а группа нуклеотидов может развернутся на 180 градусов.

Геномные мутации. Главная отличительная черта геномных мутаций связана с нарушением числа хромосом в кариотипе. Эти мутации так же подразделяются на два вида: полиплоидные анеуплоидные.

Полиплоидные мутации ведут к изменению хромосом в кариотипе, которое кратно гаплоидному набору хромосом.

Анеуплоидные мутации приводят к изменению числа хромосом в кариотипе, не кратное гаплоидному набору.

Хромосомные мутации приводят к изменению числа, размеров и организации хромосом, поэтому их иногда называют хромосомными перестройками. Хромосомные перестройки делятся на внутри- и межхромосомные. К внутрехромосмным относятся:

Дубликация - один из участков хромосомы представлен более одного раза.

Делеция - утрачивается внутренний участок хромосомы.

Инверсия - повороты участка хромосомы на 180 градусов.

Реципрокные - обмен участками негомологичных хромосом.

Нереципрокные - изменение положения участка хромосомы.

Дицентрические - слияние фрагментов негомологичных хромосом.

Центрические - слияние центромер негомологичных хромосом.

мутаген мутация изменчивость

Мутагены-- химические и физические факторы, вызывающие наследственные изменения-- мутации.

По происхождению мутагены классифицируют на эндогенные, образующиеся в процессе жизнедеятельности организма и экзогенные-- все прочие факторы, в том числе и условия окружающей среды.

По природе возникновения мутагены классифицируют на физические, химические и биологические:

моделированное радиоизлучение и электромагнитные поля;

чрезмерно высокая или низкая температура.

окислители и восстановители (нитраты, нитриты, формы кислорода);

алкилирующие агенты (иодацетамид);

пестициды (гербициды, фунгициды);

некоторые пищевые добавки (углеводороды, цикламаты);

продукты переработки нефти;

лекарственные препараты (например, цитостатики, препараты ртути, иммунодепрессанты).

К химическим мутагенам условно можно отнести и ряд вирусов (мутагенным фактором вирусов являются их нуклеиновые кислоты-- ДНК или РНК)

специфические последовательности ДНК-- транспозоны;

некоторые вирусы (вирус кори, краснухи, гриппа);

продукты обмена веществ (продукты окисления липидов);

антигены некоторых микроорганизмов.

Мутационный процесс является главным источником изменений, приводящим к различным патологиям. Здоровье нынешних будущих поколений людей в значительной степени зависит от того, какой генетический груз получен в наследство от предыдущих, какое количество мутаций накоплено человечеством. Мутагены окружающей среды влияют на величины рекомбинаций наследственных молекул, являющихся также источником наследственных изменений.

Список использованных источников

Высоцкая Л.В.,Дымшиц Г.М. Общая биология 10-11 класс. - М.: Мир, 2001. - 260 с.

Грандуэль Ф., Мутации и мутагены, т. 1. - М.: Мир, 1989. - 312 с.

Поляков В.П., Мутаген. - М.: ВЛАДОС, 2004. - 240 с.

Подобные документы

Исследование молекулярно-цитологических основ мутационной изменчивости. Изучение разнообразия соматических и генеративных мутаций. Выявление причин возникновения мутаций. Значение мутаций в природе и жизни человека. Биологические и физические мутагены.

презентация [19,1 M], добавлен 24.04.2016

Естественные мутаций и индуцированный мутагенез. Влияние лучистой энергии на наследственность. Химические и радиационные мутагены. Природа молекулярных изменений генов во время мутагенеза. Ферменты темновой репарации. Условие появления полной мутации.

реферат [18,7 K], добавлен 13.10.2009

Основные положения учения Дарвина. Эволюционные представления до Чарльза Дарвина. Физические и химические основы явлений наследственности. Факторы, вызывающие мутации на генном уровне. Генетическая инженерия.

реферат [15,5 K], добавлен 25.05.2002

Предпосылки эволюции: изменчивость и наследственность. Формы изменчивости, основные понятия и термины. Наследственные изменения - мутации. Эволюционная характеристика мутаций. Генетические различия между близкими группами. Корреляции.

курсовая работа [280,9 K], добавлен 09.11.2006

Изучение понятия мутации. Отличительные черты генотипической, комбинативной, мутационной изменчивости. Причины мутаций и их искусственное вызывание. Признаки вредных и полезных мутационных процессов. Значение хромосомных и геномных мутаций в эволюции.


МУТАГЕННЫЕ ФАКТОРЫ И ИХ ВЛИЯНИЕ НА ГЕНЕТИЧЕСКИЙ АППАРАТ ЧЕЛОВЕКА.

1 Тюменский государственный медицинский университет Министерства здравоохранения Российской федерации

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

И всё-таки если действие мутагенных факторов достаточно сильно, системы репарации клетки не способны устранить мутацию.

2. Хромосомные мутации. Хромосомные мутации характеризуются изменениями в структуре хромосомы. К хромосомным мутациям относят делецию (утрату участка хромосомы), дупликацию (удвоение одного из участков), инверсию (поворот участка хромосомы на 180 градусов), транслокацию (перенос участка хромосомы на негомологичную ей). 70% генетических патологий связано с возникновением под действием мутагенных факторов хромомсомных мутаций. 3. Геномные мутации. Геномные мутации – это мутации, связанные с изменением числа хромосом в геноме человека. При изменениях такого рода в одних случаях количество наследственного материала остаётся неизменным, как при центрическом слиянии либо разделении (слиянии негомологичных хромосом либо делении одной хромосомы на две соответственно), в других – изменяется. К таким случаям относят анеуплоидию – некратное изменение количества хромосом, и нуллисомию – отсутствие пары гомологичных хромосом. Как правило, отсутствие какой-либо хромосомы делает организм крайне нежизнеспособным, наличие лишних хромосом влечёт за собой серьёзные патологии. Выше была приведена классификация мутация по масштабу изменений. Кроме того, мутации классифицируют по месту возникновения (гаметические или соматические в зависимости от клеток, в которых произошла мутация), по причинам возникновения (спонтанные и индуцированные, то есть вызванные влиянием естественных мутагенов и, соответственно, искусственным воздействием мутагенов на организм, в свою очередь, индуцированные мутации можно разделить на контролируемые и неконтролируемые), по биологическому значению ( благоприятные повышают жизнеспособность и приспособляемость организма, нейтральные не влияют на жизнедеятельность, патогенные приводят либо к гибели, либо к развитию наследственных патологий). 1.2 Мутагенные факторы, виды, причины возникновения. Итак, мутагенным фактором является фактор окружающей среды, способный вызвать мутации. В зависимости от происхождения, мутагены разделяют на классы: 4

физические, химические, биологические и аутомутагенты. Рассмотрим подробнее каждый из них.

Физические мутагены. К физическим мутагенам относят ионизирующее радиационное, рентгеновское, ультрафиолетовое излучения.

Под воздействием ультрафиолетового излучения организмы находятся постоянно вследствие того, оно попадает в атмосферу Земли вместе с лучами Солнца. На живые организмы ультрафиолетовое излучение в малых дозах способно оказывать благотворное влияние: под его воздействием вырабатываются витамины группы D, улучшаются иммунобиологические свойства организма. Однако в больших дозах оно способно оказывать пагубное воздействие на эпидермис, сетчатку глаза.

дезоксирибозофосфатного фрагмента ДНК. Альфа-, бета- и гамма-излучения различаются по проникающей способности, следовательно, и по генетическому эффекту. Так, альфа-излучение останавливается эпидермисом кожи, бета-излучение проникает вглубь тканей на 2-3 сантиметра, а гамма-излучение проходит через все ткани, встречающиеся у него на пути. 5

Химические мутагены. Химическими мутагенами называют химические вещества, способные в ходе вступать в реакцию с компонентами ДНК и тем самым вызывать в ней нарушения, такие как химические перестройки азотистых оснований (дезаминирование, нарушение кольцевой структуры, элиминация), нарушение сахарофосфатного остова молекулы, ковалентное связывание азотистых оснований с алифатическими и ароматическими радикалами. Наиболее важными характеристиками химического мутагенеза являются количественные закономерности зависимости эффекта от концентрации и природы вещества, а также времени воздействия. К химическим мутагенам относят неорганические (азотистую кислоту, соли тяжёлых металлов, сернистый газ, соли азотной кислоты, пероксид водорода) и органические вещества (формальдегид, хлороформ, некоторые алкалоиды, бензол, циклические соединения). Мутагенными являются используемые в сельском хозяйстве пестициды, многие лекарственные препараты (например, производные этиленимина, дихлордиэтиламина, тиофосфамид, дегранол, гормональные препараты, хлоридин, амидопирин). Механизм действия химических мутагенов основан на разрушении химических связей в молекуле ДНК после проникновения его внутрь клетки. Изменённая в ходе химических превращений ДНК (алкилирование, образование димеров и т.д.) реплицируется с нарушениями, что приводит к мутациям. Химические мутагены делят на мутагены прямого и непрямого действия. Последние (промутагены) сами по себе инертны, но в ходе реакций ферментативного окисления способны превращаться в мутагены (например, превращение этилового спирта в канцерогенный ацетальдегид).

Роль мутационного процесса.

Последние несколько десятилетий перед учёными стоит вопрос разрешения проблемы мутагенного загрязнения окружающей среды. Всё живое на планете живёт под влиянием естественного радиационного фона. Роль мутаций сложно переоценить: они являются одной из движущих сил эволюции, обеспечивая биологическим видам наилучшую приспособляемость к меняющимся условиям окружающей среды. Однако деятельность человека заметно повысила содержание мутагенов в окружающей среде. Такие мутагены не только не полезны, но и вредны для организмов: увеличивается частота мутаций, рождается больше нежизнеспособных особей или особей с врождёнными дефектами, передающимися по наследству. В перспективе создание более совершенных систем защиты человека от радиационного излучения, химических веществ и препаратов, не обладающих мутагенными свойствами, разработка методов применения антимутагенов. По мнению экспертов Всемирной Организации Здравоохранения, идеальной стратегией, направленной к сведению до минимума возможности неблагоприятного мутагенного действия, связанного с химическими веществами, было бы осуществление требования обязательного испытания в тест-системах на мутагенность. В разработке методов профилактики и лечения заболеваний, связанных с воздействием радиоактивного излучения, принимает участие клиническая радиология – раздел медицинской радиологии.

Научно-техническая революция преобразовала среду обитания человека, наполнила её обилием мутагенов, способных вызывать необратимые нарушения в генетическом аппарате человека. Собственные системы защиты генетической информации в клетке перестают справляться вследствие обилия воздействия мутагенных факторов различной природы. Проблема загрязнения окружающей среды является проблемой международного масштаба. Необходимо ясно оценивать тенденции загрязнения среды мутагенами и их возможные последствия: повышение уровня мутагенов и токсических веществ может повлечь за собой крупные перестройки экосистем с утратой биологических видов, снижение жизнеспособности живых организмов. Если будет допущено неконтролируемое загрязнение биосферы мутагенами, в принципе, можно будет говорить о возможной угрозе в виде генетической катастрофы для человечества. Охрана генетической информации и борьба за создание полноценных условий для её проявления при развитии каждого человека – это обязательное условие дальнейшего социального прогресса человечества.

Список использованных ресурсов

1. Дубровин, Н. П. Общая генетика, изд. 2-е / Н.П. Дубровин - М.: Наука, 1976. - 572 с.

2. Сюсюкин, А.Е. Клиническая радиология: учебник для вузов / А Сюсюкин, А.Н. Власенко - М.: ГЭОТАР-Медиа, 2008. - 244 с.

3. Мутовин, Г.Р. Клиническая генетика. Геномика и протеомика наследственной патологии: учебное пособие. - изд. 3-е, перераб. и доп./ Г.Р. Мутовин - М.: ГЭОТАР-Медиа, 2010. - 832 с.

4. Бочков, Н.П. Химический мутагенез у человека и прогнозирование его эффектов. / Н.П. Бочков // Генетика и благосостояние человечества. Труды XIV Междунарожного генетического конгресса. - 1981. - с.185-193

5. Айла, Ф. Современная генетика: в 3-х т. Т. 2. / Ф. Айла, Дж. Кайгер; пер. с англ. - М.: Мир, 1998. - 368 с

Происхождение мутаций: геномные, хромосомные, генные мутации

Геномные мутации. Нерасхождение пары хромосом в ходе мейоза вызывает геномные мутации, например трисомию 21 (синдром Дауна). Геномные мутации приводят к хромосомным анеуплоидиям и бывают наиболее частыми мутациями у человека, с частотой 1 случай нерасхождения на 25-50 мейотических делений клетки.

Это минимальная оценка, поскольку последствия большинства таких мутаций настолько серьезны, что анеуплоидные эмбрионы спонтанно прерываются вскоре после зачатия. Геномные мутации также часто выявляют в клетках опухолей.

Хромосомные мутации

Хромосомные мутации, происходящие с частотой приблизительно одна перестройка на 1700 клеточных делений, случаются значительно реже геномных мутаций. Хотя частоты геномных и хромосомных мутаций могут казаться высокими, эти мутации редко передаются от одного поколения следующему, поскольку они обычно несовместимы с жизнью или нормальной репродукцией. Хромосомные мутации также часто обнаруживают в клетках опухолей.

Генные мутации

Генные мутации, включая замены пар оснований, вставки и делеции, возникают по одному из двух основных механизмов: ошибок в нормальном процессе репликации ДНК или вследствие нарушения репарации ДНК после повреждения. Некоторые мутации происходят спонтанно, другие вызываются физическими или химическими агентами, названными мутагенами, поскольку они существенно повышают частоту мутаций.

происхождение мутаций

Ошибки репликации ДНК. Большинство ошибок репликации быстро удаляются из ДНК и корректируются комплексом ферментов репарации ДНК, сначала опознающим, какая из нитей вновь синтезированной двойной спирали содержит неправильное основание, а затем заменяющим его соответствующим комплементарным основанием.

Репарация ДНК должна быть в высшей степени точным процессом; в противном случае число мутаций в организме было бы недопустимым, и наш вид перестал бы существовать. Фермент ДНК-полимераза точно дублирует двойную спираль благодаря строгому правилу комбинации пар оснований (А с Т, С с G) и молекулярной корректировке.

Всего один неправильный нуклеотид попадает в одну из растущих дочерних нитей на 10 миллионов пар оснований (и это при перемещении вдоль хромосомы человека со скоростью около 50 пар оснований в секунду!). Дополнительная проверка ошибок затем корректирует более 99,9% ошибок репликации ДНК. Таким образом, общий показатель мутаций в результате ошибок репликации имеет в высшей степени низкий уровень 10-10 на пару оснований за одно деление клетки.

Поскольку человеческий диплоидный геном содержит приблизительно 6х109 пары оснований ДНК, репликация ошибок приводит менее чем к одной новой мутации пар оснований на деление клетки.

Репарация повреждений ДНК

Считают, что кроме ошибок репликации, от 10 000 до 1 000 000 нуклеотидов на клетку в день повреждаются спонтанными химическими процессами, такими как, например, деметилирование или деаминирование, реакциями с химическими мутагенами (природными или иными) среды и влиянием ультрафиолетового или ионизирующего излучения.

Некоторые, но не все из этих дефектов могут быть исправлены. Даже если повреждение обнаружено и удалено, система репарации может неточно прочитать комплементарную нить и, как следствие, создать мутацию, вводя неправильные основания. Таким образом, в отличие от изменений ДНК, связанных с репликацией, которые обычно корректируются репарационным механизмом, изменения нуклеотидов, возникающие при репарации поврежденной ДНК, часто приводят к стойким мутациям.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Мутации — скачкообразные устойчивые внезапные изменения генетического материала, передающиеся по наследству.

К физическим факторам относят ионизирующее излучение, ультрафиолетовое излучение, повышенную температуру. Под их воздействием происходит повреждение молекул ДНК, что приводит к появлению мутаций.

Химические факторы — это вещества, под действием которых изменяется наследственный материал. Мутагенное действие обнаружено у формальдегида, колхицина, соединений свинца и ртути, некоторых ядохимикатов, компонентов табачного дыма и т. д.

Биологические факторы — живые организмы. Установлено, что мутагенным действием обладают вирусы, а также токсины плесневых грибов.

Спонтанные мутации возникают при действии природных мутагенных факторов среды без участия людей. Они увеличивают разнообразие живых организмов и создают материал для естественного отбора.

Индуцированные мутации появляются при направленном воздействии на организм мутагенных факторов. Применение мутагенных воздействий позволяет увеличить количество мутаций в сотни раз. Так, использование селекционерами химических мутагенов позволило получить полиплоидные формы растений, которые отличаются устойчивостью к неблагоприятным условиям и большей продуктивностью.

grapes-g6f7c929ec_640.jpg

Соматические мутации возникают в любых клетках, кроме гамет. Они затрагивают часть организма (например, разная окраска лепестков в одном цветке, разный цвет глаз у человека и животных).

cat-g2b312409f_640.jpg

Такие мутации не наследуются при половом размножении, но передаются при вегетативном. Широко используются в селекции растений для выведения новых сортов.

Генеративные мутации возникают в первичных половых клетках или в гаметах, передаются по наследству при половом размножении (например, гемофилия, синдром Дауна у человека).

  • летальные (приводят к гибели мутантов);
  • полулетальные (снижают жизнеспособность организма, вызывают наследственные заболевания, сокращают продолжительность жизни);
  • нейтральные (изменяют признак, но не оказывают влияния на жизнеспособность организма);
  • полезные (повышают жизнеспособность организма).

Доминантные мутации проявляются сразу и подвергаются действию естественного отбора (полезные сохраняются, вредные убираются).

Большинство мутаций рецессивно, и проявиться они могут только в гомозиготном состоянии. Вероятность такого события мала, поэтому рецессивные мутации долгое время накапливаются в популяции в скрытом виде.

Читайте также: