Доклад применение векторов в геометрии

Обновлено: 15.05.2024

1. Введение
• 2. История возникновения понятия вектор.
• 3. Применение векторов в прикладн ых науках.
• 3.1 Векторы в математике
• 3.2.Вектор в географии
• 3.3.Векторы в физике
• 3.4.Векторы в навигации.
• 3.5.Векторы в экономике
• 3.6.Векторы в психологии
• 3.7. Векторы в проффесиях
• 4.Заключение
• 5. Литература:
2
3
6
6
8
9
9
11
11
11
12

4. Гипотеза

5. Задачи:

Исследование 1. Знаете ли вы что-либо о
векторах?
45
40
35
30
знаю очень хорошо
25
имею представление
20
плохо знаю эту тему
15
10
5
0
8 класс
9 класс
10 класс

Исследование 2. Как вы думаете , в каких науках больше всего может
быть использован вектор?
45
40
35
математика
30
физика
25
билогоия
география
20
др науки
15
профессии
10
5
0
8 класс
9 класс
10 класс

8. История возникновения понятия вектор.

Лазар Николя Карно также внес
свой вклад в векторное
исчисление.До него
положительные и отрицательные
отрезки рассматривались лишь в
пределах одной прямой, он же
ввел отрезки, имеющие любое
направление, и фактически
проложил путь к векторному
исчислению. Некоторые
введенные Карно термины и
символы, в частности
обозначение вектора с помощью
черты наверху , сохранились и
поныне.
Лаза́р Николя́ Маргери́ т Карно́
(13 мая 1753, Ноле — 2 августа
1823, Магдебург) —
французский государственный
и военный деятель, инженер и
учёный

• В конце 16- начале 17 в. многие
ученые - физики, в том числе
Леонардо да Винчи, и Галилео
Галилей, пользовались
направленными отрезками для
наглядного представления сил.
Формулируя свои законы
движения планет, Кеплер по
существу рассматривает
направленный отрезок, началом
которого является Солнце, а
конец совпадает с движущейся
точкой.
Леона́рдо ди сер Пье́ро да
Ви́ нчи — итальянский и
учёный, изобретатель,
писатель, музыкант

• Галиле́о Галиле́й—
итальянский физик,
механик, астроном,
философ, математик,
оказавший
значительное влияние
на науку своего
времени. Он первым
использовал телескоп
для наблюдения
небесных тел и сделал
ряд выдающихся
астрономических
открытий.

• Иога́нн Ке́плер—
немецкий математик,
астроном, механик,
оптик,
первооткрыватель
законов движения
планет Солнечной
системы.(использовал
векторное
направление)

• В последней четверти 19 в. происходит
слияние, синтез трех путей
(геометрического, алгебраического и
физического) исторического развития и
трех источников формирования
векторного исчисления. Векторное
исчисление становится независимой
ветвью математикиДжоза́йя Уи́ ллард
Гиббс — американский физик,
физикохимик, математик и механик,
один из создателей векторного анализа,
статистической физики, математической
теории термодинамики, что во многом
предопределило развитие современных
точных наук и естествознания в целом.

17. Применение векторов в прикладных науках.

Векторы в географии
• Оказывается, векторы, как отрезки, показывающие направление
нашли своё отражение и в географии. Так, ветер –
характеризуемый величиной и направлением, рассматривается
как вектор. Распределение ветра исследуется в векторной форме.
Таким образом, ветер (горизонтальное движение воздушных
частиц относительно подстилающей поверхности) – векторная
величина и описывается двумя параметрами – скоростью ( м/с) и
направлением. Вектор – модель ветра. Аналогично, с помощью
векторов показывают направление движения воздушных масс в
циклонах и антициклонах.
• С помощью векторов составляют карты миграции птиц и
животных.
• Используя действия над векторами можно рассчитать пролетные
пути перелетных птиц.

19. Мы можем увидеть природное явление- молния, которая как-никак, вектор

20. Векторы в физике

21. Электрический ток- также является вектором

22. Векторы в навигации.

• Часто для навигации в 3D программисты берут единичные
вектора и, путём умножения их на матрицу вида камеры,
получают вектора для навигации. Для навигации в
трёхмерном пространстве, обычно так же необходимо иметь
всего три вектора – один вбок (для стрейфа), один к камере
либо от неё (что бы ходить вперёд/назад) и один вверх, либо
вниз (для прыжков, например).
• В практике судовождения довольно часто встречаются
случаи, когда одновременно с учетом дрейфа судна от ветра
приходится учитывать и снос течением.
• Чтобы не ошибаться в последовательности действия при
совместном учете течения и дрейфа, необходимо помнить, что
в скоростном треугольнике одна из сторон всегда
представляет собой вектор относительной скорости судна. В
данном случае этот вектор направлен по линии пути при
дрейфе.

23. Векторы в экономике

• Векторы можно рассматривать в
качестве элементов любой
природы, в том числе и
экономической. Предположим,
что некоторая текстильная
фабрика должна выпустить в
одну смену 30 комплектов
постельного белья, 150
полотенец, 100 домашних
халатов, тогда производственную
программу данной фабрики
можно представить в виде
вектора, где всё, что должна
выпустить фабрика – это
трехмерный вектор.

24. Векторы в психологии

Все больше обретает
популярность такое
необычное направление, как
системно-векторная
психология, в ней существует
8 вектор:
-звуковой
-зрительный
-кожный и т.д.
Все эти понятия
характеризуют человека, его
характер

Векторы в профессиях
• Мы выяснили, что векторы используются во многих науках для
моделирования самых различных процессов и явлений. Значит, это понятие
потребуется во всех технических профессиях, профессиях, связанных с
компьютерном деле, в медицине, химии и т.д. Векторы нужны для освоения
профессии строителя и архитектора, так как особое место вектору отводится в
сопромате, ведь нагрузка на разные элементы конструкций является
разложением вектора по базису векторов силы тяжести и других приложенных
к конструкции сил. В самолетостроении, судостроении, автомобилестроении
при конструировании транспорта также применяются векторы и их свойства.
• В науке судовождение используются векторы и их свойства для определения
кажущегося ветра во время движения судна. В штилевую погоду на судне,
имеющего ход, всегда ощущается встречный ветер, равный скорости судна. Он
имеет название курсовой ветер и имеет направление, противоположное
движению судна. Таким образом, на движущемся судне наблюдается
кажущийся ветер, вектор которого равен геометрической сумме истинного и
курсового ветров. Для определения направления ветра используется способ
построения векторного треугольника.
• Векторы понадобятся и портному для правильного составления выкроек
одежды

27. Заключение

28. Литература:

• 1. Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Позняк
Э.Г., Юдина И.И. Геометрия. 7 – 9 классы: учебник
для общеобразовательных учреждений.
• 2. Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б.,
Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для
10-11 классов средней школы.
• 3. Бугров Я.С., Никольский С.М. Высшая математика.
Том первый: элементы линейной алгебры и
аналитической геометрии.
• 4. Википедия

Нажмите, чтобы узнать подробности



Придя в школу или на работу, видим направляющие знаки:


Примеры направляющих знаков вы можете увидеть в Приложении 1. Видим, что векторы присутствуют в нашей жизни.

Актуальность изучения данной темы связано с многообразием сфер применения векторов: от искусства до сложных задач моделирования реальных процессов. Понятие вектора используется во многих приложениях математики, таких, как современная алгебра и геометрия, теория функций и теория вероятностей. Учебники по таким, на первый взгляд, далеким от математики предметам, как электротехника, радиотехника, теория антенн и др., очень широко используют векторы.

Я решила выяснить, в каких именно областях науки применяются векторы, насколько это понятие актуально в жизни.

Целью моей работы:

Рассмотреть векторы как математические модели реальных процессов.

Перед собой я поставила такие задачи:

Изучить литературу по данной теме;

Узнать, как осуществляется моделирование с помощью векторов.

Установить, используется ли данное понятие в жизни;

Использование векторов в различных науках:

Векторы — мощный инструмент не только математики, но и физики. Понятие вектора возникает там, где приходится иметь дело с объектами, которые характеризуются величиной и направлением. Многие физические величины, такие, как сила, скорость, ускорение, характеризуются не только числовым значением, но и направлением. Эти величины очень удобно изображать в виде направленных отрезков. На языке векторов формулируются основные законы механики и электродинамики. Чтобы понимать физику, нужно научиться работать с векторами. Векторная алгебра является фундаментом, на котором построена классическая физика. С помощью векторов можно моделировать различные физические процессы. Например, некоторые физические поля (магнитное и электромагнитное, сила тяжести) рассматриваются как векторные поля. Такая модель позволяет применять к изучаемым понятиям удобные методы математических расчётов.

Скорость изучается на уроках математики и на уроках физики, и при решении многих задач на скорость необходимо сделать рисунок, на котором направление движения показывается стрелками. Векторами удобно моделировать движение в одном направлении, в разных направлениях, движение по кругу, движение по воде. Составленная таким образом схема-модель поможет решить задачу.

Пример схем некоторых задач на движение:

Тело с большей скоростью догоняет тело с меньшей скоростью:


Движение в противоположные стороны:


Равномерным движением по окружности называется такое движение, при котором скорость не меняется по модулю, а меняется лишь её направление. При этом вектор ускорения перпендикулярен вектору скорости. Вектор скорости направлен по касательной к окружности.


Еще одна физическая векторная величина, которую я хотела бы рассмотреть – это сила. Сила определяет меру интенсивности воздействия, которое оказывается на тело со стороны других тел или полей. Результат действия силы зависит от направления. На рисунке вы можете видеть модель направления силы тяжести и всемирного тяготения.


В физике можно найти ещё много примеров, где векторы применяются как средство моделирования физических процессов.

Также векторы помогают создавать математические модели некоторых химических процессов. Например, для того, чтобы показать строение атома используются всё те же векторы.

На схеме вы можете видеть строение атома азота:


На таких схемах стрелками изображается электрон, а направление соответствует направлению спина (собственного магнитного момента электрона). Операции над спинами производятся так же, как и операции над векторами, что позволяет трактовать химические процессы языком математики. Примером векторных частиц, имеющих спин служат: фотон, глюон, W- и Z-бозоны, векторные мезоны, ортопозитроний.

Химические реакции записываются с помощью уравнений, в записи которых используются векторы.

Пример, реакция обмена, взаимодействие хлорида кальция и нитрата серебра с образованием осадка хлорида серебра:


CaCl2( ж ) + 2AgNO3( ж ) Ca(NO3)2( ж ) + 2AgCl( тв )

3.3.В биологии

В настоящее время создана векторная модель для доставки в клетки костного мозга гена, кодирующего гранулоцитарный колониестимулирующий фактор человека. Данный белок относится увеличивает продолжительность жизни клеток костного мозга, усиливает функциональную активность зрелых нейтрофилов. Созданный вектор представляет собой многослойную конструкцию. Эффективность описанной векторной модели была доказана опытным путем. При конструировании противовирусных вакцин немаловажное значение имеет создание специального вектора-носителя, обеспечивающего адресную доставку генов и их защиту от действия нуклеаз крови.

В географии

Оказывается, векторы, как отрезки, показывающие направление нашли своё отражение и в географии. Так, ветер – характеризуемый величиной и направлением, рассматривается как вектор. Распределение ветра исследуется в векторной форме. Таким образом, ветер (горизонтальное движение воздушных частиц относительно подстилающей поверхности) – векторная величина и описывается двумя параметрами – скоростью ( м/с) и направлением. Вектор – модель ветра. Аналогично, с помощью векторов показывают направление движения воздушных масс в циклонах и антициклонах.


Вектор также служит моделью всевозможных течений. Горизонтальные перемещения водных масс в морях и океанах называются морскими течениями. К элементам, характеризующим течение, относятся направление и скорость. Значит, течение – векторная величина. С помощью векторов и действий над ними осуществляется учет приливно-отливных течений.

Течение реки, подводные течения океанов показывают с помощью векторов.


С помощью векторов составляют карты миграции птиц и животных.

Используя действия над векторами можно рассчитать пролетные пути перелетных птиц.

Векторы в профессиях.

Я выяснила, что векторы используются во многих науках для моделирования самых различных процессов и явлений. Значит, это понятие потребуется во всех технических профессиях, профессиях, связанных с компьютерном деле, в медицине, химии и т.д. Векторы нужны для освоения профессии строителя и архитектора, так как особое место вектору отводится в сопромате, ведь нагрузка на разные элементы конструкций является разложением вектора по базису векторов силы тяжести и других приложенных к конструкции сил. В самолетостроении, судостроении, автомобилестроении при конструировании транспорта также применяются векторы и их свойства.

В науке судовождение используются векторы и их свойства для определения кажущегося ветра во время движения судна. В штилевую погоду на судне, имеющего ход, всегда ощущается встречный ветер, равный скорости судна. Он имеет название курсовой ветер и имеет направление, противоположное движению судна. Таким образом, на движущемся судне наблюдается кажущийся ветер, вектор которого равен геометрической сумме истинного и курсового ветров. Для определения направления ветра используется способ построения векторного треугольника.


Векторы понадобятся и портному для правильного составления выкроек одежды.

Выполнив работу, я увидела, что векторы находят широкое применение в геометрии и в прикладных науках, где используются для представления величин, имеющих направление (силы, скорости и т. п.).

Вектор может служить моделью для любого явления, характеризующегося величиной и направлением. Так, в физике – это сила, ускорение, скорость; в химии – это изображения строения атома, изображения химических реакций; в биологии – это модель переноса вирусов, процессов клонирования и создания вакцин; в географии – это модель ветра, течения. Таким образом, векторное исчисление является универсальным инструментом, позволяющим создавать математические модели физических, химических и биологических процессов. Векторы широко используются в экономике и компьютерной графике, при построении вычислительных нейронных структур и всем известных популярных социальных сетей. Умение оперировать с объектами посредством векторного исчисления помогает находить удобные и наглядные пути решения сложных задач, поэтому хорошее знание этого раздела школьной математики необходимо каждому, чья будущая профессия связана с техникой, компьютерами, естественными науками, пространственным мышлением.

Башмаков М.А. Что такое вектор?-2-е изд., стер.- М.: Квант, 1976.-221с.

Выгодский М.Я. Справочник по элементарной математике.-3-е изд., стер. - М.: Наука, 1978.-186с.

Гусятников П.Б. Векторная алгебра в примерах и задачах.-2-е изд., стер.- М.: Высшая школа, 1985.-302с.

В.В. Элементарная математика. Повторительный курс.-3-е изд., стер.- М.: Наука,1976.-156с.

Коксетер Г.С. Новые встречи с геометрией.-2-е изд., стер. - М.: Наука,1978.-324с.

Погорелов А.В. Аналитическая геометрия.- 3-е изд., стер. - М.: Квант,1968.-235с.

Нажмите, чтобы узнать подробности

С понятием вектора мы встречаемся чаще,чем сами подозреваем. В данной работе я постаралась максимально изучить, в каких же сферах мы взаимодействуем с ним.

С уверенностью можно сказать, что мало кто из людей задумывается о том, что векторы окружают нас повсюду и помогают нам в повседневной жизни. Рассмотрим ситуацию: парень назначил девушке свидание в двухстах метрах от своего дома. Найдут ли они друг друга? Конечно, нет, так как юноша забыл указать главное: направление, то есть по-научному – вектор. Далее, в процессе работы над данным проектом, я приведу ещё множество не менее интересных примеров векторов.

Целями данного проекта являются приобретение навыков работы с векторами, умение видеть необычное в обычном, выработка внимательного отношения к окружающему миру.

История возникновения понятия вектор

Одним из фундаментальных понятий современной математики является вектор. Эволюция понятия вектора осуществлялась благодаря широкому использованию этого понятия в различных областях математики, механики, а так же в технике.

Конец прошлого и начало текущего столетия ознаменовались широким развитием векторного исчисления и его приложений. Были созданы векторная алгебра и векторный анализ, общая теория векторного пространства. Эти теории были использованы при построении специальной и общей теории относительности, которые играют исключительно важную роль в современной физике.

Понятие вектора возникает там, где приходится иметь дело с объектами, которые характеризуются величиной и направлением. Например, некоторые физические величины, такие, как сила, скорость, ускорение и др., характеризуются не только числовым значением, но и направлением. В связи с этим указанные физические величины удобно изображать направленными отрезками. В соответствии с требованиями новой программы по математике и физике понятие вектора стало одним из ведущих понятий школьного курса математики.[2]

Векторы в математике

Вектором называется направленный отрезок, который имеет начало и конец.[1]

Вектор с началом в точке А и концом в точке В принято обозначать как АВ. Векторы также могут обозначаться малыми латинскими буквами со стрелкой (иногда — чёрточкой) над ними, например .

Вектор в геометрии естественно сопоставляется переносу (параллельному переносу), что, очевидно, проясняет происхождение его названия (лат. vector, несущий). Действительно, каждый направленный отрезок однозначно определяет собой какой-то параллельный перенос плоскости или пространства: скажем, вектор АВ естественно определяет перенос, при котором точка А перейдет в точку В, также и обратно, параллельный перенос, при котором А переходит в В, определяет собой единственный направленный отрезок АВ.

Длиной вектора АВ называется длина отрезка АВ, её обычно обозначают АВ. Роль нуля среди векторов играет нулевой вектор, у которого начало и конец совпадают; ему, в отличие от других векторов, не приписывается никакого направления.

Два вектора называются коллинеарными, если они лежат на параллельных прямых, либо на одной прямой. Два вектора называются сонаправленными, если они коллинеарны и направлены в одну сторону, противоположно направленными, если коллинеарны и направлены в разные стороны.

Операции над векторами

Модуль вектора

Модулем вектора АВ называется число, равное длине отрезка АВ. Обозначается, как АВ. Через координаты вычисляется, как:

=+ +

Сложение векторов

В координатном представлении вектор суммы получается суммированием соответствующих координат слагаемых:




)+>=(a_+b_,a_+b_,a_+b_)>

Для геометрического построения вектора суммы >=+>>c = используют различные правила (методы), однако они все дают одинаковый результат. Использование того или иного правила обосновывается решаемой задачей.

Правило треугольника

Правило треугольника наиболее естественно следует из понимания вектора как переноса. Ясно, что результат последовательного применения двух переносов > и >> некоторой точки будет тем же, что применение сразу одного переноса +>>, соответствующего этому правилу. Для сложения двух векторов> и >> по правилу треугольника оба эти вектора переносятся параллельно самим себе так, чтобы начало одного из них совпадало с концом другого. Тогда вектор суммы задаётся третьей стороной образовавшегося треугольника, причём его начало совпадает с началом первого вектора, а конец с концом второго вектора.

Это правило прямо и естественно обобщается для сложения любого количества векторов, переходя в правило ломаной:

Начало второго вектора совмещается с концом первого, начало третьего — с концом второго и так далее, сумма же векторов есть вектор, с началом, совпадающим с началом первого, и концом, совпадающим с концом - го (то есть изображается направленным отрезком, замыкающим ломаную). Так же называется правилом ломаной.

Для сложения двух векторов > и >> по правилу параллелограмма оба эти векторы переносятся параллельно самим себе так, чтобы их начала совпадали. Тогда вектор суммы задаётся диагональю построенного на них параллелограмма, исходящей из их общего начала.

Правило параллелограмма особенно удобно, когда есть потребность изобразить вектор суммы сразу же приложенным к той же точке, к которой приложены оба слагаемых — то есть изобразить все три вектора имеющими общее начало.

Вычитание векторов

Для получения разности в координатной форме надо вычесть соответствующие координаты векторов:

‚ ->=(a_-b_,a_-b_,a_-b_)>

Для получения вектора разности >=->> начала векторов соединяются и началом вектора >> будет конец <\displaystyle >>, а концом — конец <\displaystyle >. Если записать, используя точки векторов, то AC-AB=BC>-<\overrightarrow >=<\overrightarrow >>.

Умножение вектора на число

Умножение вектора > на число , даёт сонаправленный вектор с длиной в раз больше. Умножение вектора > на число <\displaystyle \alpha , даёт противоположно направленный вектор с длиной в раз больше. Умножение вектора на число в координатной форме производится умножением всех координат на это число:


Скалярное произведение векторовСкалярное

Скалярным произведением называют число, которое получается при умножении вектора на вектор. Находится по формуле:



Скалярное произведение можно найти ещё через длину векторов и угол между ними.

Все прямые химических реакций проходят через начало координат. Любую прямую в пространстве нетрудно выразить векторами, но поскольку прямая химической реакции проходит через начало системы координат, то можно принять, что вектор прямой химической реакции находится на самой прямой и называется радиус-вектором. Начало этого вектора совпадает с началом системы координат. Таким образом, можно сделать вывод: любая химическая реакция характеризуется положением ее вектора в пространстве. Векторы в биологии

Вектором (в биологии) называется организм, переносящий паразита от одного организма-хозяина к другому. Например, вши переносят возбудителей сыпного тифа, крысы – чумы.

Вектор (в генетике) — молекула нуклеиновой кислоты, чаще всего ДНК, используемая в генетической инженерии для передачи генетического материала другой клетке.

Векторы в экономике

Одним из разделов высшей математики является линейная алгебра. Ее элементы широко применяются при решении разнообразных задач экономического характера. Среди них важное место занимает понятие вектора.

Вектор представляет собой упорядоченную последовательность чисел. Числа в векторе с учетом их расположения по номеру в последовательности называются компонентами вектора. Отметим, векторы можно рассматривать в качестве элементов любой природы, в том числе и экономической. Предположим, что некоторая текстильная фабрика должна выпустить в одну смену 30 комплектов постельного белья, 150 полотенец, 100 домашних халатов, тогда производственную программу данной фабрики можно представить в виде вектора, где всё, что должна выпустить фабрика – это трехмерный вектор.

Векторы в психологии

На сегодняшний день имеется огромное количество информационных источников для самопознания, направлений психологии и саморазвития. И не трудно заметить, что все больше обретает популярность такое необычное направление, как системно-векторная психология, в ней существует 8 векторов.

Векторы в повседневной жизни

Я обратила внимание, что векторы, помимо точных наук, встречаются мне каждый день. Так, например, во время прогулки в парке, я заметила, что ель, оказывается, можно рассматривать как пример вектора в пространстве: нижняя её часть – начало вектора, а верхушка дерева является концом вектора. А вывески с изображением вектора при посещении больших магазинов помогают нам быстро найти тот или иной отдел и сэкономить время.

Векторы в знаках дорожного движения

Каждый день, выходя из дома, мы становимся участниками дорожного движения в роли пешехода либо в роли водителя. В наше время практически каждая семья имеет машину, что, разумеется, не может не отразиться на безопасности всех участников дорожного движения. И, чтобы избежать казусов на дороге, стоит соблюдать все правила дорожного движения. Но не стоит забывать того, что в жизни всё взаимосвязано и, даже в простейших предписывающих знаках дорожного движения, мы видим указательные стрелки движения, в математике называемые – векторами. Эти стрелки (векторы) указывают нам направления движения, стороны движения, стороны объезда, и ещё многое другое. Всю эту информацию можно прочитать на знаках дорожного движения на обочинах дорог.

Каждый человек постоянно сталкивается с векторами в повседневной жизни.

Векторы необходимы нам для изучения не только математики, но и других наук.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

МБОУ Одинцовская гимназия №13

Проектная работа по теме

Выполнили ученики 9А класса

Руководитель учитель математики

Что такое вектор и действия над векторами.

Векторы в геометрии, в физике, в других науках.

Векторы в повседневной жизни.

С уверенностью можно сказать, что мало кто из людей задумывается о том, что векторы окружают нас повсюду и помогают нам в повседневной жизни. Рассмотрим ситуацию: парень назначил девушке свидание в двухстах метрах от своего дома. Найдут ли они друг друга? Конечно, нет, так как юноша забыл указать главное: направление, то есть по-научному – вектор.

Далее, в процессе работы над данным проектом, Мы приведём ещё интересные примеры с векторами.

Вообще, мы считаем, что математика – это интереснейшая наука, в познании которой нет границ.

Задачами д анного проекта являются:

- дать понятие –вектор, продемонстрировать действий над векторами;

- показать применение векторов в решении задач по геометрии и физике;

- научить видеть необычное в обычном;

- выработать внимательное отношение к окружающему миру.

Одним из фундаментальных понятий современной математики является вектор. Эволюция понятия вектора осуществлялась благодаря широкому использованию этого понятия в различных областях математики, механики, а также в технике.

Вектор относительно новое математическое понятие.

Интуитивно вектор понимается как объект, имеющий величину, направление и точку приложения. Зачатки векторного исчисления появились вместе с геометрической моделью комплексных чисел ( Гаусс, 1831).

Гибсс - американский физик, физикохимик, математик и механик, один из создателей векторного анализа, статистической физики, математической теории термодинамики, что во многом предопределило развитие современных точных наук и естествознания в целом.

Конец прошлого и начало текущего столетия ознаменовались широким развитием векторного исчисления и его приложений. Были созданы векторная алгебра и векторный анализ, общая теория векторного пространства. Эти теории были использованы при построении специальной и общей теории относительности, которые играют исключительно важную роль в современной физике.

Понятие вектора возникает там, где приходится иметь дело с объектами, которые характеризуются величиной и направлением. Например, некоторые физические величины, такие, как сила, скорость, ускорение и др., характеризуются не только числовым значением, но и направлением. В связи с этим указанные физические величины удобно изображать направленными отрезками.

Понятие вектор

Векторы также могут обозначаться малыми латинскими буквами со стрелкой (иногда — чёрточкой) над ними. Другой распространённый способ записи: выделение символа вектора жирным шрифтом.

Вектор в геометрии естественно сопоставляется переносу ( параллельному переносу ), что, очевидно, проясняет происхождение его названия ( лат. vector , несущий ).

Длина вектора – это и есть длина этого отрезка. Для обозначения длины вектора используются две вертикальные линии по обоим сторонам: |AB|.

Виды векторов.

Единичным называется вектор, длина которого равна 1. Отдельные точки плоскости, пространства удобно считать так называемым нулевым вектором. У такого вектора конец и начало совпадают. Нулевой вектор обычно обозначается как . Длина нулевого вектора, или его модуль равен нулю.

Коллинеарные вектора – вектора, которые параллельны одной прямой или которые лежат на одной прямой.

Сонаправленные вектора. Два коллинеарных вектора a и b называются сонаправленными векторами только тогда, когда их направления совпадают друг другу (направлены в одну сторону): a↑↑b

Противоположно направленные вектора – два коллинеарных вектора a и b называются противоположно направленными векторами, только когда они направлены в разные стороны: a↑↓b.

Компланарные вектора – это те вектора, которые параллельны одной плоскости или те, которые лежат на одной плоскости. С компланарными векторами мы встретимся в 10-11 классах.

Равные вектора. Вектора a и b будут равными, если они будут лежать на одной либо параллельных прямых и их направления и длины одинаковые. То есть, такой вектор можно перенести параллельно ему в каждое место плоскости. Таким образом, два вектора равны, если они коллинеарные, сонаправленые и имеют одинаковые длины:

Действия над векторами.

Суммой векторов: , …называется вектор, получающийся после ряда последовательных сложений: к вектору прибавляется вектор , к полученному вектору прибавляется вектор и так далее.

Это правило многоугольника или правило цепи, которое формулируется из правила треугольника. Из произвольного начала О откладываем вектор , из точки А 1 , как из начала, откладываем вектор , из точки А 2 строим вектор и так далее. Вектор есть сумма векторов .

Теорема. Для любых векторов , справедливы равенства:

1) + = + (переместительный закон).

2) ( + ) + = + ( + ) (сочетательный закон)

Эти законы сложения векторов позволяют нам находить сумму векторов в любом удобном порядке.

Умножение вектора на число

Для векторов существует три вида умножения векторов: скалярное и векторное произведение двух векторов и смешанное произведение трех векторов. Результатом первого и последнего есть число, а результатом векторного произведения – вектор.

Векторы в геометрии.

В геометрии под векторами понимают направленные отрезки. Эту
интерпретацию часто используют в компьютерной графике, строя карты освещения, с помощью нормалей к поверхностям. Так же с помощью векторов можно находить площади различных фигур, например треугольников и параллелограммов, а также объёмы тел: тетраэдра и параллелепипеда. Иногда с вектором отождествляют направление.

Скалярным произведением векторов и называется число, равное произведению длин этих векторов на косинус угла между ними: · = · cos . Если один из векторов нулевой, то скалярное произведение равно нулю.

Таким образом, длина (модуль) произведения векторов численно равна площади параллелограмма, построенного на векторах a и b

Смешанное произведение векторов называется скалярное произведение вектора на векторное произведение векторов и

Геометрический смысл смешанного произведения - модуль смешанного произведения численно равен объему параллелепипеда, образованного векторами ,.

Перечисленные выше свойства векторных операций во многом похожи на свойства сложения и умножения чисел. В этом состоит удобство векторных операций: вычисления с векторами выполняются по хорошо известным правилам. В то же время вектор – геометрический объект, и в определении векторных операций используются такие геометрические понятия, как длина и угол; этим и объясняется польза векторов в геометрии (и её приложений к физике и другим областям знания).

C помощью векторов решаются задачи геометрии. Многие задачи не могли бы решаться иначе, либо решение их было очень затруднительным.

Приведём примеры некоторых из них:

Задача №1 В четырёхугольнике ABCD точки M и N – середины сторон АВ и CD .

Доказать, что середины P , K , G – отрезков BC , MN , AD лежат на одной прямой.

Задача №2 Найти угол, лежащий против основания равнобедренного треугольника, если медианны, проведённые к боковым сторонам, взаимно перпендикулярны.

Задача №3 Дан равнобедренный треугольник МК N . Из вершины К проведена высота КР. Из вершин М и N проведены медианы MF и NE . КР =80, MN = 40. Найти MF и NE .

Векторы в физике.

О, физика, наука из наук!
Все впереди!
Как мало за плечами!
Пусть химия нам будет вместо рук,
Пусть станет математика очами .
Не разлучайте этих трех сестер,
Познания всего в подлунном мире.
Тогда лишь будет ум и глаз остер,
И знанье человеческое шире.

Векторы — мощный инструмент математики и физики. На языке векторов формулируются основные законы механики и электродинамики. Чтобы понимать физику, нужно научиться работать с векторами. В физике, как и в математике, вектор – это величина, которая характеризуется своим численным значением и направлением. В физике встречается немало важных величин, являющихся векторами, например сила, положение, скорость, ускорение, вращающий момент, импульс, напряженность электрического и магнитного полей.

Герман Грассман

Немецкий физик, математик и филолог. (1809-1877)

В области физики Грассману принадлежат работы по акустике и магнитному взаимодействию токов. Общие идеи Грассмана об абстрактных векторных пространствах привели его к открытию
важного положения – возможности рассматривать цветовые ощущения как трехмерные векторы, что лежит в основе современного учения о цвете. (Чёрный цвет имеет координаты (0,0,0), каждому цвету можно поставить в соответствие координаты точки трёхмерного пространства.
Интерпретация вектора, как параллельного переноса, позволяет естественным и интуитивно очевидным способом ввести операцию сложения векторов — как композиции (последовательного

применения) двух (или нескольких) переносов; то же касается и операции умножения вектора на число .


Джеймс Клерк Максвелл — английский физик, создатель классической электродинамики, один из
основоположников статистической физики, выдвинул идею электромагнитной природы света, установил первый статистический закон — закон распределения молекул по
скоростям, названный его именем. Альберт Эйнштейн однажды сказал, что " работа Джеймса клерка Максвелла изменила мир навсегда. "Действительно, Максвелл предоставил первую цветную фотографию и заложил основу для будущего развития телевизионных, радиолокационных, микроволновых и инфракрасных технологий.
Но в каждом учебном предмете вектор рассматривается так, как это удобно для изучаемого вопроса, но суть – одна.

Проведём сравнительный анализ понятия “вектор” и действий над векторами в математике и физике.

Мальчик массой 50 кг, стоя на гладком льду, бросает груз массой

8 кг под углом 60 0 к горизонту со скоростью 5 м/с. Какую скорость приобретет мальчик?

На парашютиста массой 90 кг в начале прыжка действует сила сопротивления воздуха, проекции которой на оси координат Х и Y равны 300 Н и 500 Н. Найти равнодействующую всех сил.

Векторы всюду.

Вектором (в биологии) называется организм, переносящий паразита от одного организма-хозяина к другому. Например, вши переносят возбудителей сыпного тифа, крысы – чумы. Вектор (в генетике) — молекула нуклеиновой кислоты, чаще всего ДНК, используемая в генетической инженерии для передачи генетического материала другой клетке.

Векторы в экономике

Одним из разделов высшей математики является линейная алгебра. Ее элементы широко применяются при решении разнообразных задач экономического характера. Среди них важное место занимает понятие вектора. Вектор представляет собой упорядоченную последовательность чисел. Числа в векторе с учетом их расположения по номеру в последовательности называются компонентами вектора. Отметим, векторы можно рассматривать в качестве элементов любой природы, в том числе и экономической. Предположим, что некоторая текстильная фабрика должна выпустить в одну смену 30 комплектов постельного белья, 150 полотенец, 100 домашних халатов, тогда производственную программу данной фабрики можно представить в виде вектора, где всё, что должна выпустить фабрика – это трехмерный вектор.

Векторы в психологии

На сегодняшний день имеется огромное количество информационных источников для самопознания, направлений психологии и саморазвития. И не трудно заметить, что все больше обретает популярность такое необычное направление, как системно-векторная психология, в ней существует 8 векторов. Системно-векторная психология позиционируется не как отрасль классической психологии или определенное течение, а как отдельная наука изучения типологии личности.

Вектор – это симбиоз физиологических и психологических качеств человека. Это - характер, темперамент, здоровье, привычки индивида.

Векторы в повседневной жизни

Мы обратили внимание, что векторы, помимо точных наук, встречаются нам каждый день, т.е. повседневно. Векторы – указатели, которые помогают нам быстро найти тот или иной объект, отдел и сэкономить время, или стрелки дорожных знаков.

1. Векторы необходимы нам для изучения не только математики, но и других наук.

2. Каждый образованный человек должен знать, что такое вектор, потому что сталкивается с этим понятием не только во время учёбы, но и в повседневной жизни.

Список литературы:

Геометрия: задачи на готовых чертежах для подготовки к ГИА и ЕГЭ: 7-9/Э.Н. Балаян. Изд. 7-е –Ростов н/Д; Феникс, 2015.

Энциклопедический словарь юного математика для среднего и старшего школьного возраста.

Седова Ирина Георгиевна

В работе представлены исторические аспекты векторного исчисления. Приведено решение задач с помощью понятия и свойств вектора.

ВложениеРазмер
primenenie_vektorov_k_resheniyu_zadach_nou_2013.docx 608.19 КБ

Предварительный просмотр:

АДМИНИСТРАЦИЯ ГОРОДА НИЖНЕГО НОВГОРОДА

Муниципальное бюджетное образовательное учреждение

средняя общеобразовательная школа № 138

Научная работа по геометрии

Тема: Применение векторов к решению задач

Работу выполнила: Шарандова Валентина Александровна

ученица 9а класса

Научный руководитель: Седова Ирина Георгиевна

Глава 1. Понятие вектора. 5

1.1.Исторические аспекты векторного исчисления 5

1. 2.Понятие вектора 7

Глава 2. Операции над векторами 11

2.1. Сумма двух векторов 11

2.2. Основные свойства сложения векторов 12

2.3. Сложение нескольких векторов 13

2.4. Вычитание векторов 14

2.5. Модули сумм и разностей векторов 16

2.6. Произведение вектора на число 16

Глава 3. Координаты вектора 20

3.1. Разложение вектора по координатным векторам 20

3.2. Координаты вектора 21

Глава 4. Примирение векторов к решению задач. 23

Список литературы 28

Многие физические величины, например сила, перемещение материальной точки, скорости, характеризуются не только своим числовым значением, но и направлением в пространстве. Такие физические величины называются векторными величинами (или коротко векторами).

Вектор – одно из основных геометрических понятий. Вектор характеризуется числом (длиной) и направлением. Наглядно его можно представить себе в виде направленного отрезка, хотя, говоря о векторе, правильнее иметь в виде целый класс направленных отрезков, которые все параллельны между собой, имеют одинаковую длину и одинаковое направление. Примерами физических величин, которые имеют векторный характер, могут служить скоростью (поступательно движущегося тела), ускорение, сила и др.

Понятие векторы появилось в работах немецкого математика 19 в. Г. Грассмана и ирландского математика У. Гамильтона; затем оно было охотно воспринято многими математиками и физиками. В современной математике и ее приложениях это понятие играет важнейшую роль. Векторы применяются в классической механике Галилея – Ньютона (в ее современном изложении), в теории относительности, квантовой физике, в математической экономике и многих других разделах естествознания, не говоря уже о применении векторов в различных областях математике.

В современной математике и теперь не мало внимания уделяется векторам. С помощью векторного метода решаются сложные задачи. Увидеть использование векторов мы можем в физике, астрономии, биологии и других современных науках. Познакомившись с этой темой на уроках геометрии, мне захотелось рассмотреть её подробнее. Поэтому для себя определяю следующее:

Цель моей работы

  1. Рассмотреть исторический материал по данной теме.
  2. Выделить основные теоремы, свойства и правила.
  3. Научиться решать задачи рассмотренным методом.

ГЛАВА 1. ПОНЯТИЕ ВЕКТОРА.

1.1. ИСТОРИЧЕСКИЕ АСПЕКТЫ ВЕКТОРНОГО ИСЧИСЛЕНИЯ

Таким образом, векторное исчисление – это раздел математики, в котором изучаются свойства операций над векторами. Векторное исчисление подразделяют на векторную алгебру и векторный анализ. Возникновение векторного исчисления тесно связано с потребностями механики и физики.

1.2. ПОНЯТИЕ ВЕКТОРА

Многие геометрические и физические величины полностью определяются, если задана их числовая характеристика. Такими величинами являются длина линии, объем тела, масса, работа, температура и т. д. Число, характеризующее ту или иную величину, получается в результате сравнения ее с выбранным эталоном, принятым за единицу измерения. Такие величины в математике называются скалярными величинами или просто скалярами.

Однако иногда встречаются величины более сложной природы, которые не могут быть полностью охарактеризованы их числовым значением. К подобным величинам относятся сила, скорость, ускорение и т. д. Для полной характеристики указанных величин, кроме числового значения, необходимо указать их направление. Такие величины в математике называются векторными величинами или векторами.

Для графического изображения векторов пользуются направленными отрезками прямой. В элементарной геометрии, как известно, отрезком называется совокупность двух различных точек А и В вместе со всеми точками прямой, лежащими между ними. Точки А и В называются концами отрезка, при этом порядок, в котором они берутся, не существен. Однако если отрезок АВ используется для графического изображения векторной величины, то порядок, в котором указаны концы отрезка, становится существенным. Пары точек АВ и В А задают один и тот же отрезок, но различные векторные величины.

В геометрии вектором называется направленный отрезок, т. е. отрезок, для которого указано, какая из концевых его точек считается первой, какая — второй. Первая точка направленного отрезка называется началом вектора, а вторая точка — концом.

Направление вектора на чертеже отмечается стрелкой, обращенной острием к концу вектора.

В тексте вектор записывается двумя заглавными буквами латинского алфавита со стрелкой наверху. Так, на рисунке 1,а изображены векторы , , , , причем А, С, Е, G — соответственно начала, а В, D, F, Н — концы данных

векторов. В некоторых случаях вектор обозначается также - одной строчной буквой, например, , , (рис. 1,б)

1.2.2. КОЛЛИНЕАРНЫЕ ВЕКТОРЫ

Два вектора АВ и CD называются коллинеарными, если они лежат на одной и той же прямой или на параллельных прямых.

Нуль-вектор считается коллинеарным любому вектору.

На рисунке 1,а векторы , , , попарно коллинеарны. На рисунке 2 векторы и коллинеарны, а и не коллинеарны.

Если ненулевые векторы и коллинеарны, то они могут иметь одно и то же или противоположные направления. В первом случае их называют сонаправленными, во втором случае — противоположно направленными.

На рисунке 1,а векторы и сонаправлены, а и или и противоположно направлены. В дальнейшем мы будем пользоваться следующими обозначениями: запись || (или || ) будет означать, что векторы и коллинеарны; запись (или ) будет означать, что векторы и сонаправлены, а запись — что они имеют противоположные направления. Например, для векторов, изображенных на рисунке 1, а, имеют место соотношения: , , , || , .

1.2.3. МОДУЛЬ ВЕКТОРА

Длиной или модулем ненулевого вектора называется длина отрезка, изображающего данный вектор. Длиной нулевого вектора называется число нуль. Длина вектора обозначается символом | |, или просто АВ (без стрелки наверху!). Длина вектора обозначается так: | | Очевидно, длина вектора равна нулю тогда и только тогда, когда — нулевой вектор. Вектор называется единичным, если его модуль равен единице.

1.2.4. РАВЕНСТВО ВЕКТОРОВ

Два вектора и называются равными, если выполнены следующие условия: а) модули векторов и равны; б) если векторы и ненулевые, то они сонаправлены.

Из этого определения следует, что два нулевых вектора всегда равны; если же один вектор нулевой, а другой отличен от нуля, то они не равны.

Равенство векторов и обозначается так: = .

Понятие равенства векторов обладает свойствами, которые аналогичны свойствам равенства чисел.

Теорема [1.1.] Равенство векторов удовлетворяет следующим условиям:

а) каждый вектор равен самому себе (условие рефлексивности);

б) если вектор равен вектору , то вектор равен вектору (условие симметричности);

в) если вектор равен вектору , а равен вектору , то равен (условие транзитивности).

1.2.5. ПЕРЕНОС ВЕКТОРА В ДАННУЮ ТОЧКУ

Пусть дан некоторый вектор = и произвольная точка А. Построим вектор равный вектору , так, чтобы его начало совпало с точкой А. Для этого достаточно провести через точку А прямую , параллельную прямой EF, и отложить на ней от точки А отрезок AВ, равный отрезку EF. При этом точку В на прямой следует выбрать так, чтобы векторы и были сонаправлены. Очевидно, есть искомый вектор .

Читайте также: