Доклад по теме эвристическая программа галилея

Обновлено: 30.06.2024

Галилео Галилей - знаменитый ученый эпохи Возрождения, который намного опередил свое время и был родоначальником новых отраслей науки. Он сделал значительный вклад в физику, астрономию, механику, даже химию (известен его опыт с флорентийской красной капустой, которая стала индикатором). Также ученый занимался естествознанием, филологией и даже поэзией.

  • Детство будущего ученого
  • Образование Галилео и первая известность
  • Падуя
  • Флоренция
  • Отношения с католической церковью
  • Последние годы ученого
  • Изобретения
  • Достижения в науках

Детство будущего ученого

Италия - родина ученого. Галилео ди Винченцо Бонайути де Галилей появился на свет 15.02.1564 г. в Пизе, в аристократической семье. Винченцо Галилей, его отец, играл на лютне и писал научные статьи о музыке. Мать, Джулия Амманати, была домохозяйкой. Род со временем обеднел. Информации о его раннем детстве мало. Кроме Галилео, в семье росло еще две сестры (Вирджиния и Ливия) и младший брат (Микеланджело).

Рис. 1. Галилео Галилей. Доменико Тинторетто. 1605—1607 гг.

Рис. 1. Галилео Галилей. Доменико Тинторетто. 1605—1607 гг. Галилео с ранних лет проявлял разносторонние таланты: к рисованию, литературе, музыке, механике. Его интересовало устройство вещей. В 1572 г. семья в поисках лучшей жизни перебралась во Флоренцию, где почитались наука и искусство, благодаря влиянию Медичи. Начальное образование Галилео получил при монастыре бенедиктинцев Валломброза, куда он пошел послушником. Юноша считался лучшим учеником класса, но отец не хотел видеть сына священником.

Образование Галилео и первая известность

В 1581 г. (в 17 лет) он вернулся в родной город Пизу и поступил на медицинский факультет университета. Там юный Галилей увлекся математикой, которую раньше глубоко не изучал. Оказалось, она привлекала его больше медицины. Он с головой погрузился в изучение трудов Архимеда, Эвклида. На формирование типа его мировоззрения повлиял также Коперник. Отцу пришлось смириться со сменой медицинского факультета на философский. Хоть Галилео Галилей овладевал новыми знаниями легко, не все преподаватели его жаловали, так как он любил отстаивать свою точку зрения, невзирая на личности и авторитеты . Возможно, поэтому ему не дали закончить обучение бесплатно (у отца закончились деньги). Хотя там была такая практика: способным ученикам давали возможность доучиваться за счет университета.

Рис. 2. Галилей показывает телескоп венецианскому дожу (фреска Дж. Бертини) Галилей приехал назад во Флоренцию без диплома, зато знаменитый, благодаря своим знаниям и весам, позволяющим измерять удельный вес объекта на основе закона Архимеда. Маркиз Гвидобальдо дель Монте взял перспективного юношу под опеку. Маркиз и сам был силен в точных науках и астрономии. Он свел Галилео с герцогом Фердинандом I. Деятельность и ум молодого человека впечатлили герцога, и он определил его придворным ученым с жалованьем. Кроме того, покровитель постарался, чтобы Галилео взяли преподавать в университет г. Болонья. Через некоторое время (1589 г.) он перешел преподавать математику в университет Пизы. Там ученый углубленно изучает механику, проводит исследования, пишет трактаты.

Падуя

После кончины отца в 1591 г. Галилей должен был обеспечивать семью. Так как в Пизе ему мало платили, он переехал в 1592 г. в Падую и стал преподавателем точных наук (за него похлопотал дож Венеции). Галилей и до этого был авторитетным ученым, но отрезок жизни в этом древнем городе - самый активный. Он писал научные труды, изобретал и конструировал приборы, делал открытия в астрономии. На личном фронте также случились изменения. Он стал жить с Мариной Гамба, уроженкой Венеции, не оформляя отношения официально. У них появилось трое детей (сын и 2 дочери).

Рис. 3. Портрет Галилео Галилея работы Оттавио Леони

Флоренция

В 1610 г. из-за нехватки денег семья переезжает во Флоренцию, где Галилею пообещали хороший доход при дворе герцога Тосканы Козимо II. Он числился университетским профессором в Пизе, но фактически учил отпрысков герцога наукам и исполнял роль придворного советника.

Отношения с католической церковью

Католическая церковь давно “точила на него зуб” за научные взгляды, ведь он нахально опровергал учение Аристотеля. После создания телескопа ученый вовсю наблюдал за небесными телами, и каждый раз убеждался в правоте Коперника. У современного человека нет сомнений, что Земля круглая, а планеты вращаются вокруг Солнца. А тогда вид Солнечной системы глазами Коперника и Галилея вызвали шок у простых граждан. Галилео основательно разозлил духовенство, когда доказал правдивость гелиоцентрической системы, а ведь многие религиозные постулаты твердили, что Земля статична, а Солнце движется вокруг нее. Изобретатель имел большой авторитет в мире науки. Поэтому решил, что этот факт и острый ум помогут убедить Папу в том, что подобные взгляды вовсе не подрывают основы католицизма. Галилей отправился в Рим, где его благосклонно приняли, опробовали телескоп, но когда он начал настаивать на правдивости гелиоцентрической системы, святоши взбунтовались. Страна в те времена была подчинена могущественной католической церкви, которая влияла на все. Своим обращением к Кастелли (последователю), где он доказывал свою правоту относительно религии и его мировоззрения, Галилей спровоцировал инквизицию начать гонения на него. Участились доносы. А “Письма о солнечных пятнах”, где он защищал систему Коперника, дали повод завести дело.

Рис. 4. Галилей перед судом инквизиции. Жозеф-Николя Робер-Флери. 1847 год

Важно! В 1616 г. эксперты инквизиции вынесли вердикт, что гелиоцентризм - это ересь. Самого ученого пока не трогали, но учение запретили.

Галилей имел сильных покровителей, но казнь Джордано Бруно, которая состоялась не так давно, остудила его пыл. Долгие годы он работал над произведением, в котором пытался отстаивать свои позиции, не навлекая на себя гнева церкви. Следующий Папа, Урбан VIII, был его давним другом, и Галилей обратился к нему в надежде отменить указ. Папа дружески его принял, но не разделил его идеи. Когда в 1632 г. ученый выпустил “Диалог о двух системах мира”, инквизиция снова взялась за него. Изданную книгу вскоре стали изымать, а Галилею приказали ехать в Рим. Он плохо себя чувствовал, но пришлось ехать, иначе его притянули бы в кандалах. Были допросы, следствие, возможно, пытки, заключение. В результате ученого объявили “сильно заподозренным в ереси” и заключили в тюрьму на неопределенный срок. Через некоторое время его наказание смягчили, учитывая почтенный возраст и дружбу с Папой, архиепископом Пикколомини, и разрешили жить в усадьбе Медичи. А после - отпустили доживать свой век в Арчетри, где в монастыре служили его дочери. За ним неусыпно наблюдала инквизиция, не разрешая принимать гостей и выезжать в город.

Последние годы ученого

Галилей впал в уныние после смерти дочери Вирджинии, которая смотрела за ним, его здоровье значительно ухудшилось. Начавшаяся депрессия и потеря зрения подкосили ученого, но науку он так и не смог бросить, хоть и занимался ею в рамках, дозволенных инквизицией. Последним его опусом были “Беседы и математические доказательства двух новых наук”. Он появился в Голландии, без ведома церкви. 08.01.1642 г. Галилео Галилей умер на 78 году жизни. Был похоронен в Арчетри без шумихи по приказу Папского престола, хотя по завещанию последним пристанищем останков ученого должен был быть склеп в базилике Санта Кроче, где покоилась вся его семья. Почти через 100 лет его останки перенесли в базилику и похоронили рядом с великим Микеланджело.

Рис. 5. Галилей в тюрьме. Автор Жан Антуан Лоран

Изобретения

  1. Гидростатические весы стали первым изобретением. Они предназначались для определения центра тяжести и плотности твердых тел, определения состава металлических сплавов. В 1586 г. Галилей описал принцип их действия и предназначение в сочинении “Маленькие весы”, благодаря чему прославился в научных кругах. Именно после этой первой славы ему стал покровительствовать маркиз Гвидобальдо дель Монте.
  2. Термометр также считается изобретением Галилея (“термоскоп”, 1592 г.). Термометр имел вид малого шара из стекла с припаянной прозрачной трубкой, которую погружали в жидкость. Когда воздух в шаре прогревался (теплом рук или горелкой), воздух вымещал жидкость в трубке. При повышении температуры понижался уровень жидкости. Чем тоньше трубка, тем точнее можно было увидеть незначительные повышения температуры. Считается, что этот прибор позже продолжал разрабатывать Фернандо Медичи (ученик).
  3. Телескоп является одним из самых знаменитых изобретений Галилея. Хотя “зрительная” труба использовалась и раньше, но именно ученый стал изучать с помощью нее небесные тела. Телескопу он обязан своими астрономическими открытиями, да и последующим гонениям инквизиции также. Телескоп представлял собой прибор с 3-кратным увеличением (позже он сделал 32-кратное) с выпуклым объективом и вогнутым окуляром. С его помощью он рассмотрел и описал видимую сторону Луны, обнаружил спутники Юпитера (4 из них), а также то, что Млечный путь - это отдельные звезды. Еще он уверял, что наша планета, как и прочие, делают обороты вокруг Солнца. Ученый открыл и описал затемнения на поверхности дневного светила, что позже изложил в своем трактате. Галилей выяснил, что Венера и Меркурий расположены ближе к Солнцу, чем наша планета, рассмотрел кольца Сатурна и Нептуна. Ученый узнал, что Солнце и Земля вращаются вокруг собственной оси, спутники вращаются вокруг своих планет, а планеты - вокруг Солнца. Наблюдения за Вселенной окончательно убедили Галилео в правильности точки зрения Коперника.
  4. Конструирование микроскопа (“маленького глаза”) также приписывают Галилею. Он состоял из выпуклой и вогнутой линзы. Хотя многократного уменьшения прибор не давал, ученый успешно рассматривал с его помощью насекомых. Свое открытие он показал в Академии Деи Линчеи.
  5. Циркуль как новое изобретение ученого был представлен в научных кругах в 1606 г. Подвижные ножки с центром вращения позволяли изменять масштаб объектов, что стали применять в архитектуре и при создании чертежей.

Рис. 6. Пропорциональный циркуль - изобретение Галилея

Достижения в науках

Галилео Галилей был настолько гениальным ученым, что оставил после себя значимый след в разных отраслях наук.

Физика

  • относительности для равномерного и прямолинейного движения;
  • постоянства ускорения силы тяжести.

Математика

Знания по математике Галилей успешно применял в других науках. Кроме того, свои интересные умозаключения о теории вероятности он изложил в труде “Рассуждения об игре в кости”. Также ученый в “Беседах о двух новых науках” изложил свои исследования и расчеты на тему натуральных чисел и их квадратов.

Философия и мировоззрение

Если кратко, то основные его идеи о видении мира в том, что он существует вне зависимости от нашего сознания. Материя постоянна и Вселенная является бесконечной. В окружающем мире ничто не исчезает и не возникает из ниоткуда. Просто происходят изменения состояния природных объектов или их составляющих. Материя, которая непрерывно двигается, представляет собой комплекс атомов, которые неделимы. И все движения в природе, космосе, подчиняются законам механики. По Галилею цель науки - найти причины природных явлений. Наблюдения и опыт - основа познания. Многие его открытия появились на свет лишь благодаря тому, что он полагался на собственные опыты, наблюдения, эксперименты, а не на установленные признанными авторитетами догмы. Истинными философами Галилей считал тех, кто “изучает книгу природы” сам, а не зубрил то, что утверждали признанные “светила” науки.

Важно! Несмотря на его прогрессивные научные знания и открытия, Галилей был послушным католиком и все же допускал в причине вещей божественное начало. Он четко разделял веру и науку.

Актуальность данной работы связана с тем, что основы нового типа мировоззрения, новой науки были заложены Галилеем.

Цель данной работы – рассмотреть биографию Г. Галилея и его роль в становлении классической науки.

Для достижения данной цели нами были поставлены следующие задачи:

1. Проанализировать литературу по данной теме.

2. Познакомиться с происхождением Галилея, его детством и юностью.

3. Рассмотреть научные познания в средние века.

4. Изучить роль Галилея в современной науке.

Объектом исследования является процесс становления классической науки.

Предмет исследования – роль Галилея в становлении классической науки.

Глава 1. Происхождение Галилея, его детство и юность.

Галилео Галилей, основатель современной наблюдательной и опытной науки, был старшим из шестерых детей Винченцо и Юлии Галилео и родился 18 февраля 1564 года в итальянском городе Пизе. Отец его, бедный дворянин, обремененный большим семейством, не имел никакого состояния, и средства к жизни добывал личным трудом, живя большей частью во Флоренции, где он давал частные уроки музыки. Он имел некоторые познания в математике и любил эту науку, но, не имея ни средств, ни досуга, не мог заниматься ею и старался отвлечь от этого и своего сына, основательно полагая, что для занятия столь привлекательной наукой, могущей легко овладеть всем вниманием человека, необходимо быть несколько обеспеченным в средствах к жизни. В 1564 году он женился на дочери Козмы Вентури, Юлии; плодом этого брака и был Галилей. Кроме него Винченцо имел еще двух сыновей и трех дочерей.

Из своего положения и обстановки Галилей сумел извлечь все, что только было можно. Дело, которым занимался и жил его отец, он изучил, по-видимому, в совершенстве и превзошел своего отца, потому что, как говорят его биографы, он с течением времени оспаривал пальму первенства в музыке даже у первых преподавателей этого искусства во Флоренции. Но был еще один учебный предмет, которому совершенно никто не учил Галилея; ему научился он без всяких посторонних указаний – самостоятельно; это – рисование. Искусство рисования, живопись так сильно привлекали к себе Галилея, что, по его

собственным словам, он выбрал бы своей профессией живопись, если бы только выбор зависел от него. Галилей действительно считаться знатоком живописи, к которому обращались лучшие художники Флоренции, спрашивая его мнения относительно перспективы, освещения и даже самой композиции своих картин. Даже известные живописцы того времени удивлялись его таланту и знанию дела и, не стесняясь, сознавались, что они во многом обязаны его советам. Может быть, такие отзывы до некоторой степени зависели от его выдающегося положения на другом поприще, чуждом живописи, когда ни о зависти к нему, ни о конкуренции с ним не могло быть и речи и когда, наоборот, упоминание имени Галилея, ссылка на его мнение могли служить отличной рекомендацией для художника.

Галилей в то время, может быть, еще не чувствовал своего великого призвания, а может быть, и не хотел огорчать отца непослушанием, а потому согласился на его желание и поступил в 1583 году 19-летним юношей в Пизанский университет с намерением изучать медицину. По счастью для него, в таинстве этой науки или искусства посвящали не тотчас, а нужно было прослушать до этого приготовительный курс аристотелевской или перипатетической философии, состоящей из метафизики и математики. Последняя, бывшая для него столь долго запретным плодом и потому представлявшая всю прелесть новизны, живо привлекла к себе внимание Галилея. В своей ранней юности он слыхал от отца, что как музыка, так и любимая им живопись много зависят от науки чисел и протяжения – математики. Этих элементарных сведений оказалось, однако, достаточным, чтобы Галилей получил вкус к математике и быстро увидел в ней, по его собственным словам, «самое надежное орудие для изощрения ума, потому что она приучает нас строго

пажам, и, застигнутый в этом подслушивании, обратил на себя внимание Ричи. Как бы то ни было, но молодой Галилей обратился к Ричи с просьбой познакомить его с Евклидом, и – тайно от отца. Ричи согласился заниматься с

Галилеем, но не считал возможным делать этого без согласия его отца, с которым находился в дружеских отношениях; он известил последнего о желании сына и просил его не препятствовать юноше заниматься тем, к чему он чувствует склонность. К счастью Галилея, и в университете был человек, придерживавшийся новых взглядов, - преподаватель физики Яков Манцони, значительно отрешившийся от школьной перипатетической философии и державшийся учения Пифагора. Его уроки не только обратили внимание Галилея на крайнюю неосновательность, и сбивчивость начал, на которых основывалась тогдашняя физика, но побудили его отнестись критически к общепринятым мнениям и пройти в этом отношении несравненно дальше учителя. При своем светлом уме Галилей никак не мог приучить себя пассивно соглашаться с бездоказательными мнениями других и полагаться с на какие-то бы то ни было авторитеты в вопросах, которые можно было проверить размышлением, наблюдением и опытом.

Чего так боялся отец, то и случилось. Познакомившись с Евклидом, Галилей пожелал идти дальше и скоро перешел к Архимеду, сочинения которого подарил ему Ричи, между тем как занятия медициной все больше и больше отодвигались на задний план.

Хватаясь, подобно утопающему, за последнюю соломинку, отец Галилея просит Ричи перестать заниматься с сыном, а последнему запрещает даже видеться с Ричи.

Первое время, когда отец устроил над ним тщательный надзор, Галилей, хотя ему был уже 21 год, не решался открыто идти против его воли и, занимаясь решением математических вопросов или читая своих любимых авторов, держал перед глазами трактаты по медицине; но в последствии, когда он получил уже некоторую известность и был представлен великому князю Тосканскому, он упросил отца позволить ему заниматься любимой наукой и получил, наконец, его полное согласие.

Глава 2. Наука и научное познание в средние века

Средневековая наука почти не соответствует критериям научности. Это означало ее безусловный шаг назад по сравнению с античной наукой. В средние века проблемы истины решались не наукой или философией, а теологией (философским учением о Боге). В этой ситуации наука становилась средством решения чисто практических задач. Арифметика и астрономия, в частности, были необходимы только для вычисления дат религиозных праздников. Такое чисто прагматическое отношение к средневековой науке привело к тому, что она утратила одно из самых ценных качеств античной науки, в которой научное знание рассматривалось как самоцель, познание истины осуществлялось ради самой истины, а не ради практических результатов.

Поэтому говорить о развитии науки в период раннего Средневековья не приходится – есть только ее упадок. Сохраняются лишь жалкие остатки того конгломерата научных знаний, которым обладала античность, изложенные в сочинениях тех античных авторов, которые признавались христианской церковью. Пересмотру эти знания не подлежали, их можно было только комментировать – этим и занимались средневековые мыслители.

Тем не менее, в недрах средневековой культуры успешно развивались такие специфические области знания, как астрология, алхимия, ятрохимия, натуральная магия, которые подготовили возможность образования современной науки. Эти дисциплины представляли собой промежуточное звено между техническим ремеслом и натурфилософией и в силу своей практической направленности содержали в себе зародыш будущей экспериментальной науки. Исподволь они разрушали идеологию созерцательности, осуществляя переход к опытной науке.

Однако постепенно позитивные изменения в средневековой науке набирали силу, и поэтому представление о соотношении веры и разума в картине мира

менялось: сначала они стали признаваться равноправными, а затем, в эпоху Возрождения, разум был поставлен выше откровения.

В это же время были сделаны первые шаги к механистическому объяснению мира. Появляются понятия пустоты, бесконечного пространства и движения по прямой линии, требование устранить из объяснения телеологический принцип и ограничиться действующими причинами.

Также закладывается новое понимание механики, которая в античности была прикладной наукой. Античность, да и раннее Средневековье рассматривали все созданные человеком инструменты как искусственные, чуждые природе.

Важным было создание условий для точного измерения. В науке вплоть до эпохи Возрождения точное измерение природных процессов считалось невозможным. Такое представление восходит к античности, где точность рассматривалась как характеристика только идеальных объектов. Сейчас же идет бурное развитие астрологии, содержащей в себе зародыши будущей астрономии и требующей довольно точных измерений. Так начинается математизация физики и физикализация математики, которая завершилась созданием математической физики Нового времени. И не случайно у истоков этой науки стоят астрономы – Коперник, Кеплер, Галилей.

Глава 3. Роль Галилея в возникновении современной науке

3.1. Вклад в методологию.

Основы нового типа мировоззрения, новой науки были заложены Галилеем. Он начал создавать ее как математическое и опытное естествознание. Исходной посылкой было выдвижение Галилеем аргумента, что для формулирования четких суждений относительно природы ученым надлежит учитывать только объективные – поддающиеся точному измерению – свойства (размер, форма, количество, вес, движение), тогда как свойства, просто доступные восприятию (цвет, звук, вкус, осязание), следует оставить без внимания как субъективные и эфемерные. Лишь с помощью количесивенного анализа наука может получить правильные знания о мире. А чтобы глубже проникнуть в математические законы и постичь истинный характер природы. Галилей усовершенствовал и изобрел множество технических приборов – линзу, телескоп, микроскоп, воздушный термометр, барометр и др. Использование этих приборов придавало эмпиризму новое, неведомое грекам измерение.

Очень важно, что свою систематическую ориентацию на опыт Галилей сочетал со стремлением к его математическому осмыслению. Эксперимент для него – планомерно проводимый опыт, посредством которого исследователь как бы задает природе интересующие его вопросы. Ответы, которые он хочет получить, возможны не на путях умозрительно-силлогистических рассуждений, но должны быть итогом дедуктивно-математического осмысления результатов исследования. Галилей ставил такое осмысление столь высоко, что считал возможным полностью заменить традиционную логику, как бесполезное орудие мышления, математикой, которая только и способна научить человека искусству доказательства.

Это важнейшая сторона методологии Галилея вылилась у него в идею систематического применения двух взаимосвязанных методов – аналитического и синтетического (он называл их резолютивным и композитивным). При помощи аналитического метода исследуемое явление расчленяется на более простые составляющие его элементы. Затем вступает другое методологическое действие в виде того или иного предположения, гипотезы, с помощью которых достигается объяснение интересующих ученого фактов или явлений природы в их большей или меньшей сложности. Эта задача решается проверкой правильности принятой гипотезы, которая не должна находиться в противоречии с фактами, выявленными при анализе опыта. Такого рода проверка осуществляется при помощи синтетического метода. Иначе говоря, Галилей нашел подлинно научную точку соприкосновения опытно-индуктивного и абстрактно-дедуктивного

способов исследования природы, дающая возможность связать научное мышление, невозможное без абстрагирования и идеализации, с конкретными восприятием явлений и процессов природы.

3.2. Вклад в космологию.

С 1609 года начинается рад прекрасных открытий Галилея в области астрономии, почти непрерывно следующих одно за другим. В этом году в Италии начали распространяться слухи, что какой-то голландец представил графу Морицу Нассаускому замечательный оптический прибор, представлявший отдаленные предметы близкими. Ничего, кроме этого, решительно не было известно. Галилей обратил внимание на этот предмет и вскоре устроил первый телескоп, основанный на том же принципе, как наши теперешние театральные бинокли, то есть на сочетании между собой выпуклых и вогнутых стекол. Несмотря на то, что свойства выпуклых стекол были известны в Голландии, слава изобретения телескопа должна принадлежать исключительно Галилею, потому что только он устроил этот прибор на рациональных началах и дал ему надлежащее употребление.

Устроенная Галилеем труба была, конечно, крайне несовершенна. Сначала она увеличивала только от 4 до 7 раз, и после всех усовершенствований Галилею удалось довести увеличение лишь до 30 раз.

Галилео Галилей в изобретенный им телескоп увидел в небе то, что до сих пор оставалось скрытым для невооруженного глаза. И ему первому из земножителей суждено было увидать лунные горы и пропасти. Он узнал, что лунные горы сравнительно выше земных; он узнал также, что Луна всегда обращена к нам одной и той же своей стороною.

Зимою следующего года на долю Галилея выпало новое счастье: он открыл новые планеты и тем опроверг заблуждение, господствовавшее над умами людей несколько тысячелетий, что существует всего семь подвижных светил, или планет, считая в числе их и Солнце. Открытые новые планеты оказались спутниками Юпитера. Смена фаз Венеры не оставляла сомнений в том, что это освещенная Солнцем планета действительно обращается вокруг его. Наконец, множество невидимых глазом звезд и особенно удивительная звездная россыпь, составляющая Млечный путь, - разве это не подтверждало учение Бруно о бесчисленных солнцах и землях? С другой стороны, темные пятна Галилеем на Солнце, опровергали учение Аристотеля и других философов о неприкосновенной чистоте небес. Небесные тела оказались похожими на Землю,

и это сходство земного и небесного заставляло постепенно отказаться от ошибочного представления о Солнце как центре всего Мироздания.

Научная деятельность Галилея поражает своей громадностью и разнообразием. Хотя множество сочинений еще до нас не дошло, но и то, что нам известно, показывает, что он занимался и оставил свои следы во всех отраслях современного ему естествознания – в математике, механике и физике в широком смысле этого слова. По словам Араго, сочинения и письма Галилея на каждом шагу блещут такими гениальными мыслями, которые подтвердились лишь в новейшее время, через два или три века после Галилея. Орлиный взор его проникал далеко за круг задач своего времени и провидел будущие судьбы науки на расстоянии целых веков. Занимаясь определением погрешностей и определением их влияния на результаты наблюдений, Галилей едва не открыл теории вероятностей и, во всяком случае, положил ей начало. Его наблюдения над движением звезд с целью доказать вращение Земли едва не привели его к открытию аберрации света, сделанному Брадлеем через два с лишним века после Галилея. Ему принадлежит первая мысль об определении годичного параллакса звезд, то есть мысль об определении их расстояния; он угадал, что в пространстве между Сатурном и неподвижными звездами существуют невидимые планеты, из которых мы знаем теперь две: Уран и Нептун. Он изучал свойства лучистого тепла, которое, проходя через воздух, не нагревает его. Он не верил в мгновенное распространение света и надеялся определить скорость его опытом именно на тех началах, на которых это было осуществлено лишь в наше время французским физиком Физо.

Список литературы

1. Воронов В. К., Гречнева М. В., Сагдеев Р. З. Основы современного естествознания: Учеб. Пособие для вузов. – 2-е изд., стер. – М., Высш. шк., 1999. – 247с.

2. Горелов А. А. Концепции современного естествознания: Учеб. Пособие для студ. Высш. учеб. Заведений. – М.: Гуманит. Изд. Центр ВЛАДОС, 2000. – 512с.

3. Грушевицкая Т. Г., Садохин А. П. Концепции современного естествознания: Учеб. Пособие – М.: Высш. шк., 1998. – 383с.

4. Дубнищева Т. Я. Концепции современного естествознания: Уч. пособие для студентов. 2003.

5. Коперник. Галилей. Кеплер. Лаплас и Эйлер. Кетле: Биогр. Повествования. / Сост., общ. ред. Н.Ф. Болдырева; Послесл. А. Ф. Арендаря. – Челябинск: Урал, 1997. – 456с.

Галилео Галилей (1564-1642) - итальянский астроном, ученый и философ, игравший ведущую роль в научной революции. Галилео улучшил телескоп и сделал много значительных открытий в астрономии. Однако его взгляды считались еретическими, и он был помещен под домашний арест.

Краткая биография Галилея

Галилей родился в Пизе (герцогство Флорентийское, Италия) в 1564 году, в бедной, но благородной семье.

Его родители признали врожденный интеллект и талант своего ребенка и шли на большие жертвы, чтобы он получил образование. По настоянию отца Галилей изучал медицину. Но в Пизанском университете Галилей увлекся широким кругом предметов. Он также стал критиковать многие из учений Аристотеля, которые доминировали в образовании в течение последних 2000 лет.

Галилей был назначен профессором математики в Университете Пизы, но его резкая критика Аристотеля поставила его в условия изоляции среди его современников. После трех лет преследования он ушел в отставку и поступил в Падуанский университет, где преподавал математику. Его лекции привлекли большое внимание, и он смог провести следующие 18 лет, преследуя свои интересы в области астрономии и механики.

За это время Галилей сделал важные открытия в гравитации, инерции, а также разработал предшественник термометра. Он также работал над маятниковыми часами. Галилей также неустанно трудился над наукой о гномонике и законами движения.

Именно в астрономии Галилей стал самым известным. В частности, его поддержка гелиоцентризма создала ему оппозицию в Священной Римско-католической церкви.

Галилей пришел к тем же выводам, что и Коперник, что солнце было центром Вселенной, а не земля. Галилей также был большим поклонником Йоханнеса Кеплера и ценил его работу о планетарных движениях.

Придумав первый в мире мощный телескоп, Галилей смог сделать много новаторских исследований вселенной. Его телескопы создавали увеличение всего лишь от 2x до 30 раз. Используя этот новый телескоп, он обнаружил, что:

У Сатурна было кольцо из облаков.
Луна была не плоской, а имела горы и кратеры.
Используя свой собственный телескоп, он обнаружил четыре луны Юпитера - Ио, Ганимеда, Каллисто и Европу. Он также отметил, что эти луны вращались вокруг Юпитера, а не солнца.

Для поддержки теории гелиоцентризма у Галилея были не только математические доказательства Коперника, но и новые доказательства из астрономии. Однако Галилей знал, что публикация этих исследований принесет неодобрение церковных властей. Тем не менее, он чувствовал готовность рисковать и вызвать на себя неудовольствие церкви.

Поддержка Папы и арест

Церковь уже начала запрещать учения Галилея, особенно все, что поддерживало идеи Коперника. Однако в 1623 году новый Папа Урбан VI II, казалось, был более либерально настроен. Он позволил Галилею опубликовать свои великие работы по астрономии с поддержкой идей Коперника.

Он провел оставшиеся годы своей жизни под домашним арестом в Аркти.

Несмотря на осуждение церкви, Галилей продолжал делать открытия, пока смерть не настигла его в 1642 году.

Ниже другие варианты сочинений по этой теме.

Научная программа Галилео Галилея (1564-1642) была по сути своей рационалистичной. В ее основе лежит стремление Галилея формулировать обобщенные теоретические идеи, которые следует экспериментально проверять. Иными словами, Галилей ставил перед собой задачу возвести науку на теоретический уровень познания, придавая ей тем самым чисто дедуктивный характер. А это значит, что он фактически формулирует новый тип рациональности, основными требованиями которого были: 1) требование логической (и математической) самосогласованности, системной целостности всех утверждений, основывающейся на гармонии мироздания;

Известно, что конструирование как принцип построения математических объектов использовалось уже в Античности и Средние века. Галилей пытается расширить его область применения, распространив и на физический объект. Эта, принципиально новая по сути, методологическая парадигма послужила побудительной причиной для создания историками науки образа Галилея-ученого, полностью пересмотревшего все традиционные представления о науке и ставшего строить на совершенно пустом месте новое здание науки. И хотя Галилей своими научными идеями больше всех способствовал разрушению предшествующей ему науки, всё же это не означает, что, создавая новую науку, он не опирался на определенную традицию. Сам Галилей называет в качестве своих предшественников, традиции которых он продолжал, имена Платона, Архимеда, Ж, Буридана, Н. Орема, Н. Коперника, Дж. Бруно, Н. Кузанского.

На формирование новой, по сути математической, физики огромное влияние оказала гелиоцентрическая система Н. Коперника. Именно обоснование гелиоцентризма, создание новой физики, которая бы согласовывалась с этой системой, были делом всей жизни Галилея. В становлении стиля научного мышления великого пизанского ученого огромную роль сыграли философские и научные штудии Н. Кузанского и Дж. Бруно, от I которых он перенял принцип совпадения противоположностей, научные изыскания средневековых физиков Ж. Буридана и Н. Орема, в частности их теория импетуса, явившаяся прообразом будущего закона инерции.

Становление новой науки, а именно классической механики историки u науки обычно связывают с тем переворотом, который совершил Г. Галилей! в понимании движения. На место физики Аристотеля, построенной на ос- ; нове принципов разума, Галилей ставит механику, которая была чем-то вроде геометрии физического мира. Построенная на базе геометрии механика Галилея должна оставаться в мире явлений, ее реальным предметом и оказывается установление законов природы. Галилей сближает математический объект с объектом физическим, преобразованным с помощью экс- н перимента и настаивает на необходимости иметь дело с идеализированными объектами, а не объектами эмпирического мира. Этим он снимает L различие между физикой, объясняющей причины движения, и математи- 1 кой как наукой, позволяющей формулировать законы движения. Условием у для этого служит у него эксперимент, который представляет собой идеализированный опыт, или материализацию математической конструкции.

Вся эта революция в принципах покоится на допущении, что сущ- н ность физического мира — математическая, а потому правомерна математизация природной реальности.

Основополагающий методологический принцип механики Галилея состоит в том, что он предложил приписывать вещи только то, что необходимо следует из вложенного в нее нами самими. Именно в отождествлении реальности с умственной конструкцией состоит суть механики Галилея.

Итак, галилеевский идеал науки — это образ аксиоматическо-дедуктивной науки, точнее, гипотетико-дедуктивной науки, выводные положения которой должны проверяться опытным, а именно экспериментальным путем[560]. В рамках такого понимания сущности науки процесс научного исследования схематично представляется таким образом.. На основе наблюдений строится гипотеза, а затем она проверяется хорошо запланированным экспериментом. Если опыт не дает ожидаемого результата, то гипотеза отвергается. Но даже если мы получили ожидаемый результат, гипотеза еще не доказана — необходимо спросить себя: можно ли объяснить этот результат как-нибудь иначе? Если мы находим другое объяснение и новая гипотеза отлична от первой, то необходимо провести еще один эксперимент, чтобы решить, какая же из двух гипотез верна. Если результат второго эксперимента соответствует первой гипотезе и противоречит второй, последняя должна быть отброшена или, по крайней мере, изменена.

Но даже если множество согласующихся экспериментов убеждает нас в правильности нашей гипотезы, всё же абсолютной уверенности в ее истинности у нас нет, так как нет решающего доказательства. Поскольку физическая гипотеза о природе никогда не может быть доказана так, как математическая теорема, т. е. она не может быть доказана формальным путем, то Галилей предложил выводить заключения из такого рода гипотезы о наблюдаемых событиях и подтвердить их. Но вывод заключений из гипотезы осуществляется методами математики, поэтому гипотезу следует использовать как аксиому, а выводы из нее должны доказываться с математической точностью. Этим Галилей объясняет одну из причин необходимости математики при исследовании природы. Но имеется и другая более глубокая причина: основные законы природы выражаются исключительно в математической форме.

Одной из характерных черт галилеевского образа науки является ши- - рокое применение мысленных экспериментов для иллюстрации истинности тех или иных теоретических положений. Галилей прибегал к серии " мысленных экспериментов, демонстрирующих механическую природу явлений природы, возможность объяснить ее явления наглядной кинема- " тической схемой движущихся тел. Этой возможностью и пронизан образ науки, рисуемый Галилеем.

В целом можно сказать, что начиная с Галилея, природа стала пред- , ставляться людям как бесконечное поле для исследования, пользующегося рациональными методами. Эти методы заключаются в объяснении всех явлений природы законами механики. Механика дает универсальное объяснение природе.

Вы можете изучить и скачать доклад-презентацию на тему Галилео Галилей. Презентация на заданную тему содержит 25 слайдов. Для просмотра воспользуйтесь проигрывателем, если материал оказался полезным для Вас - поделитесь им с друзьями с помощью социальных кнопок и добавьте наш сайт презентаций в закладки!

500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500

Галилео Галилей - итальянский физик, механик, астроном, философ и математик, оказавший значительное влияние на науку своего времени. Он первым использовал телескоп для наблюдения небесных тел и сделал ряд выдающихся астрономических открытий. Галилей — основатель экспериментальной физики. Своими экспериментами он убедительно опроверг умозрительную метафизику Аристотеля и заложил фундамент классической механики. При жизни был известен как активный сторонник гелиоцентрической системы мира, что привело Галилея к серьёзному конфликту с католической церковью.

Галилей родился в 1564 году в итальянском городе Пиза, в семье родовитого, но обедневшего дворянина Винченцо Галилея, композитора и лютниста. Галилей родился в 1564 году в итальянском городе Пиза, в семье родовитого, но обедневшего дворянина Винченцо Галилея, композитора и лютниста. Полное имя: Галилео ди Винченцо Бонайути де Галилей. В семье Винченцо Галилея и Джулии Амманнати было шестеро детей, но выжить удалось четверым: Галилео (старшему из детей), дочерям Вирджинии, Ливии и младшему сыну Микеланджело, который в дальнейшем тоже приобрел известность как композитор-лютнист.

В 1581 году 17-летний Галилей по настоянию отца поступил в Пизанский университет изучать медицину. Также он посещал лекции по геометрии и очень увлёкся этой наукой. В 1581 году 17-летний Галилей по настоянию отца поступил в Пизанский университет изучать медицину. Также он посещал лекции по геометрии и очень увлёкся этой наукой. Галилей пробыл студентом неполных три года. Вероятно, в эти годы он познакомился с теорией Коперника, которая в те годы не была ещё официально запрещена. Астрономические проблемы тогда живо обсуждались, особенно в связи с только что проведённой календарной реформой.

Поводом к новому этапу в научных исследованиях Галилея послужило появление в 1604 году новой звезды, называемой сейчас сверхновой Кеплера. Это пробуждает всеобщий интерес к астрономии, и Галилей выступает с циклом частных лекций. Узнав об изобретении в Голландии зрительной трубы, Галилей в 1609 году конструирует собственноручно первый телескоп и направляет его в небо. Поводом к новому этапу в научных исследованиях Галилея послужило появление в 1604 году новой звезды, называемой сейчас сверхновой Кеплера. Это пробуждает всеобщий интерес к астрономии, и Галилей выступает с циклом частных лекций. Узнав об изобретении в Голландии зрительной трубы, Галилей в 1609 году конструирует собственноручно первый телескоп и направляет его в небо.

Читайте также: