Доклад по математике на тему квадратные уравнения

Обновлено: 04.07.2024

История квадратных уравнений: уравнения в Древнем Вавилоне и Индии. Формулы четного коэффициента при х. Квадратные уравнения частного характера. Теорема Виета для многочленов высших степеней. Исследование биквадратных уравнений. Сущность формулы Кордано.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 09.05.2009
Размер файла 75,8 K

Подобные документы

История развития формул корней квадратных уравнений. Квадратные уравнения в Древнем Вавилоне. Решение квадратных уравнений Диофантом. Квадратные уравнения в Индии, в Хорезмии и в Европе XIII - XVII вв. Теорема Виета, современная алгебраическая запись.

контрольная работа [992,3 K], добавлен 27.11.2010

Установление прямой зависимости между величинами при изучении явлений природы. Свойства дифференциальных уравнений. Уравнения высших порядков, приводящиеся к квадратурам. Линейные однородные дифференциальные уравнения с постоянными коэффициентами.

курсовая работа [209,4 K], добавлен 04.01.2016

Уравнения, системы линейных, квадратных и третьей степени уравнений. Уравнения высших степеней сводящиеся к квадратным. Системы уравнений, три переменные. График квадратичной функции, пределы, производные. Интегральное счисление и примеры решения задач.

шпаргалка [129,6 K], добавлен 22.06.2008

Типы уравнений, допускающих понижение порядка. Линейное дифференциальное уравнение высшего порядка. Теоремы о свойствах частичных решений. Определитель Вронского и его применение. Использование формулы Эйлера. Нахождение корней алгебраического уравнения.

презентация [103,1 K], добавлен 29.03.2016

Ученые математики, открытия которых являются основой научно-технического прогресса. Квадратные уравнения в Европе в XII-XVII веках. Научная деятельность Ф. Виета и её роль в развитии математики в XVI веке. Особенности применения научных открытий в жизни.

презентация [1,6 M], добавлен 16.05.2012

Подход к решению уравнений. Формулы разности степеней. Понижение формы члена уравнения. Компьютерный поиск данных чисел. Система Диофантовых уравнений. Значения натурального ряда. Уравнения с нечётным числом членов решений в натуральных числах.

доклад [166,1 K], добавлен 26.04.2009

Изучение биографии и деятельности Франсуа Виета и его вклада в математику. Определение понятия квадратного уравнения. Сущность уравнений частного порядка и их решение рациональным способом. Анализ теоремы Виета как инструмента для решения уравнений.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

История квадратных уравнений

Необходимость решать уравнения не только первой степени, но и второй ещё в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков, с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н. э. вавилоняне. Правила решения этих уравнений, изложенные в вавилонских текстах, совпадает по существу с современными, но в этих текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

Вот одна из задач знаменитого индийского математика XII в. Бхаскары.

«Обезьянок резвых стая

А двенадцать по лианам Всласть поевши, развлекалась

Стали прыгать, повисая

Их в квадрате часть восьмая

Сколько ж было обезьянок,

На поляне забавлялась

Решение Бхаскары свидетельствует о том, что автор знал о двузначности корней квадратных уравнений. Соответствующее задаче уравнение Бхаскара пишет под видом x2 - 64x = - 768 и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляет к обеим частям 322, получая затем: x2 - б4х + 322 = -768 + 1024, (х - 32)2 = 256, х - 32= ±16, x1 = 16, x2 = 48.

Квадратные уравнения в Европе XVII века

Определение квадратного уравнения

Уравнение вида ax 2 + bx + c = 0, где a, b, c - числа, , называется квадратным.

Коэффициенты квадратного уравнения

Числа а, b, с – коэффициенты квадратногоуравнения.а – первый коэффициент (перед х²), а ≠ 0;b - второй коэффициент (перед х);с – свободный член (без х).

Какие из данных уравнений не являются квадратными?

1. 4х² + 4х + 1 = 0;2. 5х – 7 = 0;3. - х² - 5х – 1 = 0;4. 2/х² + 3х + 4 = 0;5. ¼ х² - 6х + 1 = 0;6. 2х² = 0;

7. 4х² + 1 = 0;8. х² - 1/х = 0;9. 2х² – х = 0;10. х² -16 = 0;11. 7х² + 5х = 0;12. -8х²= 0;13. 5х³ +6х -8= 0.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

квадратных уравнений

(8 класс, алгебра)

1. Определение квадратного уравнения, его виды ________________стр. 3

2. Из истории квадратных уравнений __________________________стр. 4

3. Различные способы решения квадратных уравнений:

1) Разложение левой части уравнения на множители ________________стр. 6

2) Метод выделения полного квадрата ____________________________стр. 6

3) Решение квадратных уравнений по формуле _____________________стр. 7

4)Решение уравнений с использованием теоремы Виета _____________ стр. 8

5) Решение уравнений способом переброски _______________________стр. 9

6)Свойства коэффициентов квадратного уравнения ________________стр. 10

7) Графическое решение квадратного уравнения __________________ стр. 13

8) Решение квадратных уравнений с помощью

циркуля и линейки _________________________________________стр. 14

9) Решение квадратных уравнений с помощью

номограммы _____________________________________________стр. 18

10) Геометрический способ решения квадратных уравнений _________стр. 20

4. Дидактический материал __________________________________стр. 22

5. Литература _______________________________________________стр. 24

1. Определение квадратного уравнения, его виды.

Определение: Квадратным уравнением называется уравнение вида

ax 2 + bx + c = 0,

где х- переменная, а, b и с-некоторые числа, причем, а ≠ 0.

Если в квадратном уравнении ах 2 + bx + c = 0 хотя бы один из коэффициентов b или с равен нулю, то такое уравнение называют неполным квадратным уравнением.

Неполные квадратные уравнения бывают трёх видов:

1) ах 2 + с = 0, где с ≠ 0;

2) ах 2 + b х = 0, где b ≠ 0;

2. Из истории квадратных уравнений.

а) Квадратные уравнения в Древнем Вавилоне

Необходимость решать уравнения не только первой, но и второй степени ещё в древности была вызвана потребностью решать задачи, связанные нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н.э. вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения:

х 2 + х = , х 2 – х = 14

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.

б) Квадратные уравнения в Индии.

ах 2 + b х = с, а > 0

В уравнении коэффициенты, кроме а, могут быть отрицательными. Правило Брахмагупта по существу совпадает с нашим.

в) Квадратные уравнения в Европе XIII - XVII вв.

Общее правило решения квадратных уравнений, приведенных к единому каноническому виду

х 2 + b х = с,

при всевозможных комбинациях знаков коэффициентов b , с было сформулировано в Европе лишь в 1544 г. М.Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. Учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

3. Различные способы решения квадратных уравнений.

1) Разложение левой части уравнения на множители.

1. Решим уравнение х 2 + 10х – 24 = 0.

Разложим левую часть уравнения на множители:

х 2 + 10х – 24 = х 2 + 12х – 2х – 24 = х (х + 12) – 2 (х +12) = (х + 12)(х – 2).

Следовательно, уравнение можно переписать так:

Так как произведение равно нулю, то по крайне мере один из его множителей равен нулю. Поэтому левая часть уравнения обращается в нуль при х = 2, а также при х = - 12. это означает, что числа 2 и – 12 являются корнями уравнения х 2 + 10х – 24 = 0.

2) Метод выделения полного квадрата

Поясним этот метод на примере.

Решим уравнение х 2 + 6х – 7 = 0

Выделим в левой части полный квадрат. Для этого запишем выражение

х 2 + 6х в следующем виде:

х 2 + 6х = х 2 + 2· х ·3.

В полученном выражении первое слагаемое – квадрат числа х, а второе – удвоенное произведение х на 3. поэтому чтобы получить полный квадрат, нужно прибавить 3 2 , так как

х 2 + 2· х ·3 + 3 2 = (х + 3) 2 .

Преобразуем теперь левую часть уравнения

прибавляя к ней и вычитая 3 2. Имеем:

х 2 + 6х – 7 = х 2 + 2· х ·3 + 3 2 – 3 2 – 7 = (х + 3) 2 – 9 – 7 = (х + 3) 2 – 16.

Таким образом, данное уравнение можно записать так:

(х + 3) 2 –16 = 0, т.е. (х + 3) 2 = 16.

Следовательно, х = 3 = 4, х1 = 1, или х +3 = - 4 , х2 = – 7.

3) Решение квадратных уравнений по формуле

Вывод формулы:

Умножим обе части уравнения

ах 2 + b х + с = 0, а ≠ 0,

на 4а и следовательно имеем:

4а 2 х 2 + 4а b с + 4ас = 0.

((2ах) 2 + 2ах · b + b 2 ) – b 2 + 4ас = 0,

(2ах + b ) 2 = b 2 – 4ас,

а) 4х 2 + 7х + 3 = 0.

а = 4, b = 7, с = 3, D = b 2 – 4ас = 7 2 – 4· 4 ·3 = 49 – 48 = 1, D >два разных корня;

х = , х = ; х = , х 1 = , х = , х 2 = –1

Таким образом, в случае положительного дискриминанта,

т. е. при b 2 – 4ас≥0 уравнение ах 2 + b х + с = 0 имеет два различных корня.

б) 4х 2 – 4х + 1 = 0,

а =4, b = - 4, с = 1. D = b 2 – 4ас= 16 – 4∙4∙1 = 0, D = 0, один корень;

Итак, если дискриминант равен нулю, т. е. = b 2 – 4 ас= 0, то уравнение ах 2 + b х + с = 0 имеет единственный корень, х =

в) 2х 2 +3х + 4 = 0, а =2, b = 3, с = 4, D = b 2 – 4ас= 9 – 4∙2∙4 =9 – 32 = - 13,

Итак, если дискриминант отрицателен, т. е. = b 2 – 4ас

ах 2 + b х + с = 0 не имеет корней.

4) Решение уравнений с использованием теоремы Виета

(прямой и обратной)

а) Как известно, приведенное квадратное уравнение имеет вид

х 2 + px + q = 0. (1)

Его корни удовлетворяют теореме Виета, которая при а = 1 имеет вид

Отсюда можно сделать следующие выводы (по коэффициентам p и q можно предсказать знаки корней).

а) Если свободный член q приведенного уравнения (1) положителен ( q >0), то уравнение имеет два одинаковых по знаку корня и это зависит от второго коэффициента p .

Если p >0, то оба корня отрицательные, если p

х 2 – 3х + 2 = 0; х1 = 2 и х2 = 1, так как q = 2 > 0 и p = – 3

х 2 +8х + 7 = 0; х1 = – 7 и х2 = – 1, так как q = 7 > 0 и p = 8 >0.

б) Если свободный член q приведенного уравнения (1) отрицателен ( q то уравнение имеет два различных по знаку корня, причем больший по модулю корень будет положителен, если p , или отрицателен, если p >0.

х 2 + 4х – 5 = 0; х1 = – 5 и х2 = 1, так как q = – 5 p = 4 > 0;

х 2 – 8х – 9 = 0; х1 = 9 и х2 = – 1, так как q = – 9 p = – 8 >0.

б) Теорема Виета для квадратного уравнения

ах 2 +вх +с = 0

Справедлива теорема, обратная теореме Виета:

Если числа х1 и х2 таковы, что х12 = -р, х1х2 = q , то х1 и х2 – корни квадратного уравнения

Эта теорема позволяет в ряде случаев находить корни квадратного уравнения без использования формулы корней.

1. Решить уравнение

Попробуем найти два числа х1 и х2 , такие, что

Такими числами являются 2 и 7. По теореме, обратной теореме Виета, они и служат корнями заданного квадратного уравнения.

2. Решить уравнение

Попробуем найти два числа х1 и х2 , такие, что

Нетрудно заметить, что такими числами будут – 7 и 4. Они и являются корнями заданного уравнения.

Рассмотрим квадратное уравнение

ах 2 + b х + с = 0, а ≠ 0.

Умножая обе его части на а, получаем уравнение

а 2 х 2 + а b х + ас = 0.

Пусть ах = у, откуда х = ; тогда приходим к уравнению

у 2 + by + ас = 0,

Решим уравнение 2х 2 – 11х + 15 = 0.

у 2 – 11 y +30 = 0.

Согласно теореме Виета

6. Свойства коэффициентов квадратного уравнения.

А. Пусть дано квадратное уравнение

ах 2 + b х + с = 0, а ≠ 0.

1.Если а + b + с = 0 (т.е. сумма коэффициентов уравнения равна нулю), то х 1 = 1, х 2 = .

Доказательство. Разделим обе части уравнения на а ≠ 0, получим приведенное квадратное уравнение

Согласно теореме Виета

По условию а + b + с = 0, откуда b = – а – с. Значит,

Получаем х 1 = 1, х 2 = , что и требовалось доказать.

2. Если а - b + с = 0, или b = а + с, то х 1 = – 1, х 2 = – .

Доказательство. По теореме Виета

По условию а – b + с = 0, откуда b = а + с. Таким образом,

т.е. х 1 = 1 и х 2 = , что и требовалось доказать.

1. Решим уравнение 345х 2 137х – 208 = 0.

Решение . Так как а + b + с = 0 (345 – 137 – 208 = 0), то х 1 = 1, х 2 = = .

Ответ : 1; .

2. Решим уравнение 132х 2 + 247х + 115 = 0

Решение. Т. к. а- b +с = 0 (132 – 247 +115=0), то

Б. Если второй коэффициент b = 2 k – четное число, то формулу корней

можно записать в виде

Решим уравнение 3х 2 14х + 16 = 0.

Решение. Имеем: а = 3, b = 14, c = 16, k = 7;

D = k 2 ac = (– 7) 2 – 3 · 16 = 49 – 48 = 1, D >0, два различных корня;

В. Приведенное уравнение

x 2 + px + q = 0

совпадает с уравнением общего вида, в котором а = 1, p и c = q . Поэтому для приведенного квадратного уравнения формула корней

Формулу (3) особенно удобно использовать, когда p – четное число.

1. Решим уравнение х 2 14х – 15 = 0.

Решение . Имеем: х 1,2 = 7±= 7±= 7±8.

7. Графическое решение квадратного уравнения

Если в уравнении

x 2 + px + q = 0

перенести второй и третий члены в правую часть, то получим

x 2 = – pxq .

Построим графики зависимостей у = х 2 и у = – pxq .

График первой зависимости – парабола, проходящая через начало координат.

График второй зависимости – прямая.

Возможны следующие случаи: прямая и парабола могут пересекаться в двух точках, абсциссы точек пересечения являются корнями квадратного уравнения;

- прямая и парабола могут касаться (только одна общая точка),т.е. уравнение имеет одно решение;

- прямая и парабола не имеют общих точек, т.е. квадратное уравнение не имеет корней.

Что называют квадратным уравнением

Галка

Важно!

Степень уравнения определяют по наибольшей степени, в которой стоит неизвестное.

Примеры квадратных уравнений

Галка

Важно! Общий вид квадратного уравнения выглядит так:

Как решать квадратные уравнения

В отличии от линейных уравнений для решения квадратных уравнений используется специальная формула для нахождения корней.

Запомните!

Чтобы решить квадратное уравнение нужно:

Давайте на примере разберем, как применять формулу для нахождения корней квадратного уравнения. Решим квадратное уравнение.

Подставим их в формулу и найдем корни.

Галка

Важно!

Обязательно выучите наизусть формулу для нахождения корней.

С её помощью решается любое квадратное уравнение.

Рассмотрим другой пример квадратного уравнения.

Теперь можно использовать формулу для корней.

x1;2 =
−(−6) ± √ (−6) 2 − 4 · 1 · 9
2 · 1

x1;2 =
6 ± √ 36 − 36
2

x1;2 =
6 ± √ 0
2

x1;2 =
6 ± 0
2

x =
6
2

x = 3
Ответ: x = 3

Бывают случаи, когда в квадратных уравнениях нет корней. Такая ситуация возникает, когда в формуле под корнем оказывается отрицательное число.

Мы помним из определения квадратного корня о том, что извлекать квадратный корень из отрицательного числа нельзя .

Рассмотрим пример квадратного уравнения, у которого нет корней.

5x 2 + 2x = − 3
5x 2 + 2x + 3 = 0
x1;2 =
−2 ± √ 2 2 − 4 · 3 · 5
2 · 5

x1;2 =
−2 ± √ 4 − 60
10

x1;2 =
−2 ± √ −56
10

Ответ: нет действительных корней.

Галка

Важно!

Неполные квадратные уравнения

Читайте также: