Доклад на тему световые волны

Обновлено: 04.07.2024

3.Частота и период.

Свет — это электромагнитное излучение, видимое человеческому глазу. Оно состоит из волн разной длины, воспринимаемых как разные цвета. Очень длинные волны воспринимаются как красный, а очень короткие как фиолетовый. Между ними находятся оранжевый, жёлтый, зелёный, синий и индиго. Ниже красного находятся инфракрасные, микро- и радиоволны; выше фиолетового находятся ультрафиолет, рентгеновское и гамма-излучение Свет – гармоническое колебание. Раздел физики, в котором изучается свет, носит название оптика.

Но более простыми словами.

Лучистая энергия, воспринимаемая глазом, делающая окружающий мир видимым.

Тот или иной источник освещения.

Электромагнитное излучение — распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля.

Природа света

В V веке до н. э., Эмпедокл предположил, что всё в мире состоит из четырёх элементов: огня, воздуха, земли и воды. Он считал, что из этих четырёх элементов, богиня Афродита создала человеческий глаз, и зажгла в нём огонь, свечение которого и делало зрение возможным. Для объяснения факта, что тёмной ночью человек видит не так хорошо, как днём, Эмпедокл постулировал взаимодействие между лучами, идущими из глаз и лучами от светящихся источников, таких, как солнце.

Пи­фа­гор был одним из пер­вых уче­ных, кто дал на­уч­ную ги­по­те­зу от­но­си­тель­но при­ро­ды света. Он пер­вый не толь­ко до­га­дал­ся, но и до­ка­зал, что свет рас­про­стра­ня­ет­ся пря­мо­ли­ней­но. В XVII веке сто­рон­ни­ком этой тео­рии стал Исаак Нью­тон. Он объ­яс­нял много све­то­вых яв­ле­ний, ос­но­вы­ва­ясь на том, что свет – это поток спе­ци­аль­ных ча­стиц. Согласно корпускулярной теории, свет представляет собой поток частиц (корпускул), испускаемых светящимися телами. Ньютон считал, что движение световых корпускул подчиняется законам механики. Так, отражение света понималось аналогично отражению упругого шарика от плоскости. Преломление света объяснялось изменением скорости корпускул при переходе из одной среды в другую.

В это же время по­яви­лась дру­гая тео­рия – вол­но­вая тео­рия света. Сто­рон­ни­ком этой тео­рии был Хри­сти­ан Гюй­генс. Он пы­тал­ся объ­яс­нить те же яв­ле­ния, что и Нью­тон, толь­ко с той по­зи­ции, что свет – это волна. Рассматривала свет как волновой процесс, подобный механическим волнам. Каждая точка, до которой доходит волна, становится центром вторичных волн, а огибающая этих волн дает положение волнового фронта в следующий момент времени. Под волновым фронтом Гюйгенс понимал геометрическое место точек, до которых одновременно доходит волновое возмущение. С помощью принципа Гюйгенса были объяснены законы отражения и преломления.

И хотя все указывало на то, что свет – это волна, В XIX веке Ген­рих Герц изу­чал свой­ства элек­тро­маг­нит­ных волн и по­ка­зал, что свет может быть ча­сти­цей. Герц от­крыл яв­ле­ние фо­то­эф­фек­та.

В XX веке при­шли к окон­ча­тель­но­му ре­ше­нию, введя по­ня­тие кор­пус­ку­ляр­но-вол­но­во­го ду­а­лиз­ма света.

Свет ведет себя при рас­про­стра­не­нии как волна (вол­но­вые свой­ства), а при из­лу­че­нии и по­гло­ще­нии – как ча­сти­ца (со всеми свой­ства­ми ча­стиц). То есть свет имеет двой­ную при­ро­ду.

По­это­му все яв­ле­ния рас­смат­ри­ва­ют­ся с по­зи­ций этих двух тео­рий.

Фотоэффект - под дей­стви­ем света из ме­тал­ли­че­ской пла­сти­ны, за­ря­жен­ной от­ри­ца­тель­но, вы­би­ва­ют­ся элек­тро­ны.

Свойства света

Обычная лампа накаливания мощностью 100 Вт создаёт световой поток, равный примерно 1300 лм

Сила света.

Это одна из основных световых величин, характеризующая источник видимого излучения. Она равна отношению светового потока распространяющегося от источника внутри элементарного телесного угла, который содержит данное направление, к этому телесному углу.

Единица измерения в Международной системе единиц (СИ): кандела (кд)

Отражение.

Отраже́ние — физический процесс взаимодействия волн или частиц с поверхностью, изменение направления волнового фронта на границе двух сред с разными свойствами, в котором волновой фронт возвращается в среду, из которой он пришёл. Одновременно с отражением волн на границе раздела сред, как правило, происходит преломление волн (за исключением случаев полного внутреннего отражения).

От то­чеч­но­го ис­точ­ни­ка света на гра­ни­цу раз­де­ла па­да­ет све­то­вой луч. Часть этого луча прой­дет внутрь сле­ду­ю­щей про­зрач­ной среды, а часть от­ра­зит­ся. В дан­ном слу­чае от­ра­же­ни­ем мы можем на­звать такое яв­ле­ние, при ко­то­ром часть па­да­ю­ще­го све­то­во­го луча от­ра­жа­ет­ся, т. е. воз­вра­ща­ет­ся в ту же среду, из ко­то­рой свет упал на гра­ни­цу раз­де­ла.

Рас­смат­ри­вая яв­ле­ния от­ра­же­ния, мы долж­ны ска­зать о за­ко­нах от­ра­же­ния света.

За­ко­ны от­ра­же­ния.

Луч па­да­ю­щий, луч от­ра­жен­ный и пер­пен­ди­ку­ляр, вос­став­лен­ный в точку па­де­ния луча, лежат в одной плос­ко­сти.

Угол па­де­ния луча равен углу от­ра­же­ния луча.

Диф­фуз­ное от­ра­же­ние – это от­ра­же­ние от до­ста­точ­но ше­ро­хо­ва­тых по­верх­но­стей. Ярким при­ме­ром диф­фуз­но­го от­ра­же­ния можно на­звать от­ра­же­ние от белой бу­ма­ги

Зер­каль­ное от­ра­же­ние – это от­ра­же­ние, когда все лучи, упав­шие на дан­ную по­верх­ность па­рал­лель­но друг другу, также от­ра­зи­лись.

Преломление света.

Преломление света – это явление изменения направления движения светового луча при переходе из одной среды в другую. Различные среды, пропускающие свет, имеют различную оптическую плотность. Скорость света в них различна.

Угол, который образует падающий луч к проведенному к границе двух сред перпендикуляру после попадания во вторую среду, называется углом преломления. Опытным путем установлено, что если свет падает из среды оптически менее плотной в более плотную, то угол падения будет больше угла преломления. Скорость распространения света

Если же наоборот – оптическая плотность первой среды больше оптической плотности вещества второй среды, то угол падения будет меньше угла преломления. При изменении угла падения угол преломления будет также меняться. Однако отношение этих углов не остается постоянным. А вот отношение синусов этих углов – это постоянная величина.

где α – угол падения, γ – угол преломления, n – постоянная величина для двух конкретных сред, не зависящая от угла падения.

Закон преломления света звучит следующим образом: падающий и преломленный луч лежат в одной плоскости, причем отношение синуса угла падения к синусу угла преломления – величина постоянная для двух сред.

Законы отражения и преломления света обусловливают многие явления в нашей жизни. Именно благодаря им мы видим мир таким, каков он есть.

Скорость распространения света меньше в оптически более плотной средой.

Опти́ческая пло́тность — мера ослабления света прозрачными объектами (такими, как кристаллы, стекла, фотоплёнка) или отражения света непрозрачными объектами (такими, как фотография, металлы и т. д.)

Распространение света. На границе двух сред свет преломляется. В однородной среде свет распространяется прямолинейно.

Если между глазом и каким-нибудь источником света поместить непрозрачный предмет, то источник света мы не увидим. Объясняется это тем, что в однородной среде свет распространяется по прямым линиям.

Прямолинейное распространение света — факт, установленный ещё в глубокой древности. Об этом писал основатель геометрии Евклид (300 лет до нашей эры).Прямолинейностью распространения света в однородной среде объясняется образование тени. Тени людей, деревьев, зданий и других предметов хорошо наблюдаются на земле в солнечный день.

О положении окружающих нас предметов в пространстве мы судим, подразумевая, что свет от объекта попадает в наш глаз по прямолинейным траекториям. Наша ориентация во внешнем мире целиком основана на предположении о прямолинейном распространении света. Именно это допущение привело к представлению о световых лучах.

Световая волна.

Электромагнитная волна видимого диапазона длин волн . Частота световой волны определяет ”цвет”.

График световой волны

График световой волны, это график электромагнитной волны.

В электромагнитной волне векторы Е и Н перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны. Во всех процессах взаимодействия света с веществом основную роль играет электрический вектор Е, поэтому его называют световым вектором. Плоскость, в которой колеблется световой вектор Е называется плоскостью колебаний, а плоскость, в которой совершает колебание магнитный вектор Н– плоскостью поляризации.

V-направление распространения волны.

Фронт волны, это - точки среды, в которых векторы или имеют одинаковую фазу.

Расстояние между частицами, колеблющимися с одинаковой фазой, м.

это число полных колебаний или циклов волны, совершенных в единицу времени.

Период колебания волны

наименьший промежуток времени, за который волна совершает одно полное колебание (то есть возвращается в то же состояние, в котором он находился в первоначальный момент, выбранный произвольно)., секунды

Длина: скорость умноженная на период или скорость деленная на частоту. метр

Период: единица времени деленная на частоту или длина волны деленная на скорость. секунды

Частота: скорость деленная на длину волны. Герц

Чтобы определить скорость света в любой среде, нужно скорость света в вакууме разделить на показатель преломления.

Спектральный состав.

Световые излучения, воздействующие на глаз и вызывающие ощущение цвета, подразделяют на простые (монохроматические) и сложные. Излучение с определенной длиной волны называют монохроматическим. Простые излучения не могут быть разложены ни на какие другие цвета.

Спектр — последовательность монохроматических излучений, каждому из которых соответствует определенная длина волны электромагнитного колебания.

Цвет возникает в результате взаимодействия белого света с материей.

Оптическая область спектра электромагнитные излучений состоит из трех участков: невидимых ультрафиолетовых излучений (длина волн 10—400 нанометров), видимых световых излучений (длина волн 400—750 нанометорв), воспринимаемых глазом как свет и невидимых инфракрасных излучений (длина волн 740 нанометров — 1—2 мм).

Источники света.

Тела, от которых свет исходит, называются источниками света. Различают естественные и искусственные источники света. Самый известный абсолютно всем жителям нашей планеты естественный источник света – это Солнце.

Искусственные источникисвета — технические устройства различной конструкции и с различными способами преобразования энергии, основным назначением которых является получение светового излучения (как видимого, так и с различной длиной волны, например, инфракрасного).

Первые представления древних ученых о том, что такое свет, были весьма наивны. Существовало несколько точек зрения. Одни считали, что из глаз выходят особые тонкие щупальца и зрительные впечатления возникают при ощупывании ими предметов. Эта точка зрения имела большое число последователей, среди которых был Эвклид, Птолемей и многие другие ученые и философы. Другие, наоборот, считали, что лучи испускаются светящимся телом и, достигая человеческого глаза, несут на себе отпечаток светящегося предмета. Такой точки зрения придерживались Лукреций, Демокрит.

В это же время Эвклидом был сформулирован закон прямолинейного распространения света. Он писал: “Испускаемые глазами лучи распространяются по прямому пути”.

Однако позже, уже в средние века, такое представление о природе света теряет свое значение. Все меньше становится ученых, следующих этим взглядам. И к началу XVII в. эти точки зрения можно считать уже забытыми.

В 17 веке почти одновременно возникли и начали развиваться две совершенно разные теории о том, что такое свет и какова его природа.

Одна из этих теорий связана с именем Ньютона, а другая – с именем Гюйгенса.

Ньютон придерживался так называемой корпускулярной теории света, согласно которой свет – это поток частиц, идущих от источника во все стороны (перенос вещества).

Согласно же представлениям Гюйгенса, свет – это поток волн, распространяющихся в особой, гипотетической среде – эфире, заполняющем все пространство и проникающем внутрь всех тел.

Обе теории длительное время существовали параллельно. Ни одна из них не могла одержать решающей победы. Лишь авторитет Ньютона заставлял большинство ученых отдавать предпочтение корпускулярной теории. Известные в то время из опыта законы распространения света более или менее успешно объяснялись обеими теориями.

На основе корпускулярной теории было трудно объяснить, почему световые пучки, пересекаясь в пространстве, никак не действуют друг на друга. Ведь световые частицы должны сталкиваться и рассеиваться.

Волновая же теория это легко объясняла. Волны, например на поверхности воды, свободно проходят друг сквозь друга, не оказывая взаимного влияния.

Однако прямолинейное распространение света, приводящее к образованию за предметами резких теней, трудно объяснить, исходя из волновой теории. При корпускулярной же теории прямолинейное распространение света является просто следствием закона инерции.

Такое неопределенное положение относительно природы света сохранялось до начала XIX века, когда были открыты явления дифракции света (огибания светом препятствий) и интерференция света (усиление или ослабление освещенности при наложении световых пучков друг на друга). Эти явления присуще исключительно волновому движению. Объяснить их с помощью корпускулярной теории нельзя. Поэтому казалось, что волновая теория одержала окончательную и полную победу.

Такая уверенность особенно окрепла, когда Максвелл во второй половине XIX века показал, что свет есть частный случай электромагнитных волн. Работами Максвелла были заложены основы электромагнитной теории света.

После экспериментального обнаружения электромагнитных волн Герцем никаких сомнений в том, что при распространении свет ведет себя как волна, не осталось.

Однако в нале XIX века представления о природе света начали коренным образом изменяться. Неожиданно выяснилось, что отвергнутая корпускулярная теория все же имеет отношение к действительности.

При излучении и поглощении свет ведет себя подобно потоку частиц.

Были обнаружены прерывистые, или, как говорят, квантовые, свойства света. Возникла необычная ситуация: явления интерференции и дифракции по-прежнему можно объяснить, считая свет волной, а явления излучения и поглощения – считая свет потоком частиц. Эти два, казалось бы, несовместимых друг с другом представления о природе света в 30-х годах XX века удалось непротиворечивым образом объединить в новой выдающейся физической теории – квантовой электродинамике.

1. Волновые свойства света

Закрывая отверстие красным стеклом, Ньютон наблюдал на стене только красное пятно, закрывая синим-синее и т.д. Отсюда следовало, что не призма окрашивает белый свет, как предполагалось раньше. Призма не изменяет цвета, а лишь разлагает его на составные части. Белый свет имеет сложную структуру. Из него можно выделить пучки различных цветов, и лишь совместное их действие вызывает у нас впечатление белого цвета. В самом деле, если с помощью второй призмы, повернутой на 180 градусов относительно первой. Собрать все пучки спектра, то опять получится белый свет. Выделив же какую-либо часть спектра, например зеленую, и заставив свет пройти еще через одну призму, мы уже не получим дальнейшего изменения окраски.

В дальнейшем Ньютон усовершенствовал свои наблюдения спектра, чтобы получить более чистые цвета. Ведь круглые цветные пятна светового пучка, прошедшего через призму, частично перекрывали друг друга. Вместо круглого отверстия использовалась узкая щель (А), освещенная ярким источником. За щелью располагалась линза (B), дающая на экране (D) изображение в виде узкой белой полоски. Если на пути лучей поместить призму (C), то изображение щели растянется в спектр, окрашенную полоску, переходы цветов, в которой от красного к фиолетовому подобны наблюдаемым в радуге. Опыт Ньютона изображен на рис.1


Если прикрыть щель цветным стеклом, т.е. если направлять на призму вместо белого света цветной, изображение щели сведется к цветному прямоугольнику, располагающему на соответствующем месте спектра, т.е. в зависимости от цвета свет будет отклоняться на различные углы от первоначального изображения . Описанное наблюдения показывает, что лучи разного цвета различно преломляются призмой.

Это важное заключение Ньютон проверил многими опытами. Важнейший из них состоял в определении и показателя преломления лучей различного цвета, выделенных из спектра. Для этой цели в экране, на котором получается спектр, прорезалось отверстие; перемещая экран, можно было выпустить через отверстие узкий пучок лучей того или иного цвета. Такой способ выделения однородных лучей более совершенен, чем выделение при помощи цветного стекла. Опыты обнаружили, что такой выделенный пучок, преломляясь во второй призме, уже не растягивает полоску. Такому пучку соответствует определенный показатель преломления, значение которого зависит от цвета выделенного пучка.

Таким образом, в основных опытах Ньютона заключались два важных открытия:

1.Свет различного цвета характеризуется различными показателями преломления в данном веществе (дисперсия).

2. Белый цвет есть совокупность простых цветов.

Зная, что белый свет имеет сложную структуру, можно объяснить удивительное многообразие красок в природе. Если предмет, например, лист бумаги, отражает все падающие на него лучи различных цветов, то он будет казаться белым. Покрывая бумагу слоем краски, мы не создаем при этом света нового цвета, но задерживаем на листе некоторую часть имеющегося. Отражаться теперь будут только красные лучи, остальные поглотятся слоем краски. Трава и листья деревьев кажутся нам зелеными потому, что из всех падающих на них солнечных лучей они отражают лишь зеленые, поглощая остальные. Если посмотреть на траву через красное стекло, пропускающее лишь красные лучи, то она будет казаться почти черной.

Мы знаем в настоящее время, что разным цветам соответствуют различные длины световых волн. Поэтому первое открытие Ньютона можно сформулировать следующим образом: показатель преломления вещества зависит от длины световой волны. Обычно он увеличивается по мере уменьшения длины волны.

Интерференцию света наблюдали очень давно, но только не отдавали себе в этом отчет. Многие видели интерференционную картину, когда в детстве развлекались пусканием мыльных пузырей или наблюдали за радужным переливом цветов тонкой пленки керосина на поверхности воды. Именно интерференция света делает мыльный пузырь столь достойным восхищения.

Английский ученый Томас Юнг первым пришел к гениальной мысли о возможности объяснения цветов тонких пленок сложением двух волн, одна из которых (А) отражается от наружной поверхности пленки, а вторая (В)– от внутренней (рис.2)

При этом происходит интерференция световых волн – сложение двух волн, вследствие которого наблюдается усиление или ослабление результирующих световых колебаний в различных точках пространства. Результат интерференции (усиления или ослабление результирующих колебаний) зависит от толщины пленки и длины волны. Усиление света произойдет в том случае, если преломленная волна 2 (отражающаяся от внутренней поверхности пленки) отстанет от волны 1 (отражающейся от наружной поверхности пленки) на цело число длин волн. Если же вторая волна отстанет от первой на половину длины волны или на нечетное число полуволн, то произойдет ослабление света.

Для того чтобы при сложении волн образовалась устойчивая интерференционная картина, волны должны быть когерентными, т.е. должны иметь одинаковую длины волны и постоянную разность фаз. Когерентность волн, отраженных от наружной и внутренней поверхности пленки, обеспечивается тем, что обе они являются частями одного светового пучка. Волны же, испущенные двумя обычными независимыми источниками, не дают интерференционной картины из-за того, что разность фаз двух волн от таких источников не постоянна.

Юнг также понял, что различие в цвете связано с различием в длине волны (или частоте световых волн). Световым потокам различного цвета соответствуют волны различной длины. Для взаимного усиления волн, различающихся друг от друга длиной, требуется различная толщина пленки. Следовательно, если пленка имеет неодинаковую толщину, то при освещении ее белым светом должны появиться различные цвета.

Дифракция света в узком смысле - явление огибания светом препятствий и попадание света в область геометрической тени; в широком смысле - всякое отклонение при распространении света от законов геометрической оптики.

Определение Зоммерфельда: под дифракцией света понимают всякое отклонение от прямолинейного распространения, если оно не может быть объяснено как результат отражения, преломления или изгибания световых лучей в средах с непрерывно меняющимся показателем преломления.

В 1802г. Юнг, открывший интерференцию света, поставил классический опыт по дифракции (рис.3).


В непрозрачной ширме, он проколол булавкой два маленьких отверстия B и C, на небольшом расстоянии друг от друга. Эти отверстия освещались узким световым пучком, прошедшим в свою очередь через малое отверстие А в другой ширме. Именно эта деталь, до которой очень трудно было додуматься в то время, решила успех опыта. Интерферируют только когерентные волны. Возникшая в соответствии с принципом Гюйгенса сферическая волна от отверстия А возбуждала в отверстиях В и С когерентные колебания. В следствии дифракции из отверстий В и С выходили два световых конуса, которые частично перекрывались. В результате интерференции световых волн на экране появлялись чередующиеся светлые и темные полосы. Закрывая одно из отверстий, Юнг обнаруживал, что интерференционные полосы исчезали. Именно с помощью этого опыта впервые Юнгом были измерены длины волн, соответствующие световым лучам разного цвета, причем весьма точно.

Исследование дифракции получило свое завершение в работах Френеля. Он детально исследовал различные функции дифракции на опытах и построил количественную теорию дифракции, позволяющую рассчитать дифракционную картину, возникающую при огибании светом любых препятствий.

С помощью теории дифракции решают такие проблемы, как защита от шумов с помощью акустических экранов, распространение радиоволн над поверхностью Земли, работа оптических приборов (так как изображение, даваемое объективом, - всегда дифракционная картина), измерения качества поверхности, изучение строения вещества и многие другие.

Новые свойства о характере световых волн показывает опыт над прохождением света через кристаллы, в частности через турмалин.

Возьмем две одинаковые прямоугольные пластинки турмалина, вырезанные так, что одна из сторон прямоугольника совпадает с определенным направлением внутри кристалла, носящим название оптической оси. Наложим одну пластинку на другую так, чтобы оси их совпадали по направлению, и пропустим через сложенную пару пластинок узкий пучок света от фонаря или солнца. Турмалин представляет собой кристалл буро – зеленого цвета, след прошедшего пучка на экране представится в виде тёмно – зеленого пятнышка. Начнем поворачивать одну из пластинок вокруг пучка, оставляя вторую неподвижной. Мы обнаружим, что след пучка становится слабее, и когда пластинка повернётся на 90 0 , он совсем исчезнет. При дальнейшем вращении пластинки проходящий пучок вновь начнет усиливаться и дойдет до прежней интенсивности, когда пластинка повернется на 180 0 , т.е. когда оптические оси пластинок вновь расположатся параллельно. При дальнейшем вращении турмалина пучок вновь слабеет.

Из данных явлений можно сделать следующие выводы:

1. Световые колебания в пучке направлены перпендикулярно к линии распространения света (световые волны поперечны).

2. Турмалин способен пропускать световые колебания только в том случае, когда они направлены определенным образом относительно его оси.

3. В свете фонаря (солнца) представлены поперечные колебания любого направления и притом в одинаковой доле, так что ни одно направление не является преимущественным.

Вывод 3 объясняет, почему естественный свет в одинаковой степени проходит через турмалин при любой его ориентации, хотя турмалин, согласно выводу 2, способен пропускать световые колебания только определенного направления. Прохождение естественного света через турмалин приводит к тому, что из поперечных колебаний отбираются только те, которые могут пропускаться турмалином. Поэтому свет, прошедший через турмалин, будет представлять собой совокупность поперечных колебаний одного направления, определяемого ориентацией оси турмалина. Такой свет мы будем называть линейно поляризованным, а плоскость, содержащую направление колебаний и ось светового пучка, - плоскостью поляризации.

Теперь становится понятным опыт с прохождением света через две последовательно поставленные пластинки турмалина. Первая пластинка поляризует проходящий через неё пучок света, оставляя в нем колебания только одного направления. Эти колебания могут пройти через второй турмалин полностью только в том случае, когда направление их совпадает с направлением колебаний, пропускаемых вторым турмалином, т.е. когда его ось параллельна оси первого. Если же направление колебаний в поляризованном свете перпендикулярно к направлению колебаний, пропускаемых вторым турмалином, то свет будет полностью задержан. Если направление колебаний в поляризованном свете составляет острый угол с направлением, пропускаемым турмалином, то колебания будут пропущены лишь частично.

2. Квантовые свойства света

В 1887г. немецкий физик Герц объяснил явление фотоэффекта. Основой этому послужила Гипотеза Планка о квантах.

Были сделаны попытки объяснить закономерности внешнего фотоэффекта на основе волновых представлений о свете. Согласно этим представлениям, механизм фотоэффекта выглядит так. На металл падает световая волна. Электроны, находящиеся в его поверхностном слое, поглощают энергию этой волны, и их энергия постепенно увеличивается. Когда она становится больше работы выхода, электроны начинают вылетать из металла. Таким образом, волновая теория света будто бы способна качественно объяснить явление фотоэффекта.


Как и океанские волны, световые волны имеют измеримую длину, высоту, продолжительность или частоту. Солнечный свет содержит непрерывное распределение длин волн. Когда они расположены от длинных до коротких волн (от низких до высоких частот), они образуют часть электромагнитного спектра. Спектр делится на три части: ультрафиолетовый, видимый и инфракрасный. Все три длины волны могут вызвать повреждение. Различные материалы и разные цвета поглощают больше энергии, чем другие материалы и цвета.

Полезные статьи:

Частицы

Легкие частицы называются фотонами. Свет - это набор частиц, очень быстро движущихся в одном направлении. Представьте себе воду, которая брызгает из шланга.

Фотоны - это маленькие энергетические пакеты. Когда они попадают в объект, энергия передается, возбуждая электроны в объекте. Если фотон содержит нужное количество энергии, связи между атомами разрываются. Вот как свет выцветает, ослабляет некоторые материалы и вызывает другие повреждения.

Зрение, особенности восприятия

Чтобы видеть, нужен свет и рецептор - ваши глаза. То, что вы видите, - это свет, отраженный от объекта. Часть видимого света поглощается объектом. Синий объект отражает синюю часть спектра, поглощая свет других цветов.

Интенсивность света, количество света, отражаемого объектом, и способность глаза воспринимать свет - все это влияет на наше восприятие яркости. Стареющие глаза менее гибкие и менее способны приспосабливаться к быстрым изменениям освещения.

Если вы войдете в галерею из яркого помещения, например атриума, экспонаты могут выглядеть тусклыми. Всем глазам требуется больше времени, чтобы акклиматизироваться от яркого к темному, чем от темного к яркому.

Свет излучается источником волнами. Каждая волна состоит из двух частей; электрическая часть и магнитная часть. Вот почему свет называется электромагнитным излучением.

Мозг - обработка данных

Наш мозг интерпретирует световые волны, присваивая разные цвета разным длинам волн, но большая часть света во Вселенной распространяется с длинами волн, слишком короткими или слишком длинными, чтобы человеческий глаз мог их обнаружить. Самые длинные волны - это инфракрасная, микроволновая и радиочастотная части спектра. Самыми короткими длинами волн спектра являются ультрафиолетовое, рентгеновское и гамма-излучение. Видимая часть - очень небольшая часть электромагнитного спектра.

Немного математики и истории

Длины волн обычно измеряются в миллиардных долях метра (нанометрах) или 10 миллиардных долях метра (Ангстремы). Расстояние от пика одной волны до пика следующей. Люди могут видеть волны с длиной волны примерно от 700 нм, которая кажется темно-красной, до примерно 400 нм, которая выглядит фиолетовой. Свет с короткими длинами волн (фиолетовый) несет больше энергии, чем свет с длинными волнами (красный).

Свет - это электромагнитные волны и не только

Электромагнитное излучение - один из многих способов перемещения энергии в космосе. Тепло от горящего огня, свет солнца, рентгеновские лучи, используемые вашим врачом, а также энергия, используемая для приготовления пищи в микроволновой печи, - все это формы электромагнитного излучения. Хотя эти формы энергии могут показаться совершенно разными, они связаны тем, что все обладают волнообразными свойствами.

Если вы когда-нибудь купались в океане, вы уже знакомы с волнами. Волны - это просто возмущения в определенной физической среде или поле, приводящие к вибрации или колебаниям. Набухание волны в океане и последующее за ним падение - это просто вибрация или колебание воды на поверхности океана. Электромагнитные волны похожи, но они также отличаются тем, что на самом деле состоят из волны, колеблющиеся перпендикулярно друг другу. Одна из волн - колеблющееся магнитное поле; другой - колеблющееся электрическое поле.


Электромагнитное излучение можно представить в виде колеблющегося электрического поля (колеблющегося в плоскости страницы / экрана компьютера) и перпендикулярного (в данном случае колеблющегося на странице и вне ее) магнитного поля. Ось Y - амплитуда, а ось X - расстояние в пространстве.

Хотя хорошо иметь базовое представление о том, что такое электромагнитное излучение, большинство химиков меньше интересуются физикой, лежащей в основе этого типа энергии, и гораздо больше интересуются тем, как эти волны взаимодействуют с веществом. В частности, химики изучают, как различные формы электромагнитного излучения взаимодействуют с атомами и молекулами. Из этих взаимодействий химик может получить информацию о структуре молекулы, а также о типах химических связей, которые она содержит. Однако прежде чем мы поговорим об этом, необходимо поговорить немного подробнее о физических свойствах световых волн.

Электромагнитный спектр световых волн

Электромагнитные волны можно классифицировать и упорядочивать в соответствии с их различными длинами волн / частотами; эта классификация известна как электромагнитный спектр. Следующая таблица показывает нам этот спектр, который состоит из всех типов электромагнитного излучения, существующих в нашей Вселенной.

Электромагнитный спектр состоит из всех видов излучения Вселенной. Гамма-лучи имеют самую высокую частоту, а радиоволны - самую низкую. Видимый свет находится примерно в середине спектра и составляет очень небольшую часть всего спектра.


Слева от видимого спектра находятся ультрафиолетовые (УФ) лучи, рентгеновские лучи и гамма-лучи. Эти типы излучения вредны для живых организмов из-за их чрезвычайно высоких частот (и, следовательно, высоких энергий). Именно по этой причине мы используем лосьон для загара на пляже (чтобы заблокировать УФ-лучи от солнца), и поэтому рентгенолог поместит на нас свинцовый щит, чтобы предотвратить проникновение рентгеновских лучей во что-либо другое. чем отображаемая область нашего тела. Гамма-лучи, будучи наивысшими по частоте и энергии, являются наиболее разрушительными. К счастью, наша атмосфера поглощает гамма-лучи из космоса, тем самым защищая нас от вреда.

Далее мы поговорим о взаимосвязи между частотой волны и ее энергией.

Двойственная природа света, история в деталях

Мы уже описали, как свет распространяется в пространстве в виде волны. Это было хорошо известно довольно давно. Фактически, голландский физик Христиан Гюйгенс впервые описал волновую природу света еще в конце семнадцатого века. Спустя годы после Гюйгенса физики предположили, что световые волны и материя совершенно отличны друг от друга. Согласно классической физике, материя состоит из частиц, обладающих массой, положение которых в пространстве может быть известно; световые волны, с другой стороны, считались имеющими нулевую массу, и их положение в пространстве не могло быть определено. Поскольку они относились к разным категориям, ученые не имели хорошего понимания того, как взаимодействуют свет и материя. Все изменилось, когда физик Макс Планк начал изучать черные тела - тела, нагретые до тех пор, пока они не начали светиться.

Двумерное представление волны. Амплитуда - это расстояние от его центральной оси (обозначенной красной линией) до вершины гребня. Длина волны - это расстояние от гребня до гребня или от впадины до впадины.

Имейте в виду, что некоторые волны (включая электромагнитные волны) также колеблются в пространстве, и поэтому они колеблются в заданном месте с течением времени. Величина, известная как частота волны, относится к числу полных длин волн, которые проходят через данную точку в пространстве каждую секунду.


Позже другие астрономы и физики открыли новые способы использования спектра для анализа света. Они обнаружили, что свет от любого источника, будь то свеча или звезда, состоит из комбинации длин волн в зависимости от того, какие атомы и молекулы излучают свет. Эта наука (спектроскопия) позволяет астрономам определять, какие элементы должны присутствовать на поверхности данной звезды.

Открытие Планка квантования электромагнитного излучения навсегда изменило представление о том, что свет ведет себя исключительно как волна. На самом деле свет, казалось, обладал как волнообразными, так и частицеобразными свойствами.

Фотон

Заключение

Электромагнитное излучение можно описать его амплитудой (яркостью), длиной волны, частотой и периодом. В начале двадцатого века открытие квантования энергии привело к открытию, что свет - это не только волна, но также может быть описан как совокупность частиц, известных как фотоны. Фотоны несут дискретные количества энергии, называемые квантами. Эта энергия может передаваться атомам и молекулам при поглощении фотонов. Атомы и молекулы также могут терять энергию из-за испускания фотонов.

1.
Скорость света в вакууме определена экспериментально.
Она примерно равна 300 000 км/с.
Во всех средах скорость света меньше, чем в вакууме.

2.
Преломление света на границе двух сред обусловлено изменением скорости при переходе света из одной среды в другую.
Относительный показатель преломления двух сред равен обратному отношению скоростей света в этих средах.

3.
Широкое применение имеют линзы — прозрачные тела, ограниченные сферическими поверхностями.
Основная формула линзы связывает ее фокусное расстояние F (расстояние от линзы до фокуса), расстояние d от предмета до линзы и расстояние ƒ от линзы до изображения:


Величины F, ƒ и d в этой формуле могут быть как положительными, так и отрицательными: положительные значения соответствуют действительным фокусу, изображению и предмету, а отрицательные — мнимым.

4.
Показатель преломления света, как впервые установил Ньютон, зависит от его цвета.
Цвет же определяется частотой колебаний (или длиной световой волны).
Зависимость показателя преломления света от частоты колебаний называется дисперсией.


Дисперсия приводит к тому, что призма разлагает белый свет в спектр.

С помощью призм можно осуществить, как разложение, так и синтез белого света.


Скорость света и длина волны уменьшаются при переходе из вакуума в среду.
Частота колебаний при этом остается неизменной.

5.
Световые волны одинаковой длины волны, имеющие постоянную во времени разность фаз, называются когерентными.
При наложении когерентных волн друг на друга наблюдается интерференция света.
Волны усиливают или ослабляют друг друга в зависимости от разности хода между ними.
Когерентные волны образуются, например, при отражении световых волн от двух поверхностей тонкой пленки.
Так как разность фаз колебаний интерферирующих волн зависит не только от толщины пленки, но и от длины волны, то при освещении пленки белым светом образуется цветная интерференционная картина.

6.
Световые волны огибают препятствия, сравнимые по размерам с длиной световой волны.
Это дифракция света.
Так как длина световой волны очень мала (порядка 10 -5 см), то наблюдение дифракции света затруднено и требует специальных приспособлений.
Дифракция света налагает предел на разрешающую способность микроскопа и телескопа.

7.
Законы геометрической оптики выполняются при условии, что размеры препятствий на пути световых волн много больше длины волны.

8.
На явлении дифракции основано устройство дифракционной решетки: совокупности большого числа одинаковых щелей, разделенных узкими промежутками.
Значения углов ф, определяющих направления на дифракционные максимумы спектра, получаемого с помощью решетки, находят из равенства d sin φ = kλ, где k = 0, 1, 2, . a d — период решетки.

Решетка разлагает белый свет в спектр; с ее помощью можно измерять длины световых волн.

9.
Световые волны поперечны.
Это доказано экспериментально при наблюдении прохождения света через анизотропные среды — кристаллы.
Световая волна, в которой колебания происходят в определенной плоскости, называется поляризованной.
Свет, создаваемый обычными источниками (естественный свет), не поляризован.
Колебания в световой волне происходят по всем направлениям в плоскости, перпендикулярной направлению ее распространения.

10.
Согласно электромагнитной теории, свет представляет собой поперечную электромагнитную волну.
Экспериментальное доказательство поперечности световых волн явилось важным этапом в признании справедливости электромагнитной теории света.

Световые волны. Физика, учебник для 11 класса - Класс!ная физика


Свет являет собой электромагнитные волны определенного спектра частоты, который виден человеческому глазу и представлен длиной волны в промежутке 0,4 - 0,76 мкм. Каждому цвету световой волны соответствует определенное значение длины. При изменении длины волны изменяется окраска света. С увеличением длины волны цвет изменяется в следующем порядке:

  • фиолетовый;
  • синий;
  • голубой;
  • зеленый;
  • желтый;
  • оранжевый;
  • красный.

Свет фиолетового цвета, соответствующий минимальной длине видимого спектра электромагнитной волны, называется фиолетовой границей спектра. Красный цвет, соответствующий максимальной длине видимой волны, - это красная граница. У естественного света нет цвета, он являет собой совокупность электромагнитных волн всего видимого спектра.

Свет как электромагнитная волна

Не нашли что искали?

Просто напиши и мы поможем

Так как свет имеет природу электромагнитной волны, то оптическая физика базируется на уравнениях Максвелла и всех выражениях, вытекающих из них. Согласно теории Максвелла:

\( = \sqrt=n,\)
где \(C\) и \(V\) - скорость света соответственно в магнитной и электрической среде;

\(ξ\) и \(μ\) - диэлектрическая и магнитная проницаемость вакуума.

Данное выражение показывает зависимость между магнитными, электрическими и оптическими постоянными среды. Согласно теории Максвелла \(ξ\) и \(μ\) не зависимы от длины волн света, по этой причине теория электромагнитных волн не в состоянии разъяснить явление дисперсии, а именно связь между преломлением и длиной волны света.

От величины показателя преломления зависит оптическая плотность вещества.

Взаимосвязь длины волны и показателя n показана следующим выражением:

где \(λ_0\) - длина волны в вакууме.

Когерентность и суммирование колебаний

Когерентностью называют коррелированность двух и более волновых процессов во времени, что имеет место при их суммировании. Когерентными считаются такие колебания, у которых разность фаз является постоянной величиной и результатом суммирования которых является колебание с той же частотой.

В классической волновой оптике исследуются линейные среды, то есть диэлектрическая и магнитная проницаемости которых не зависимы от интенсивности света. По этой причине в волновой оптике будет действовать принцип суперпозиции. Поведение световых волн в нелинейных средах исследует нелинейная оптика.

Нелинейные оптические явления значительно выражены при высокой интенсивности света, излучаемого, к примеру, лазерами. Если рассмотреть две волны с равной частотой, что наложены одна на другую и возбуждают колебания в одном направления, то амплитуда суммарного колебания определится таким образом:

\(A^2=A_1^2+A_2^2+2A_1 A_2 cosσ,\)

где \(σ=α_2-α_1\) – разность фаз волновых колебаний;

\( A_1 cosωt+α_1\) – параметры одной волны;

\( A_2 cosωt+α_2\) – параметры другой волны.

Когерентными есть волны, разность фаз колебаний которых σ постоянна.

Интерференция волн света

Интерференция света состоит в том, что при наложении световых волн одна на другую отсутствует суммирование их интенсивности. Обязательным условием интерференции является когерентность волн света. Такому условию соответствуют монохроматические волны с одинаковой частотой и распространяются в закрытом объеме.

Сложно разобраться самому?

Попробуй обратиться за помощью к преподавателям

Оптическая длина пути

Допустим, разделение света на две когерентные волны осуществляется в заданной точке \(O\) . К точке \(M\) , в которой наблюдается картина интерференции, одна волна преодолела путь \(S_1\) в среде \(n_1\) , а другая волна – путь \(S_2\) в среде \(n_2\) . Фаза колебаний в начальной точке \(O\) будет равняться \(ωt\) , а в точке \(M\) одна волна возбудит колебание:

где \(V_1= \) и \(V_2= \) - фазовая скорость одной и другой волны.

Оптической длиной волны \(L\) есть произведение геометрического расстояния пути волны света S на величину преломления среды.
Оптической разностью хода есть разность оптических длин \(δ=L_2-L_1.\)

Когда оптическая разность хода равняется целому числу волн в вакууме \(δ=mλ_0 \) \((m=0,1,2…),\) тогда \(σ=2mπ,\) а колебания в точке \(M\) осуществляются в одной фазе. Это является максимумом. Если же оптическая разность хода будет \(δ = (2m+1),\) то \(σ=(2m+1)π,\) а колебания будут осуществляться в противофазе.

Стоит отметить, что электромагнитная природа света доказана экспериментально и не подлежит сомнению. В 2009 году исследователями были разработаны методы, позволяющие с высокой точностью определить колебания магнитной части световой волны. Первым, кто доказал электромагнитную природу света, был Максвелл. Он вывел уравнение волн и смог определить скорость этих волн, которая оказалась равной величине скорости света. Это дало подтверждение того, что свет являет собой электромагнитную волну, от частоты которой зависят ее характеристики, например, цвет.

Электромагнитные волны, будь то рентгеновское излучение и радиоволна, являются суммой магнитного и электрического полей, что превращаются одно в другое, тем самым распространяясь в пространстве и времени. При этом магнитные и электрические векторы перпендикулярны между собой и к направлению перемещения данной волны.

Читайте также: