Доклад на тему счетчик в электронике

Обновлено: 01.05.2024

Счетчик импульсов — это последовательностное цифровое устройство, обеспечивающее хранение слова информации и выполнение над ним микрооперации счета, заключающейся в изменении значения числа в счетчике на 1. По существу счетчик представляет собой совокупность соединенных определенным образом триггеров. Основной параметр счетчика — модуль счета. Это максимальное число единичных сигналов, которое может быть сосчитано счетчиком. Счетчики обозначают через СТ (от англ. counter).

Классификация счетчиков импульсов

Суммирующий счетчик импульсов

В исходном состоянии на всех триггерах установлены логические нули. Каждый триггер меняет свое состояние лишь в тот момент, когда на него действует отрицательный перепад напряжения.

Таким образом, данный счетчик реализует суммирование входных импульсов. Из временных диаграмм видно, что частота каждого последующего импульса в два раза меньше, чем предыдущая, т. е. каждый триггер делит частоту входного сигнала на два, что и используется в делителях частоты.

Трехразрядный вычитающий счетчик с последовательным переносом

рис. 3.68

Рассмотрим трехразрядный вычитающий счетчик с последовательным переносом, схема и временные диаграммы работы которого приведены на рис. 3.68.

Васильев Дмитрий Петрович

В счетчике используются три JK-триггера, каждый из которых работает в режиме Т-триггера (триггера со счетным входом).

На входы J и К каждого триггера поданы логические 1, поэтому по приходу заднего фронта импульса, подаваемого на его вход синхронизации С, каждый триггер изменяет предыдущее состояние. Вначале сигналы на выходах всех триггеров равны 1. Это соответствует хранению в счетчике двоичного числа 111 или десятичного числа 7. После окончания первого импульса F первый триггер изменяет состояние: сигнал Q1 станет равным 0, a ¯ Q1 − 1.

Васильев Дмитрий Петрович

Остальные триггеры при этом свое состояние не изменяют. После окончания второго импульса синхронизации первый триггер вновь изменяет свое состояние, переходя в состояние 1, (Qx = 0). Это обеспечивает изменение состояния второго триггера (второй триггер изменяет состояние с некоторой задержкой по отношению к окончанию второго импульса синхронизации, так как для его опрокидывания необходимо время, соответствующее времени срабатывания его самого и первого триггера).

После первого импульса F счетчик хранит состояние 11О. Дальнейшее изменение состояния счетчика происходит аналогично изложенному выше. После состояния 000 счетчик вновь переходит в состояние 111.

Трехразрядный самоостанавливающийся вычитающий счетчик с последовательным переносом

рис. 3.69

Рассмотрим трехразрядный самоостанавливающийся вычитающий счетчик с последовательным переносом (рис. 3.69).
После перехода счетчика в состояние 000 на выходах всех триггеров возникает сигнал логического 0, который подается через логический элемент ИЛИ на входы J и К первого триггера, после чего этот триггер выходит из режима Т-триггера и перестает реагировать на импульсы F.

Трехразрядный реверсивный счетчик с последовательным переносом

рис. 3.70

Рассмотрим трехразрядный реверсивный счетчик с последовательным переносом (рис. 3.70).
В режиме вычитания входные сигналы должны подаваться на вход Тв. На вход Тс при этом подается сигнал логического 0. Пусть все триггеры находятся в состоянии 111. Когда первый сигнал поступает на вход Тв, на входе Т первого триггера появляется логическая 1, и он изменяет свое состояние. После этого на его инверсном входе возникает сигнал логической 1.

При поступлении второго импульса на вход Тв на входе второго триггера появится логическая 1, поэтому второй триггер изменит свое состояние (первый триггер также изменит свое состояние по приходу второго импульса). Дальнейшее изменение состояния происходит аналогично. В режиме сложения счетчик работает аналогично 4-разрядному суммирующему счетчику. При этом сигнал подается на вход Тс. На вход Тв подается логический 0.
В качестве примера рассмотрим микросхемы реверсивных счетчиков (рис: 3.71) с параллельным переносом серии 155 (ТТЛ):

История исследования магнетизма и появление первых счетчиков электрической энергии. Особенности их устройства, этапы совершенствования и современное состояние. Классификация и технические характеристики индукционных счетчиков, правила обозначений.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 13.01.2016
Размер файла 159,8 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Счетчики электрической энергии

1. История создания

История создания счётчиков связана с изобретениями электротехнических устройств XIX века. Самые разные исследователи независимо и беспрестанно изучали электромагнетизм, внося собственную лепту в создание и последующее развитие счётчиков электроэнергии. Вот лишь некоторые этапы продолжительного пути развития. Всплеск теоретических открытий в области явлений, устанавливающих связь между магнитными и электрическими свойствами вещества, уже в 1-й половине XIX века.

Во второй половине XIX века к авторам теоретических трудов присоединились практики. В течение непродолжительного периода времени были изобретены гидротурбина, счётчик, трансформатор тока, электродвигатель, динамо-машина, электрическая лампа. Как считали первооткрыватели, само время дарило просветление, позволяя почти в одно и то же время свершаться схожим открытиям в противоположных концах света. В этом был, к примеру, уверен создатель индукционного электрического счётчика Отто Титус Блати, венгр по происхождению, который также являлся соизобретателем трансформатора. Аньош Йедлик и Вернер фон Сименс, каждый в своё время, придумали динамо-машину. Что, в свою очередь, позволило превратить электричество в коммерческий продукт массового спроса. Развитие систем освещения потребовало применения устройств измерения и стандартизации учёта электроэнергии.

2. Принцип работы

Для учёта активной электроэнергии переменного тока служат индукционные одно- и трёхфазные приборы, для учёта расхода электроэнергии постоянного тока (электрический транспорт, электрифицированная железная дорога) - электродинамические счётчики. Число оборотов подвижной части прибора, пропорциональное количеству электроэнергии, регистрируется счётным механизмом.

В электрическом счётчике индукционной системы подвижная часть (алюминиевый диск) вращается во время потребления электроэнергии, расход которой определяется по показаниям счётного механизма. Диск вращается за счёт вихревых токов, наводимых в нём магнитным полем катушки счётчика, - магнитное поле вихревых токов взаимодействует с магнитным полем катушки счётчика.

В электрическом счетчике электронного типа переменный ток и напряжение воздействуют на твердотельные (электронные) элементы для создания на выходе импульсов, число которых пропорционально измеряемой активной энергии.

3. Виды и типы

Для учёта активной электроэнергии переменного тока служат индукционные одно- и трёхфазные приборы, для учёта расхода электроэнергии постоянного тока (электрический транспорт, электрифицированная железная дорога) - электродинамические счётчики. Число оборотов подвижной части прибора, пропорциональное количеству электроэнергии, регистрируется счётным механизмом.

В электрическом счётчике индукционной системы подвижная часть (алюминиевый диск) вращается во время потребления электроэнергии, расход которой определяется по показаниям счётного механизма. Диск вращается за счёт вихревых токов, наводимых в нём магнитным полем катушки счётчика, - магнитное поле вихревых токов взаимодействует с магнитным полем катушки счётчика.

В электрическом счетчике электронного типа переменный ток и напряжение воздействуют на твердотельные (электронные) элементы для создания на выходе импульсов, число которых пропорционально измеряемой активной энергии.

4. Принцип действия и устройство счетчиков эл-ой энергии

С помощью электросчетчиков осуществляется учет израсходованной электрической энергии. Электросчетчики бывают индукционные и электронные.

Измерительный механизм индукционного однофазного счетчика электрической энергии (электроизмерительный прибор индукционной системы) состоит из двух электромагнитов, расположенных под углом 90° друг к другу, в магнитном поле которых находится легкий алюминиевый диск. Схема устройства счетчика электрической энергии показана на рисунке 1.

Для включения счетчика в цепь его токовую обмотку соединяют с электроприемниками последовательно, а обмотку напряжения - параллельно. При прохождении по обмоткам индукционного счетчика переменного тока в сердечниках обмоток возникают переменные магнитные потоки, которые, пронизывая алюминиевый диск, индуцируют в нем вихревые токи.

Взаимодействие вихревых токов с магнитными потоками электромагнитов создает усилие, под действием которого диск вращается. Последний связан со счетным механизмом, учитывающим частоту вращения диска, т.е. расход электрической энергии.

Схема устройства счетчика электрической энергии: 1 - обмотка тока, 2 - обмотка напряжения, 3 - червячный механизм, 4 - счетный механизм, 5 - алюминиевый диск, б - магнит для притормаживания диска

Для учета потребленной электроэнергии в сетях переменного трехфазного тока применяются трехфазные индукционные электросчетчики, принцип действия которых аналогичен однофазным.

В настоящее время все более широкое применение получили электронные (цифровые) электросчетчики. Электронные счетчики обладают рядом преимуществ по сравнению с индукционными счетчиками:

- малые габаритные размеры,

- отсутствие вращающихся частей,

- возможность учета электроэнергии по нескольким тарифам,

- измерение суточных максимумов нагрузки,

- учет как активной, так и реактивной мощности,

- более высокий класс точности,

- возможность дистанционного учета электроэнергии.

Схема устройства электронного счетчика электроэнергии

В настоящее время учёт электроэнергии, в основном, производится по одному тарифу (то есть стоимость электроэнергии одинакова независимо от времени потребления). Однако, начинает вводится многотарифные системы оплаты, при которых стоимость электрической энергии различна по часам суток или по дням недели.

Указанный подход обеспечит более равномерное потребление электроэнергии потребителями и снижение максимальной нагрузки энергосистемы. Поэтому уже выпускаются электронные счётчики со встроенными часами, которые питаются от аккумуляторной батареи, что обеспечивает учёт электроэнергии по разным интервалам времени, задаваемым программно.

Как правило, электронные счётчики имеют жидкокристаллический индикатор, на котором отображаются потребляемая электроэнергия по каждому из тарифов, текущая потребляемая мощность, текущее время и дата и другие измеряемые прибором параметры.

5. Классификация и технические характеристики индукционных счетчиков

Различают однофазные и трехфазные счетчики. Однофазные счетчики применяются для учета электроэнергии у потребителей, питание которых осуществляется однофазным током (в основном, бытовых). Для учета электроэнергии трехфазного тока применяются трех фазные счетчики.

Трехфазные счетчики можно классифицировать следующим образом.

По роду измеряемой энергии - на счетчики активной и реактивной энергии.

В зависимости от схемы электроснабжения, для которой они предназначены, - на трехпроводные счетчики, работающие в сети без нулевого провода, и четырехпроводные, работающие в сети с нулевым проводом.

По способу включения счетчики можно разделить на 3 группы

- Счетчики непосредственного включения (прямого включения), включаются в сеть без измерительных трансформаторов. Такие счетчики выпускаются для сетей 0,4/0,23 кВ на токи до 100 А.

- Счетчики полукосвенного включения, своими токовыми обмотками включаются через трансформаторы тока. Обмотки напряжения включаются непосредственно в сеть. Область применения - сети до 1 кВ.

- Счетчики косвенного включения, включаются в сеть через трансформаторы тока и трансформаторы напряжения. Область применения - сети выше 1 кВ.

Счетчики косвенного включения изготовляются двух типов. Трансформаторные счетчики - предназначены для включения через измерительные трансформаторы, имеющие определенные наперед заданные коэффициенты трансформации. Эти счетчики имеют десятичный пересчетный коэффициент (10п). Трансформаторные универсальные счетчики - предназначены для включения через измерительные трансформаторы, имеющие любые коэффициенты трансформации. Для универсальных счетчиков пересчетный коэффициент определяется по коэффициентам трансформации установленных измерительных трансформаторов.

6. Обозначения электросчетчиков

магнетизм электрический счетчик энергия

В зависимости от назначения счетчику присваивается условное обозначение. В обозначениях счетчиков буквы и цифры означают: С - счетчик; О - однофазный; Л - активной энергии; Р - реактивной энергии; У - универсальный; 3 или 4 для трех- или четырехпрводной сети.

Пример обозначения: СА4У - Трехфазный трансформаторный универсальный четырехпроводиый счетчик активной энергии.

Если па табличке счетчика поставлена буква М, это значит, что счетчик предназначен для работы и при отрицательных температурах (-15° - +25°С).

7. Электросчетчики специального назначения

Счетчики активной и реактивной энергии, снабженные дополнительными устройствами, относятся к счетчикам специального назначения. Перечислим некоторые из них.

Двухтарифные и многоторифные счетчики - применяются для учета электроэнергии, тариф на которую изменяется в зависимости от времени суток.

Счетчики с предварительной оплатой - применяются для учета электроэнергии бытовых потребителей, живущих в отдаленных и труднодоступных населенных пунктах.

Счетчики с указателем максимальной нагрузки - применяются для расчетов с потребителями по двухставочному тарифу (за израсходованную электроэнергию и максимальную нагрузку).

Телеизмерительные счетчики - служат для учета электроэнергии и дистанционной передачи показаний.

К счетчикам специального назначения относятся и образцовые счетчики, предназначенные для поверки счетчиков общего назначения.

8. Технические характеристики электросчетчиков

Техническая характеристика счетчика определяется следующими основными параметрами.

Номинальное напряжение и номинальный ток счетчиков - у трехфазных счетчиков указываются в виде произведения числа фаз на номинальные значения тока и напряжения, у четырехпроводных счетчиков указываются линейные и фазные напряжения. Например - 3/5 А; 3X380/220 В.

У трансформаторных счетчиков вместо номинальных тока и напряжения указываются номинальные коэффициенты трансформации измерительных трансформаторов, для работы с которыми счетчик предназначен, например: 3X150/5 А. 3X6000/100 В.

На счетчиках, называемых перегрузочными, указывается значение максимального тока непосредственно после номинального, например 5 - 20 А.

Номинальное напряжение счетчиков прямого и полукосвенного включения должно соответствовать номинальному напряжению сети, а счетчиков косвенного включения - вторичному номинальному напряжению трансформаторов напряжения. Точно так же номинальный ток счетчика косвенного или полукосвенного включения должен соответствовать вторичному номинальному току трансформатора тока (5 или 1 А).

Счетчики допускают длительную перегрузку по току без нарушения правильности учета: трансформаторные и трансформаторные универсальные - 120%; счетчики прямого включения - 200% и более (в зависимости от типа)

Класс точности счетчика - это его наибольшая допустимая относительная погрешность, выраженная в процентах. Счетчики активной энергии должны изготавливаться классов точности 0,5; 1,0; 2,0; 2,5; счетчики реактивной энергии - классов точности 1,5; 2,0; 3,0. Трансформаторные и трансформаторные универсальные счетчики учета активной и реактивной энергии должны быть класса точности 2,0 и более точные.

Класс точности устанавливается для условий работы, называемых нормальными. К ним относятся: прямое чередование фаз; равномерность и симметричность нагрузок по фазам; синусоидальность тока и напряжения (коэффициент линейных искажений не более 5%); номинальная частота (50 Гц±0,5%); номинальное напряжение (±1%); номинальная нагрузка; cos фи = l (для счетчиков активной энергии) и sin фи = 1 (для счетчиков реактивной энергии); температура окружающего воздуха 20°+3°С (для счетчиков внутренней установки); отсутствие внешних магнитных полей (индукция не более 0,5 мТл); вертикальное положение счетчика.

Передаточное число индукционного счетчика - это число оборотов его диска, соответствующее единице измеряемой энергии.

Например, 1 кВт-ч равен 450 оборотам диска. Передаточное число указывается на табличке счетчика.

Постоянная индукционного счетчика - это значение энергии, которое он измеряет за 1 оборот диска.

Чувствительность индукционного счетчика - определяется наименьшим значением тока (в процентах к номинальному) при номинальном напряжении и cos фи = l (sin фи = 1), который вызывает вращение диска без остановки. При этом допускается одновременное перемещение не более двух роликов счетного механизма.

Порог чувствительности не должен превышать: 0,4% - для счетчиков класса точности 0,5; 0,5%-для счетчиков классов точности 1,0; 1,5; 2 и 1,0% - для счетчиков класса точности 2,5 и 3,0

Емкость счетного механизма - определяется числом часов работы счетчика при номинальных напряжении и токе, по истечении которых счетчик дает первоначальные показания.

Собственное потребление мощности (активной и полной) обмотками счетчиков - ограничено стандартом. Так, для трансформаторных и трансформаторных универсальных счетчиков потребляемая мощность в каждой токовой цепи при номинальном токе не должна превышать 2,5 В-А для всех классов точности, кроме 0,5. Мощность, потребляемая одной обмоткой напряжения счетчиков до 250 В: для классов точности 0,5; 1; 1,5 - активная 3 Вт, полная 12 В-А, для классов точности 2,0; 2,5; 3,0 - соответственно 2 Вт и 8 В-А.

9. Погрешности измерений электроэнергии, требования к измерительным трансформаторам

Выбор класса точности счетчиков зависит от назначения, способа включения и вида измеряемой энергии (активная или реактивная).

По назначению счетчики можно разделить на следующие категории: расчетные и предназначенные для технического (контрольного) учета, а по способу включения - на счетчики непосредственного включения и включающиеся через измерительные трансформаторы тока и напряжения.

Класс точности счетчиков непосредственного включения должен быть при измерении активной энергии не ниже 2,5, а при измерении реактивной - не ниже 3,0. Для расчетных счетчиков, включенных через измерительные трансформаторы, класс точности при измерении активной и реактивной энергии должен быть не менее 2,0, соответственно для счетчиков технического учета - не ниже 2,0 и 2,5

Измеряя большую мощность, рекомендуется применять расчетные счетчики активной мощности класса не ниже 1,0, реактивной - не ниже 1,5. При работе с расчетными счетчиками измерительные трансформаторы тока и напряжения должны иметь класс не ниже 0,5 (допускается использовать трансформаторы тока класса 1,0 при условии, что их действительная погрешность при нагрузке во вторичной цепи не более 0,4 Ом не превысит погрешности, допустимой для трансформаторов тока класса 0,5); для работы со счетчиками технического учета необходимо использовать трансформаторы класса не ниже 1,0

Нагрузка вторичных цепей измерительных трансформаторов не должна превышать номинальной для данного класса точности Исходя из этого ориентировочно принимают сопротивление соединительных проводов, подводимых к вторичной цепи трансформатора, не более 0,2 Ом. Рассчитанные из этих соображении наименьшие допусти-мые сечения соединительных проводов приведены в таблице.

Счетчик электроэнергии – это измерительный прибор для учета расхода потребляемого электричества. В зависимости от модификации устройство может работать в сетях постоянного или переменного тока. Единицей исчисления потребления выступает кВт/ч или А/ч.

Классификация счетчиков

Счетчики принято делить по трем критериям:

  1. Типу измеряемой величины.
  2. Способу подключения.
  3. Конструкции.

При выборе необходимо обращать внимание на все три критерия, подбирая оптимальный прибор под требуемые параметры электрической сети и уровня потребления энергии.

Разновидности по типу измеряемой величины

Классификация счетчиков по типу измеряемой величины является самой простой для понимания даже человеку, который далек от знаний о принципе работы электросетей. Все приборы разделяют на однофазные и трехфазные. Однофазный счетчик электроэнергии предназначен для подключения к сетям переменного тока 220 В, 50 Гц. Трехфазные устройства работают с электросетями 380 В, 50 Гц. При этом они могут проводить измерения и при подключении в однофазной сети.

Однофазные приборы можно встретить в любой квартире или доме. Именно они рассчитаны для бытового пользования. Трехфазные устройства в большинстве случаев применяются на промышленных объектах, где проложена трехфазная электросеть, требуемая для работы мощного оборудования. В зависимости от модификации трехфазные счетчики могут иметь подключение на три или четыре провода.

Классификация по способу подключения

По способу подключения счетчики разделяются всего на две группы. Существуют приборы прямого включения и трансформаторного. Первые напрямую подсоединяются в сеть, а вторые нуждаются в подключении со специальным трансформатором, который включается в цепь перед самим счетчиком.

Разновидности по конструкции
Современные счетчики бывают в 3 вариантах конструкции:
  • Индукционные.
  • Электронные.
  • Гибридные.
Индукционный счетчик

Индукционный (механический) счетчик электроэнергии имеет внутри неподвижные токопроводящие катушки, создающее магнитное поле. Получаемое от них поле влияет на подвижный элемент, представляющий собой диск, работающий по принципу проводника для электрических токов. При прохождении электроэнергии через диск, тот под влиянием магнитного поля катушек начинает оборачиваться, тем самым запуская механизм с таблом для подсчета. Чем интенсивнее проходящий ток, тем диск вращается быстрее. Механизм подсчета устройства спроектирован таким образом, чтобы определенное количество оборотов соответствовало изменению одного показателя на циферблате.

Механические приборы теряют свою актуальность, поскольку их конструкция является далеко не совершенной против более современных электронных счетчиков.

К недостаткам индукционных измерителей можно отнести:
  • Невозможности дистанционного снятия показаний.
  • Однотарифное измерение.
  • Низкая чувствительность.
  • Недостаточная защита от кражи электроэнергии.

Зачастую индукционные счетчики неспособны правильно рассчитывать уровень потребляемой энергии. Довольно часто при наличии слабого потребления, к примеру, при горении индикатора в блоке зарядного устройства телефона или бытового прибора, находящегося в режиме ожидания, счетчик вообще не реагирует, хотя и происходит минимальное потребление энергии. Кроме этого, отдельные модификации измерителей имеют совершенно противоположные проблемы. При включении мощного потребителя их диск оборачивается значительно быстрее реального уровня потребления энергии.

К преимуществам механических счетчиков можно отнести их действительно длительный срок эксплуатации и полную независимость от скачков электроэнергии. Они дешевые и довольно надежные. Но их класс точности соответствует уровню 2-2,5%, что является довольно низким в сравнении с электронными приборами.

Электронный счетчик электроэнергии

Электронный счетчик работает по иному принципу. В нем токи воздействуют на специальные электронные элементы, которые преображают их в импульсы. Количество импульсов пропорционально фактическому объему пропущенной энергии. В качестве считывающего механизма может применяться электронное или электромеханическое устройство, которое выводит данные на ЖК-дисплей. Электронные счетные элементы подходят для приборов, которые устанавливаются внутри квартир и домов. Электромеханический механизм применяется на счетчиках, монтируемых на фасадах зданий.

Главное преимущество таких приборов в их высокой точности. Они корректно отображают то количество энергии, которое пропустили для потребителей. Кроме этого, их электронные составляющие позволяют вести учет энергии по нескольким тарифам. То есть, они способны запоминать информацию о том, сколько энергии было употреблено в дневное время, а сколько в ночное. Это позволяет проводить оплату за потребляемое электричество по нескольким тарифам, если это предусмотрено договором с компанией поставщиком.

Данные приборы имеют продолжительный межповерочный период. В зависимости от производителя счетчик нуждается в сдаче на поверку раз в 4-16 лет.

Электронный счетчик имеет в своей конструкции энергонезависимые часы и счетные элементы, которые сохраняют данные в случае исчезновения напряжения в сети. Благодаря этому при включении после аварийного обесточивания вся информация об уровне использованной электроэнергии не будет обнуляться. При этом такие приборы имеют собственное программное обеспечение, которое проводит автоматическую корректировку времени, что важно в случае подсчета в нескольких тарифах. Также такие устройства имеют защиту от несанкционированного доступа, которая фиксирует такие попытки в журнале событий.

Электронные счетчики имеют высокий класс точности, который составляет не менее 1%. Такие приборы позволяют провести дистанционную проверку показателей без необходимости доступа в дом. Благодаря этому контролеру не обязательно заходить в квартиру, что особенно удобно, если жильцы в рабочие дни не присутствуют дома. Все же электронный счетчик электроэнергии имеет и недостаток, который выражается в высокой стоимости. Провести ремонт таких устройств значительно дороже, чем механических. Данные приборы весьма чувствительны к перепадам напряжения. В случае аварийной ситуации вполне вероятно перегорание прибора, что потребует его замены.

Гибридные счетчики

Сосуществует гибридный счетчик электроэнергии, который представляет собой прибор, сочетающий в себе элементы индукционного и электронного устройства. Проходимость потребляемой энергии считывается путем вращения диска, а показания выводятся на электронный циферблат. Такие счетчики, в отличие от чисто индукционных, способны проводить подсчет по тарифам.

Технические параметры электросчетчиков

Многие модели счетчиков, предназначенные для работы в одинаковых условиях, отличается между собой по точности и прочим характеристикам. Главным техническим параметром электросчетчика является точность. До 1995 годов все приборы имели максимально допустимый уровень погрешности 2,5%. После 1996 года требования к производителям счетчиков ужесточили, после чего для частного сектора начали устанавливаться приборы с погрешностью 2%. При этом счетчики старого образца являются не редкостью и эксплуатируются до сих пор с прохождением поверки. Все выпускаемые сейчас приборы учета имеют погрешность не более 2%. Обычно можно встретить счетчики с классом точности 0,5, 1 и 2%.

Кроме погрешности важным параметром является пропускная способность. Бытовые счетчики, рассчитанные на максимальный уровень потребления 5А и должны эксплуатироваться только в тех случаях, когда не применяются мощные электроприборы, потребляемые больше энергии. Если счетчик электроэнергии перегрузить, то может произойти короткое замыкание. Специально для этого он оснащается электрическими автоматическими выключателями, которые рассоединяют цепь для предотвращения таких последствий. Частым явлением стала установка более мощных автоматов, для предотвращения аварийного отключения с целью возможности питания более энергоемких потребителей. Такие приемы запрещены и противоречат технике безопасности. В случае если необходимо интенсивное потребление энергии нужно обратиться в компании по электроснабжению с заявлением об установке более мощного счетчика рассчитанного на ток до 20А или более, если подается 380В.

Электричество – актуальная тема нашего времени. В повседневной жизни каждый так или иначе сталкивается с ним.

В любой квартире или частном доме есть электропроводка. Необходимым и очень важным элементом электропроводки является электросчетчик.

Сейчас в магазинах продается большое количество различных моделей электрических счетчиков. Поэтому бывает проблематично сделать правильный выбор при покупке, а тем более при его монтаже.

Настоящая работа предназначена для изучения принципов функционирования, технических характеристик ,порядка эксплуатации, назначения и монтажа однофазных счетчиков электрической энергии.

1. Однофазные счетчики электрической энергии

Счётчик электрической энергии — прибор для измерения расхода электроэнергии переменного или постоянного тока (обычно в кВт·ч или А·ч). Счетчик электрической энергии по своей конструкции представляет собой сочетание измерителя мощности (ваттметра) со счетным механизмом.

В счётчиках происходит преобразование аналоговых сигналов датчиков тока и напряжения в цифровые величины, на основании которых вычисляется мощность, потребляемая энергия и ряд других параметров. Все данные сохраняются в энергонезависимой памяти счётчиков.

1.1 Виды счетчиков

Они бывают индукционные , электронные и гибридные .
Индукционные (механические) счетчики электроэнергии из представленных на рынке – самые дешевые, качественные и простые. Но вытесняются из-за отдельных недостатков (отсутствие дистанционного автоматического снятия показаний, однотарифность, погрешности учета) электронными счетчиками.

Цифровые (электронные) счетчики электроэнергии – на порядок дороже, но гораздо удобнее для не обладающих техническими навыками

пользователей, долговечнее (межповерочный период 4-16 лет) и куда точнее в подсчете израсходованной электроэнергии.

Гибридные счетчики электроэнергии – редко используемый промежуточный вариант с цифровым интерфейсом, измерительной частью индукционного или электронного типа, механическим вычислительным устройством.

Счетчики также делятся на: однотарифные и многотарифные (до 48 тарифных планов), с обычной и упрощенной схемой снятия показаний (наличие импульсного выхода для дистанционного учета), с механическим отображением или цифровой индикацией показаний, на образцовые суперточные и обычные (по числовому эквиваленту уровня точности).

Однотарифные предназначены для учета активной электрической энергии в двухпроводных сетях переменного тока. Также они используются для передачи по линиям связи информативных данных на диспетчерский пункт информационно-измерительной системы регистрации потребления электрической энергии.

Многотарифные позволяют вести многтарифный учет активной энергии в двухпроводных сетях переменного тока. Они могут работать автономно, или входить в состав любых автоматизированных систем учета, в том числе с контролем потребления в соответствии с количеством предварительно оплаченной электрической энергии.

Счетчики электрической энергии в зависимости от их конструкции, назначения и схемы включения изготавливают различных типов и маркируют буквами и цифрами, которые означают: С— счетчик; А—активной энергии; Р—реактивной энергии; О—однофазный; 3 и 4—для трехпроводной или четырехпроводной сети; У—универсальный; И—индукционной измерительной системы; три следующие цифры характеризуют конструктивное исполнение счетчика. Буквы после них означают: П—прямоточный (для включения без трансформаторов тока), Т— в тропическом исполнении, М— модернизированный.

1.3 Типы счетчиков

Счетчик электроэнергии Меркурий-200.2 (5-50)А - двухтарифный для коммерческого учета активной электроэнергии в однофазных цепях переменного тока, работает как автономно, так и в составе АСКУЭ.

Счетчик электроэнергии Меркурий-201.6 (10-80)А - для коммерческого учета активной электроэнергии в однофазных цепях переменного тока и работают как автономно, так и в составе АСКУЭ

Счетчик электроэнергии Меркурий-230 АМ-00(5-7,5)А - предназначен для коммерческого учета активной электроэнергии в одном направлении в трёх- или четырёхпроводной сети переменного тока и работают как автономно, так и в составе АСКУЭ.

Счетчик электроэнергии Меркурий-230 АR-01 (5-50)А - предназначен для коммерческого учета активной электроэнергии в одном направлении в трёх- или четырёхпроводной сети переменного тока и работают как автономно, так и в составе АСКУЭ.

Электросчетчик СО 505 (10-40)А 220В - для учета электроэнергии в бытовых условиях, общественных и производственных помещениях.

Счетчик электроэнергии СО-ЭЭ 6706 - электроизмерительный прибор индукционной системы для учета электроэнергии переменного тока частотой 50 Гц.

Электросчетчик СОЛО 5(60)220 - для учета и измерения электроэнергии в сетях 220 В частотой 50 Гц. Однотарифный. Класс точности 1,0; 2,0. Номинальный ток 5(60) А.

Счетчик электроэнергии Соло 5(60)А 220В ЖКИ - для учета и измерения электроэнергии в сетях 220 В частотой 50 Гц. Однотарифный. Класс точности 1,0; 2,0. Номинальный ток 5(60) А.

Счетчики предназначены для учета потребляемой активной энергии в однофазных сетях переменного тока 0.4 kV с частотой 50/60 Hz и используются для работы с конечными потребителями, производящими индивидуальные расчеты с поставщиком электроэнергии.

Счетчики имеют расширенные функциональные возможности и позволяют

· Контролировать потребление электроэнергии с учетом развитой структуры тарифов

· Следить за состоянием взаиморасчетов с компанией-поставщиком электроэнергии. При этом, счетчики поддерживают любой режим работы - как с предоплатой, так и в кредит. Режим работы с предоплатой не требует установки в счетчик специальных карт, так как вся необходимая для расчетов информация поступает по каналам связи

· Получать сведения об аварийном состоянии собственной сети

· Накапливать данные о потреблении, используя удаленный доступ к счётчикам по каналам связи

· Контролировать и синхронизировать работу счётчиков. Следить за состоянием сети потребления и сети передачи данных

· Осуществлять эффективную политику управления потреблением, исходя из соблюдения клиентами условий договора.

1.5 Основные функции

Счетчики обладают следующими функциональными характеристиками:

· Измеряют активную мощность

· Регистрируют потребляемую энергию

· Отсчитывают время и календарную дату

· Используют вневременной штрафной тариф при несоблюдении потребителем условий договора с энергокомпанией

· Выводят на ЖКИ дисплей потребительские и служебные данные

· Допускают возможность настройки своих функций. Настройка производится специалистами из Энергоцентра

· Эффективно препятствуют попыткам хищения электроэнергии

· Поддерживают работу часов счётчика при отсутствии питания в течение не менее одного часа

Набор исполняемых счётчиком функций задаётся его конфигурацией.

1.6 Технические характеристики

Номинальное напряжение, В

Номинальный и максимальный ток, А

Порог чувствительности, Вт, не более

Передаточное число (А) основного передающегоустройства, имп/кВт*ч

Длительность импульсов основного передающегоустройства, с, не менее

Полная потребляемая мощность, Вт, не более

Диапазон рабочих температур, °С

Габаритные размеры, мм

Средняя наработка до отказа, час

Межповерочный интервал, лет

Средний срок службы, лет

Гарантия 8 лет со дня ввода в эксплуатацию.

1.7 Область применения

Счетчики применяются для учета потребленной активной электроэнергии в бытовом и мелкомоторном секторе, устанавливаются в помещениях или закрытых шкафах, имеющих дополнительную защиту от воздействия неблагоприятных факторов окружающей среды.

Счётчики позволяют реализовать следующие требования к сети автоматического учета потребляемой электроэнергии:

· Накопление и хранение данных в энергонезависимой памяти

· Контроль хищений электроэнергии

2. Монтаж однофазных счетчиков электрической энергии

2.1 Как правильно установить электросчётчик

Главным документом, определяющим правила установки электросчётчиков являются ПУЭ (Правила Устройства Электроустановок) , Учёт электроэнергии.

Первое, на что следует обратить внимание перед установкой электросчётчика – это срок давности госповерки электросчётчика. Посмотреть дату госповеркиможно на пломбе кожуха счётчика (не путайте с пломбой энергоснабжающей организации на клеммной крышке). Оттиск на пломбе госповерителя расшифровывается так: римские цифры означают квартал, а две арабские цифры на обратной стороне – год госповерки (рис. 2.1.1). рис. 2.1.1

На вновь устанавливаемых счетчиках должны быть пломбы государственной поверки с давностью не более 2 лет.

Монтаж электросчетчиков следует производить на высоте 0,8 – 1,7 м от пола, принято ставить их на уровне глаз, что в общем-то понятно: удобно для снятия показаний, обслуживания, замены (рис. 2.1.2). Электросчётчик должен стоять ровно, с максимальным уклоном в сторону не более 1°. Это важно скорее для индукционного (электромеханического) счётчика, на погрешности электронного электросчётчика угол наклона никак не скажется. рис. 2.1.2

. Правилами не оговорены какие-то конкретные, разрешённые конструкции, исполнения и размеры электрощитов, однако, сказано следующее:

Конструкции и размеры шкафов, ниш, щитков и т. п. должны обеспечивать удобный доступ к зажимам счетчиков и трансформаторов тока. Кроме того, должна быть обеспечена возможность удобной замены счетчика и установки его с уклоном не более 1°. Конструкция его крепления должна обеспечивать возможность установки и съема счетчика с лицевой стороны.

Допускается крепление счетчиков на деревянных, пластмассовых или металлических щитках.

Коммутация перед счётчиком :

Для безопасной установки и замены счетчиков в сетях напряжением до 380 В должна предусматриваться возможность отключения счетчика установленными до него на расстоянии не более 10 м коммутационным аппаратом или предохранителями. Снятие напряжения должно предусматриваться со всех фаз, присоединяемых к счетчику.

Однако, иногда, энергоснабжающие организации видят автомат, установленный до счётчика как способ хищения электроэнергии, поэтому, лучше заранее поместить его в специальный бокс, имеющий снаружи петельки для пломбирования. Это, наверняка избавит вас от ненужных вопросов представителей энергоснабжающей организации (рис.2.2).

2.3 Схема подключения однофазного электросчётчика

Однофазные электросчётчики имеют четыре контакта в клеммной колодке. С хемы подключения однофазных электросчётчиков типовые, независимо от типа счётчика. На клемму 1 подаётся питание - фаза, клемма 2 – его выход на нагрузку;

соответственно, приходящий ноль подаётся на клемму 3, его выход на нагрузку – клемма 4 (рис. 2.3.1 и рис. 2.3.2). Применение трансформаторов тока в них не предусмотрен. рис.2.3.1

2.4 Советы при монтаже электрического счетчика

1. При монтаже особо важно обеспечить надежный контакт подсоединяемых проводов. Для обеспечения надежного их подключения необходимо затяжку клеммных винтов производить в два приёма.
Сначала без рывков производят затяжку с максимально допустимым усилием, затем затяжка ослабляется до весьма малой величины (но не полностью), а после этого производят вторичную окончательную затяжку с номинальным усилием.

2. При подключении электрического счетчика гибки м медным проводом, необходимо предварительно произвести его лужение оловянно-свинцовым припоем, иначе обеспечить надежное соединение сложно.

3. Спустя полгода после установки электрического счетчика, рекомендуется протянуть его контакты в клеммном ряду, для чего вызвать представителя энергоснабжающей организации .

4. При установке нового индукционного счетчика вы можете обнаружить, что винт напряжения плохо затянут, но это делается преднамеренно при сборке на заводе для удобного заведения провода в первую клемму счетчика. Поэтому винт напряжения рекомендуется затянуть уже после подключения провода к электрическому счетчику.

2.5 Замена электрического счетчика

Чтобы производить замену электрического счетчика, нужно иметь группу допуска по электробезопасности не ниже третьей.

Для замены электрического счетчика вам понадобятся следующие инструменты: 1. Однополюсный указатель напряжения (индикатор); 2.Пассатижи;3.Отвертка;4.Изолента;5.Маркер.

2.5.1 Порядок снятия однофазного электрического счетчика:
1.Отключить однополюсные автоматы или вывернуть электрические пробки;
2.Отключить пакетный выключатель или двухполюсный автомат ; 3.Снять крышку клеммного ряда счетчика;
4.Проверить отсутствие напряжения заранее проверенным индикатором в клеммном ряду электрического счетчика;
5. Пронумеровать провода счетчика маркером на изоляции слева на право: I, II, III, IV.
6. Отсоединить провод с первой клеммы счетчика и заизолировать его (идеально для изоляции подходит колпачок с иглы медицинского шприца);
7. Отсоединить провод с третьей клеммы счетчика и заизолировать его;
8. Отсоединить провода со второй и четвертой клемм;
9. Снять электрический счетчик.

2.5.2 Порядок установке нового однофазного электросчетчика:
1. Закрепить счетчик в электрощите;
2. Подключить провода на вторую и четвертую клемму с соответствующими номерами;
3. Подключить провод №3 на третью клемму электросчетчика;
4. Подключить оставшийся провод на первую клемму счетчика;
5. Затянуть винт напряжения ;
6. Включить пакетный выключатель или двухполюсный автомат;
7. Проверить схему подключения: при правильном подключении индикатор покажет наличие фазы на первой и второй клемме электросчетчика. 8. Включить однополюсные автоматы или ввернуть пробки;
9. Проверить исправность электросчетчика: включить электроприборы и обратить внимание на вращение диска индукционного счетчика либо мерцание светового индикатора электронного счетчика; 10. Установить зажимную крышку электросчетчика;
11. Вызвать представителя энергоснабжающей организации для опломбирования электросчетчика и оформления его расчетным.

Так какой электросчетчик выбрать?

Проще всего узнать об этом можно из технических условий на электроснабжение квартиры или дома. В них непосредственно указан тип электросчетчика, который следует приобрести. А если технические условия отсутствуют? Сегодня сказать какой счетчик лучше достаточно сложно. У каждой модели найдутся свои плюсы и минусы. Как было сказано выше, по принципу работы счетчики разделяются на индукционные и электронные.

Индукционные (привычные нам старые электромеханические электросчётчики) имеют преимущество перед электронными разве, что в разнице их стоимости и, обычно, в более длительном межповерочном интервале. На смену устаревшим индукционным счётчикам сегодня приходят электронные электросчётчики . Вот их основные преимущества: Компактность , Многотарифность , Высокий класс точности . При всем этом все продающиеся в магазинах счетчики соответствуют всем требованиям ГОСТ.

В заключении еще раз напомним: Замена электрических счетчиков должна производится представителем энергоснабжающей организации, который имеет группу допуска не ниже третьей.

1. Однофазные счетчики электрической энергии………. 1

1.6 Технические характеристики………………………………….. 5

1.7 Область применения…………………………………………… 5

2. Монтаж однофазных счетчиков электрической энергии.. 6

2.1 Как правильно установить электросчетчик…………………. 6

2.3 Схема подключения однофазного электросчетчика………… 7

2.4 Советы при монтаже электрического счетчика……………… 8

2.5 Замена электрического счетчика……………………………… 9

2.5.1 Порядок снятия однофазного электрического счетчика…………. 9

2.5.2 Порядок установке нового однофазного электросчетчика………. 9

Похожие страницы:

Осмотр места пожара. Методическое пособие

. , профессора И.Д. Чешко. СОДЕРЖАНИЕ Введение 5 Глава 1. Понятие, виды и процессуальные требования к осмотру места пожара . в помещение электрических и газовых коммуникаций; - газовых и электросчетчиков; - электрощитов и детальной съемки автоматов в них .

Хищение чужого имущества

Договор энергоснабжения в гражданском праве

Договор энергоснабжения Понятие и виды договора энергоснабжения. . и др. Выделение особых видов энергоснабже­ния, обусловленных только личностью . с данными учета8 (например, показаниями электросчетчика). В большинстве случаев договор энергоснабжения .

Установка эффективной системы электроснабжения в ПО Саранинский хлебозавод

Управление электрохозяйством предприятий

. термины и определения, отражающие экономические понятия, применяемые в электроэнергетике. Технико- . схеме учета электроэнергии, вид учета (Р или К), вид энергии (А или . Монтаж схемы учета (установка электросчетчиков, измерительных трансформаторов и др.) .

Читайте также: