Доклад на тему роль вычисления в современной науке и технике

Обновлено: 05.07.2024

Понятие математика существует очень давно. Матема́тика (от др.-греч. μάθημα — изучение, наука) – наука о структурах, порядке и отношениях, которая исторически сложилась на основе операций подсчёта, измерения и описания форм реальных объектов. [1]

В связи с ростом технологического прогресса особо остро встал вопрос о том, как применяются законы математики в современных информационных технологиях. Несмотря на то, что все компьютерные системы представляют собой набор цифр, операций и вычислений – это не конечный результат применения математики в информационных системах и технологиях.

Большинство современных программ криптографии и шифрования используют подобные математические методы мышления, что обеспечивают надежность и защиту сертификатов, ключей, платежек и прочих данных. К таким программам относятся такие как Крипто-Про ( Cripto – pro ), Crystal ; используются такие защиты в банковских, бухгалтерских и экономических программах, таких как Клиент-банк, программы передачи отчетности Контур-Экстерн, Спринтер ( TaxCom ), СБИС++ и т.д.; также существует несколько методов архивации данных, которые построены на математических алгоритмах и поисках альтернативных решений.

Современная на сегодняшний день программа 1С: Предприятие полностью реализует все функции математических и экономических процессов. Ни одна бухгалтерская и экономическая программа не смогла бы существовать без законов математики, т.к. именно на них базируются все экономические процессы, расчеты и прочие операции.

Таким образом, мы можем сделать следующий вывод:

– все современные компьютерные программы базируются на фундаментальной основе математических процессов;

– все современные методы криптографии и шифрования используют математические законы;

– все современные алгоритмы строятся на математических и логических стилях мышления, которые так же берут свои корни в математических процессах;

Список используемой литературы

4. Гнеденко Б.В. Математика и математическое образование в современном мире. – М., Просвещение, 2005. – 177 с.

5. Информационная безопасность. Под ред. М.А.Вуса. – С-Пб.: Изд-во СПбГУ, 2006. – 201 с.

6. История математики. Под ред. А.П.Юшкевича. Т. 1-3. – М., Наука, 2007. – 512 с.

7. Курант Р., Роббинс Г. Что такое математика? – М., Просвещение, 2007. – 190 с.

8. Пойа Д. Математика и правдоподобные рассуждения. – М., Наука, 2005. – 178 с.

9. Фор Р., Кофман А., Дени-Папен М. Современная математика. – М., Мир, 2006. – 311 с.

10. Стили в математике: социокультурная философия математики.//Под ред. А.Г. Барабашева. – СПб., РХГИ. 2008. – 244 с.

Нажмите, чтобы узнать подробности

Докдад по теме:"Современный взгляд на роль вычислений в курсе предметов физико- математического цикла".

(СЛАЙД 1)Современный взгляд на роль вычислений в курсе предметов физико- математического цикла.

(СЛАЙД 2)Одной из важнейших задач обучения математике является формирование вычислительных умений и навыков, основу которых составляет осознанное и прочное усвоение приемов устных и письменных вычислений.

Вычислительная культура является тем запасом знаний и умений, который находит повсеместное применение, является фундаментом изучения математики и других учебных дисциплин и играет огромную роль в развитии математических умений учащихся.
В век компьютерной грамотности значимость навыков письменных вычислений, несомненно, уменьшилась. Использование ЭВМ во многом облегчает процесс вычислений. Но пользоваться техникой без осознания таких навыков невозможно, да и калькулятор не всегда может оказаться под рукой.

Научиться быстро и правильно выполнять письменные вычисления важно для школьников как в плане продолжающейся работы с числами, так и в плане практической значимости для дальнейшего обучения.

Поэтому вооружение учащихся прочными вычислительными навыками продолжает оставаться серьезной педагогической проблемой.

(СЛАЙД 3 )Полноценный вычислительный навык в современных условиях характеризуется:

автоматизмом и прочностью.
Правильность – это когда ученик правильно выбирает и выполняет операции, правильно находит результат арифметического действия над данными числами.
Осознанность – ученик осознает на основе каких знаний выбраны операции и установлен порядок их выполнения. Осознанность проявляется в том, что ученик в любой момент может объяснить, как он решил пример и почему так решил.
Рациональность – ученик выбирает для данного случая более рациональный прием, то есть выбирает те операции, выполнение которых легче других и быстрее приводит к результату.
Обобщенность – ученик может применить прием вычисления к большему числу случаев, то есть он способен перенести прием вычислений на новые случаи.
Автоматизм – ученик выделяет и выполняет операции быстро.
Прочность – ученик сохраняет сформированные вычислительные навыки на длительное время.

(СЛАЙД 4)Наблюдения за учащимися показывают, что всякого рода вычисления при решении задач отнимают у них порой до 90% времени, предоставленного для выполнения работы, а не более 10% на размышления и обоснования.

(СЛАЙД 5)Анализ контрольных, экзаменационных работ, домашних заданий, показывает, что большинство учащихся допускают ошибки в вычислениях при работе с дробями, смешанными числами, много встречается ошибок при нахождении процента от числа и числа по его процентам, не правильно определяют порядок действий в вычислительных примерах.

Учащиеся выполняют с ошибкой деление многозначного числа на двузначное число. Все это оказывает отрицательное влияние на усвоение учащимися курса математики. Недостаточное умение выполнять вычисления создает трудности при выполнении практических работ, при решении задач на уроках геометрии, алгебры, физики.

(СЛАЙД 6)Причинами невысокой вычислительной культуры учащихся можно назвать:
 низкий уровень мыслительной деятельности;
 не развитое внимание и память учащихся;
 недостаточная подготовка учащихся по математике за курс начальной школы;
 отсутствие системы в работе над вычислительными навыками и в контроле овладения данными навыками в период обучения.

(СЛАЙД 7)Вычислительные навыки можно разделить на 2 вида: устные и письменные.
Они формируются у учащихся на всех этапах изучения курса математики, но основа закладывается

в первые 5–6 лет обучения.

В этот период школьники обучаются умению осознанно использовать законы математических действий (сложение, вычитание, умножение, деление, возведение в степень).

Устный счет на уроках математики в 5 – 6 классах способствует развитию и формированию прочных вычислительных навыков и умений, он также играет немаловажную роль в привитии и повышении у детей познавательного интереса к урокам математики. Устные упражнения важны ещё и тем, что они активизируют мыслительную деятельность учащихся.

У учащихся 7 - 8 классов развивается и закрепляется умение находить числовое значение выражения на все действия с обыкновенными и десятичными дробями. Эта работа проводится как при изучении нового материала, так и при выполнении заданий вычислительного характера. В 8 классе вычислительная техника учащихся совершенствуется при выполнении тождественных преобразований над степенями с натуральным показателем, с одночленами и многочленами, при использовании тождеств сокращенного умножения.

Формирование основ умения учиться и способности к организации своей деятельности – умение принимать, сохранять цели и следовать им в учебной деятельности, планировать свою деятельность, осуществлять ее контроль и оценку, взаимодействовать с педагогом и сверстниками в учебном процессе;

учёт индивидуальных особенностей ребенка, его жизненного опыта, предметно-действенного и наглядно-образного мышления;

использование вычислительных заданий, характеризующихся вариативностью формулировок, неоднозначностью решений, выявлением разнообразных закономерностей и зависимостей;

задания, позволяющие развивать гибкость мышления, математическую речь ребенка, не вызывающие эмоциональной усталости и монотонности в работе;

использование нестандартных приемов в формировании вычислительных навыков

использование системы диагностических самостоятельных работ для отработки скорости и правильности вычислений

использование на уроках игровых ситуаций, элементов соревнований, различных головоломок, ребусов; использование моделей (графических, символических, предметных);

правильное соотношение в применении устных и письменных приёмов вычислений (вычислять письменно только тогда, когда устно вычислять трудно);

Для достижения правильности и беглости устных вычислений на каждом уроке математики необходимо выделять 5 -10 минут для проведения упражнений в устных вычислениях, предусмотренных программой каждого класса.

Навыки устных вычислений формируются в процессе выполнения учащимися разнообразных упражнений. Упражнения в устных вычислениях должны пронизывать весь урок. Их можно соединять с проверкой домашних заданий, закреплением изученного материала, предлагать при опросе. Устные упражнения должны соответствовать теме и цели урока и помогать усвоению изучаемого на данном уроке или ранее пройденного материала. В зависимости от этого учитель определяет место устного счета на уроке.

(СЛАЙД 10)Система работы по совершенствованию вычислительных умений и навыков для укрепления их роли в развитии математических умений учащихся в 5-11 классах включает следующие этапы.
(СЛАЙД 11) 1. Этап вводного контроля.
На этом этапе в начале работы с классом (независимо от того, пятый это класс или одиннадцатый), проводится проверка знания таблиц сложения, умножения, вычитания и деления.

Форма проверки – устный счёт по карточкам и таблицам. Задания из таблицы могут быть представлены на карточках в двух вариантах или на слайде. Учащимся, допустившим ошибки, предлагаются сборники таблиц или отдельные таблицы за начальную школу для отработки навыков, и в течение определённого времени эти учащиеся повторно проверяются.
2.Далее проводится проверка знаний по всем темам арифметики в форме устного счёта, небольших письменных работ, отдельных заданий при выполнении текущих самостоятельных работ. При этом особое внимание обращается на решение простейших уравнений, нахождение компонентов действий и на порядок действий с натуральными числами.
При этом индивидуальная работа с неуспевающими учениками ведётся как на уроках, так и вне уроков, учащимся выдаются на дом таблицы для отработки навыков.
(СЛАЙД 12 ) 2. На втором этапе текущего контроля применяется серия таблиц. Например, действия с десятичными дробями, формулы сокращённого умножения, решение простейших показательных, логарифмических уравнений и др.
На этом этапе используются следующие формы работы:
-устный фронтальный опрос по карточкам на два варианта, проводимый как учителем, так и учащимися;
-письменный опрос с записью ответа по подготовленным таблицам.
-письменная самостоятельная работа с последующим анализом и работой над ошибками;
-решение у доски во время опроса;
-разбор образцов решения заданий и их оформления;
-обработка алгоритмов (правил) вычислений;
-рассмотрение примеров на использование рациональных способов решения.
При этом следует помнить, что:
-на каждом уроке нужно заниматься не с классом вообще, а конкретно с каждым учеником. Для этого учитель должен выбрать формы работы и материал так, чтобы каждый ученик был занят делом и его работу всегда можно было проконтролировать

-при изучении нового материала желательно обращать внимание учащихся на тот материал, где наиболее часто допускаются ошибки;
-полезно новый материал изучать в сравнении с ранее изученным, уже знакомым материалом;
-при объяснении нового материала необходимо, чтобы ученики сами составляли алгоритмы выполнения того или иного действия, затем сверяли с учебником и выбирали оптимальный для себя вариант. Такая работа приучает их к чёткости и конкретности, что способствует развитию математических умений учащихся. В дальнейшем они смогут без суеты и волнения выполнить любое задание;
-необходимо воспитывать осознанное отношение к выполнению любого задания, чтобы ученик вдумался в смысл задачи, установил закономерности, связывающие величины, наметил пути решения проблемы и только после этого приступал к выполнению задания.

К работе по совершенствованию вычислительных умений и навыков активно привлекаются учащиеся: они подбирают или самостоятельно составляют задания для устного счёта, составляют задания с применением рационального счёта, по группам или индивидуально проводят устный счёт на уроке, частично привлекаются к проверке работ, консультируют других учащихся..

(СЛАЙД 14)Многолетний опыт позволяет утверждать, что рассмотренные выше формы и методы работы по совершенствованию вычислительной культуры учащихся применимы не только при выработке вычислительных навыков, но и при контроле за формированием многих общеучебных навыков по разным предметам, где применяется математика, то есть в развитии математических умений учащихся.

Совершенствование вычислительных навыков не останавливается на периоде изучения темы, а сопровождает ученика на протяжении всего курса математики и алгебры. Применение технологии совершенствования вычислительных навыков позволяет ученику выполнить большой объём вычислений за небольшое время. И с каждым шагом всё больше повышается роль вычислительных умений и навыков в развитии математических умений учащихся.
Вычислительные умения, а в особенности навыки, без систематического к ним обращения ослабевают. А поэтому, чтобы время и усилия учителя и учащихся не были затрачены впустую, чтобы вычислительные умения не становились препятствием к формированию знаний и умений, нужно в системе математической подготовки учащихся предусмотреть меры для поддержания уровня вычислительных умений учащихся, а при необходимости и его восстановления.
Очень многое зависит от учителя, а именно от того, будет ли он учитывать особенности познавательных процессов школьников и применять приемы активизации знаний, умении и навыков в ходе объяснения и закрепления материала и от многих других факторов.

Математика является экспериментальной наукой - частью теоретической физики и членом семейства естественных наук. Основные принципы построения и преподавания всех этих наук применимы и к математике. Искусство строгого логического рассуждения и возможность получать этим способом надежные выводы не должно оставаться привилегией Шерлока Холмса - каждый школьник должен овладеть этим умением. Умение составлять адекватные математические модели реальных ситуаций должно составлять неотъемлемую часть математического образования. Успех приносит не столько применение готовых рецептов (жестких моделей), сколько математический подход к явлениям реального мира. При всем огромном социальном значении вычислений, сила математики не в них, и преподавание математики не должно сводиться к вычислительным рецептам.

"No star wars - no mathematics", - говорятамериканцы. Тот прискорбный факт, что с прекращением военного противостояния математика, как и все фундаментальные науки, перестала финансироваться, является позором для современной цивилизации, признающей только "прикладные" науки.

Ведь опыты с янтарем и кошачьим мехом казались бесполезными правителям и военачальникам XVIII века. Но именно они изменили наш мир после того, как Фарадей (английский физик, химик и физик, химик, основоположник учения об электромагнитном поле) и Максвелл (заложил основы современной классической электродинамики и многое другое) написали уравнения теории электромагнетизма. Эти достижения фундаментальной науки окупили все затраты человечества на нее на сотни лет вперед. Отказ современных правителей платить по этому счету - удивительно недальновидная политика, за которую соответствующие страны, несомненно, будут наказаны технологической и следовательно экономической (а также и военной) отсталостью. Человечество в целом (перед которым ведь стоит тяжелейшая задача выживания в условиях эколого-экономического кризиса) должно будет заплатить тяжелую цену за близоруко-эгоистическую политику составляющих его стран.

В настоящее время математика пропитывает насквозь всю нашу жизнь. Мы уже не представляем мир без всех многочисленных технических средств и приспособлений. А они каждый день совершенствуются. То, что еще 10 лет назад казалось фантастикой сейчас уже реальность. Кто-то скажет, что это заслуга различный прикладных наук, но он будет ошибаться, так как без математики ничего бы этого не было.

ОПРЕДЕЛЕНИЕ МАТЕМАТИКИ

Математика - область человеческого знания, изучающая математические модели, отражающие объективные свойства и связи. "Замечательно, - пишет В.А. Успенский, - что хотя математическая модель создается человеческим разумом, она, будучи создана, может стать предметом объективного изучения. Познавая ее свойства, мы тем самым познаем и свойства отраженной моделью реальности" Кроме того, математика дает удобные способы описания самых разнообразных явлений реального мира и тем самым выполняет роль языка науки. Наконец, математика дает людям методы изучения и познания окружающего мира, методы исследования как теоретических, так и практических проблем.

Математика (греч. mathematike, от mathema - знание, наука) наука, в которой изучаются пространственные формы и количественные отношения.

Современное понятие математики - наука о математических структурах (множествах, между элементами которых определены некоторые отношения).

У представителей науки начала 19 века, не являющихся математиками, можно найти такие общедоступные определения математики.

"Чистая математика имеет своим объектом пространственные формы и количественные отношения действительного мира" (Ф. Энгельс).

"Математика - наука о величинах и количествах; все, что можно выразить цифрою, принадлежит математике. Математика может быть чистой и прикладной.

Математика делится на арифметику и геометрию; первая располагает цифрами, вторая - протяжениями и пространствами. Алгебра заменяет цифры более общими знаками, буквами; аналитика добивается выразить все общими формулами, уравнениями, без помощи чертежа" (В. Даль).

Современная математика насчитывает множество математических теорий: математическая статистика и теория вероятности, математическое моделирование, численные методы, теория групп, теория чисел, векторная алгебра, теория множеств, аналитическая и проективная геометрия, математический анализ и т.д.

ОСНОВНЫЕ ЭТАПЫ РАЗВИТИЯ МАТЕМАТИКИ

В истории математики традиционно выделяются несколько этапов развития математических знаний:

1. Формирование понятия геометрические фигуры и числа как идеализации реальных объектов и множеств однородных объектов. Появление счёта и измерения, которые позволили сравнивать различные числа, длины, площади и объёмы.

2. Изобретение арифметических операций. Накопление эмпирическим путём (методом проб и ошибок) знаний о свойствах арифметических действий, о способах измерения площадей и объёмов простых фигур и тел. В этом направлении далеко продвинулись шумеро-вавилонские , китайские и индийские математики древности.

4. Математики стран ислама не только сохранили античные достижения, но и смогли осуществить их синтез с открытиями индийских математиков, которые в теории чисел продвинулись дальше греков.

5. В XVI—XVIII веках возрождается и уходит далеко вперёд европейская математика. Её концептуальной основой в этот период являлась уверенность в том, что математические модели являются своего рода идеальным скелетом Вселенной, и поэтому открытие математических истин является одновременно открытием новых свойств реального мира. Главным успехом на этом пути стала разработка математических моделей зависимости (функция) и ускоренного движения (анализ бесконечно малых). Все естественные науки были перестроены на базе новооткрытых математических моделей, и это привело к колоссальному их прогрессу.

Известно, что математика никогда не бывает одна, она всегда к чему-то

прикладывается! Это говорит о том, что ни одна другая наука не может существовать без математики. Следовательно, если бы человечество не создало мира математики, то оно никогда не смогло бы обладать НАУКОЙ .

Положение математики в современном мире далеко не то, каким оно было сто или даже только сорок лет назад. Математика превратилась в повседневное орудие. Исследования в физике, астрономии, биологии, инженерном деле, организации производства и многих других областях теоретической и прикладной деятельности. Многие крупные врачи, экономисты и специалисты в области социальных исследований считают, что дальнейший прогресс их дисциплин тесно связан с более широким и полнокровным использованием математических методов, чем это было до настоящего времени. Не зря греческие ученые говорили, что математика есть ключ ко всем наукам.

Конечно же, вышесказанное еще раз доказывает то, как математика важна не просто сама по себе, а как в ней нуждаются другие науки, опираются на математические факты и, тем самым, помогают развиваться человечеству все дальше и дальше!

Математика всегда была неотъемлемой и существеннейшей составной частью человеческой культуры, она является ключом к познанию окружающего мира, базой научно-технического прогресса и важной компонентой развития личности.

Математика содержит в себе черты волевой деятельности, умозрительного рассуждения и стремления к эстетическому совершенству. Ее основные и взаимно противоположные элементы - логика и интуиция, анализ и конструкция, общность и конкретность.

В ИНТЕЛЕКТУАЛЬНОМ РАЗВИТИИ ЛИЧНОСТИ

В современной науке под образованием обычно понимают систему знаний, навыков, овладение которыми обеспечивает развитие интеллектуальных и духовных способностей личности, формирование основ её мировоззрения и морали, подготовку молодого человека к жизни и труду.

На рубеже XX и XXI в.в. оно стало наиболее важной фундаментальной проблемой, ибо по утверждению немецкого философа М. Шелера, "Когда в трудной борьбе за новый мир новый человек дерзает создавать новые формы, центральной становится проблема образования человека"1 . Образование - проективный процесс, всей своей сущностью оно устремлено в будущее. Образование - это важнейший механизм развития не только индивида, но и общества в целом, механизм, направленный на формирование и развертывание физического, интеллектуального и духовного потенциалов общества в их различных видах и формах.

Ещё одной важнейшей причиной нужды человечества в математике является воспитание в человеке способности понимать смысл поставленной перед ним задачи, умение правильно, логично рассуждать, усвоить навыки алгоритмического мышления. Каждому надо научиться анализировать, отличать гипотезу от факта, критиковать, понимать смысл поставленной задачи, схематизировать, отчётливо выражать свои мысли и т. п., а с другой стороны - развить воображение и интуицию (пространственное представление, способность предвидеть результат и предугадать путь решения и т. д.). Иначе говоря, математика нужна для интеллектуального развития личности. В 1267 году знаменитый английский философ Роджер Бекон сказал: ``Кто не знает математики, не может узнать никакой другой науки и даже не может обнаружить своего невежества."

В ПОЗНАНИИ МИРА И САМОГО СЕБЯ

Математика и математические методы в медицине — совокупность методов количественного изучения и анализа состояния и (или) поведения объектов и систем, относящихся к медицине и здравоохранению. В биологии, медицине и здравоохранении в круг явлений, изучаемых с помощью математика, входят процессы, происходящие на уровне целостного организма, его систем, органов и тканей (в норме и при патологии); заболевания и способы их лечения; приборы и системы медицинской техники; популяционные и организационные аспекты поведения сложных систем в здравоохранении; биологические процессы, происходящие на молекулярном уровне.

Степень математизации научных дисциплин служит объективной характеристикой глубины знаний об изучаемом предмете. Так, многие явления физики, химии, техники описываются М.м. достаточно полно. В результате эти науки достигли высокой степени теоретических обобщений.

Начиная с 40-х гг. 20 в. математические методы проникают в медицину и биологию через кибернетику и информатику. Наиболее развиты математике в биофизике, биохимии, генетике, физиологии, медицинском приборостроении, создании биотехнических систем. Благодаря математике значительно расширилась область познания основ жизнедеятельности и появились новые высокоэффективные методы диагностики и лечения; Математика лежит в основе разработок систем жизнеобеспечения, используются в медицинской технике.

Все большую роль во внедрении математики в медицину играют ЭВМ. В частности, применение методов математической статистики облегчается тем, что стандартные пакеты прикладных программ для ЭВМ обеспечивают выполнение основных операций по статистической обработке данных. Математика смыкается с методами кибернетики информатики, что позволяет получать более точные выводы и рекомендации, внедрять новые средства и методы лечения и диагностики.

Математические методы применяют для описания биомедицинских процессов (прежде всего нормального и патологического функционирования организма и его систем, диагностики и лечения).

РОЛЬ МАТЕМАТИКИ В ЮРИСПРУДЕНЦИИ

На современном этапе развития юридической науки увеличивается объем нормативно-правовой, криминологической, уголовно-статистической и иной информации, особую актуальность приобретает анализ математических средств и методов исследования разнообразных правовых явлений и процессов.

Математика все в большей степени становится необходимым атрибутом юридической науки. Это объясняется рядом существенных причин.

Во-первых, органическим единством природы и общества. Общество состоит из значительного числа экономических, социальных, правовых и иных систем. Функционирование и развитие последних (включая и объекты государственно-правовой реальности) представляют собой естественно-исторический и управленческо-информационный процесс, который должен изучаться с математической точностью.

Во-вторых, правовые системы, явления и процессы (прежде всего механизмы правотворчества, правового регулирования, законности, борьбы с преступностью) обладают и количественной мерой (количеством норм, связей, интенсивностью потоков информации, степенью развития, целенаправленности и т.д.).

В-третьих, в юридических науках в связи с правовой информатизацией общества, созданием информационных комплексов и систем в области права и решением на компьютерах юридических задач возникло значительное число проблем, связанных с оптимизацией функционирования правовых систем, юридических органов и процессов. Эти проблемы не могут быть решены без привлечения разнообразных математических методов, так как сущность оптимизации в этом случае состоит в разработке формализованных способов достижения целей функционирования систем с наименьшими затратами материальных средств, времени в решении информационных, логических и математических задач.

В-четвертых, математика как наука обладает содержательным понятийным аппаратом, с помощью которого представляется возможным отразить в абстрактном виде структуру отдельных правовых систем, их цели, функции, происходящие в них процессы сбора, обработки и использования информации.

В-пятых, в юридической науке, особенно в таких ее областях, как государственное управление, правовое регулирование предпринимательской деятельности, криминология, криминалистика и правовая информатика, приходится часто иметь дело с количественными параметрами. Последние касаются объема информации, поступающей в государственные органы, количественных оценок правового регулирования, качества и объема промышленной продукции, состояния и уровня преступности, криминалистических показателей и т.п.

К сожалению, об аргументах в пользу широкого применения математических средств и методов и о тесной взаимосвязи количественного анализа с качественным в юридических науках порой забывают. При этом ссылаются на сложность, социальный характер нормативно-правовых и иных связанных с ними систем, явлений и процессов; указывают на то, что юристы в процессе своей повседневной деятельности имеют дело с фактами не только объективного, но и субъективного порядка, трансформация которых в математическую форму не всегда может осуществляться в рамках положений и аксиом высшей и прикладной математики; отмечают невозможность математизации всех явлений правовой реальности.

Общеизвестно, что объекты, изучаемые юридическими науками, действительно социальные, многомерные по своей природе и чрезвычайно сложные. Однако вопрос заключается в другом. Информатизация всех сторон жизни нашего общества, усложнение хозяйственных и социальных связей в условиях рыночных отношений вызывают естественное усложнение систем в сфере юридической деятельности. Это требует всестороннего, в том числе количественного, математического анализа отдельных правовых и связанных с ними систем, явлений и процессов в области государственного управления, правового регулирования предпринимательства, информационного обеспечения в области права, криминологии, информационного права, криминалистики и т.д. Социальный характер информационных правовых систем, явлений и процессов не может служить препятствием для разумного применения математических методов в юридических науках.

Формализация фактов различного порядка, с которыми приходится иметь дело юристу, не всегда может осуществляться в рамках положений или правил классической высшей и прикладной математики. Поэтому необходима специальная теория измерения в области права, которая существенно отличается от существующей теории измерения, используемой в естественных науках.

В то же время в социальной реальности (при исследовании экономических, управленческих, информационных и других проблем) сегодня активно используются теория вероятностей, математическая статистика, теория информации, математическая логика, теория графов, теория игр, линейное и динамическое программирование и другие разделы современной математической науки.

В юридической сфере наметилось определенное число проблем и задач, не имеющих формально-алгоритмической разрешенности. Поэтому пока нет возможности, да и необходимости формализовать (отображение результатов мышления в точных понятиях и утверждениях), например, правовую систему общества в целом, ее структуру, функции, все потоки социально-правовой информации, задачи правового регулирования, так как все общественные системы, явления и процессы, в том числе и правовые, нельзя описать языком математики. И это, собственно говоря, не нужно. Главное, как справедливо в свое время заметил Д.А. Керимов, - это решение с помощью математических средств и методов частных проблем и задач юридической науки в целях дальнейшего совершенствования юридической деятельности в целом. Речь идет об использовании математических методов для исследования в отдельных юридических систем; о измерениях правовых установок, анализе правовых явлений, эффективности правовой информации и в статистической криминалистике.

Заметим, что в рамках юридических наук и, в частности, в рамках правовой информатики и информационного права при изучении разнообразных социальных явлений и процессов давно эффективно используются теория вероятностей, математическая статистика, математическая логика, теория информации, исследование операций и другие математические науки и дисциплины. Математические методы, специфически преломляясь в учении о государстве и праве, обогащают и усиливают его собственные методы, но не заменяют их.

В то же время при всех достоинствах математизации юридической науки и права нельзя преувеличивать ее возможности и сводить сущность государственно-правовых проблем к чистой математике.

Ведущая роль в юридических науках принадлежит качественному анализу. Использование здесь математических средств и методов ориентировано в настоящее время, по существу, на решение частных практических проблем и задач. Математические средства и методы исследования правовых систем ограничиваются только измерением однородных связей данных систем; им недоступны всеобщие связи правовой системы общества в целом в силу их универсальности.

Известную ограниченность математики в исследовании государственно-правовых проблем и задач сознают и ее представители. Поэтому так называемая математическая юриспруденция, которой еще предстоит детальная разработка разнопорядковых правовых систем, явлений, процессов и задач, должна опираться на общую теорию сущности изучаемых явлений и процессов; она может быть плодотворной в области права, если не забывать о естественных ограничениях и целесообразности ее применения на основе качественных знаний. Понятие "математическая юриспруденция" введено впервые в юридическую литературу Д.А. Керимовым в 1972 г. В настоящее время в общем виде уже можно говорить о содержании "математической юриспруденции. Короче говоря, под математикой в области юридических наук можно понимать науку о количественных и пространственных моделях, а также о теоретических информационных моделях в правовой действительности.

1.. Бурбаки Н. Очерки по истории математики / Н. Бурбаки. - М.: Изд-во Ин. лит., 1972.

2.. Гнеденко Б.В. Математика в современном мире / Б.В. Гнеденко. - Издательство Просвещение. - М.: Просвещение, 1980.

3. Кудрявцев Л.Д. Мысли о современной математике и ее изучении / Л.Д. Кудрявцев. - М.: Просвещение, 1977.

Доклад

А ведь с математики начинается всё. Ребёнок только родился, а первые цифры в его жизни уже звучат: рост, вес. Малыш растет, не может выговорить слова "математика", а уже занимается ею, решает небольшие задачи по подсчету игрушек, кубиков. Да и родители о математике и задачах не забывают. Готовя ребенку пищу, взвешивая его, им приходится использовать математику. Ведь нужно решить элементарные задачи: сколько еды нужно приготовить для малыша, учитывая его вес.

В школе математических задач приходится решать очень много, и сложность их с каждым годом растет. Они не просто учат ребенка математике, определённым действиям. Математические задачи развивают мышление, логику, комплекс умений: умение группировать предметы, раскрывать закономерности, определять связи между явлениями, принимать решения. Очень часто решения таких задач являются просто математическим расчётом. Занятия математикой, решение математических задач развивает личность, делает её целеустремленнее, активнее, самостоятельнее. Вспомните хотя бы своего одноклассника, хорошо знавшего математику, быстро умевшего решать задачи. Его часто называли умником, математиком, "задачником". Он мог решить задачи, аргументировал свой выбор, мог критически оценить себя и своих одноклассников. Да и успеваемость по остальным предметам, кроме математики, оказывалась на порядок выше. Именно математическое мышление помогало ему в этом.

Казалось бы, что после школы математика нигде не пригодится. Увы! Тут приходится использовать математику ещё чаще. Во время учёбы в вузе, на работе и дома нужно постоянно решать задачи, и не только математические. Какова вероятность успешной сдачи экзамена по математике? Сколько денег нужно заработать, чтобы купить квартиру? Какова площадь пола и стен, которые нужно покрасить и поклеить, сколько для этого нужно приобрести краски и кусков обоев? И тут на помощь придёт математика. Она следует за человеком везде, помогает ему решать задачи, делает его жизнь намного удобнее.

Стремительно изменяется мир и сама жизнь. В неё входят новые технологии. Только математика и решение задач в традиционном понимании не изменяют себе. Математические законы проверены и систематизированы, поэтому человек в важные моменты может положиться на неё, решить любую задачу. Математика не подведёт.

Математика нужна всем людям на свете. Без математики человек не сможет решать, мерить и считать. Без математики невозможно построить дом, сосчитать деньги в кармане, измерить расстояние. Ведь если бы не математика, мы бы не летали на самолетах, не говорили бы по мобильным телефонам, даже не ездили бы в автомобилях. Иногда мне кажется, что мир просто рухнет, если его лишить математики! Вы, конечно, скажете, что эти заслуги стоит записать на счет физиков, механиков, инженеров и строителей. Но задумывались ли вы, как этим самым физикам и инженерам удаются их невероятные достижения? Да! Только с помощью математики. Математика сама по себе не исследует внешний мир и не создает физические объекты, но именно она является основным инструментом изучения окружающего мира, именно она делает технический прогресс возможным. Но ведь математика не только важна, но и крайне интересна!

Положение математики в современном мире далеко не то, каким оно было сто или даже только сорок лет назад. Математика превратилась в повседневное орудие исследования в физике, астрономии, биологии, инженерном деле, организации производства и многих других областях теоретической и прикладной деятельности. Многие крупные врачи, экономисты и специалисты в области социальных исследований считают, что дальнейший прогресс их дисциплин тесно связан с более широким и полнокровным использованием математических методов, чем это было до настоящего времени. Не зря греческие ученые говорили, что математика есть ключ ко всем наукам.

Конечно же, вышесказанное еще раз доказывает то, как математика важна не просто сама по себе, а как в ней нуждаются другие науки, опираются на математические факты и, тем самым, помогают развиваться человечеству все дальше и дальше!

Математика всегда была неотъемлемой и существеннейшей составной частью человеческой культуры, она является ключом к познанию окружающего мира, базой научно-технического прогресса и важной компонентой развития личности.

Мы рассмотрели уже много причин, по которым математика считается даже не одной из, а самой важной наукой. Попробуем теперь привести еще ряд фактов, доказывающих это. Они являются простыми, с ними сталкивается любой человек, причем ежедневно.

Роль математики в современной науке постоянно возрастает. Это связано с тем, что, во-первых, без математического описания целого ряда явлений действительности трудно надеяться на их более глубокое понимание и освоение, а, во-вторых, развитие физики, лингвистики, технических и некоторых других наук предполагает широкое использование математического аппарата. Более того, без разработки и использования последнего было бы, например, невозможно ни освоение космоса, ни создание электронно-вычислительных машин, нашедших применение в самых различных областях человеческой деятельности.

Поскольку математика представляет по своей природе всеобщее и абстрактное знание, она в принципе может и должна использоваться во всех отраслях науки. Математику можно отнести к всеобщим наукам. Задача математики состоит в описании того или иного процесса с помощью какого-либо математического аппарата, то есть формально-логическим способом. Говоря о предмете и функциях математики, очевидно, что в современной науке все более ощутимой становится интегрирующая роль математики, поскольку она является всеобщей научной дисциплиной. Функции математики в равной мере являются функциями гуманитарными, поскольку направлены на совершенствование материальной и духовной сфер человеческого бытия.

При изучении математики осуществляется развитие интеллекта школьника, обогащение его методами отбора и анализа информации. Преподавание любого раздела математики благотворно сказывается на умственном развитии учащихся, поскольку прививает им навыки ясного логического мышления, оперирующего четко определенными понятиями.

Одновременно воспитываются волевые качества личности, без которых невозможно овладение научной теорией, формируются навыки самостоятельной исследовательской работы, наконец, воспитывается интеллектуальная честность, которая не позволяет оперировать сомнительными, не доказанными со всей необходимой строгостью фактами. Причем это относится не только к решению математических задач, но и к другим областям человеческой деятельности, в том числе и к анализу явлений общественно-политической жизни. Математическое образование из внешнего по отношению к ученику процесса обучения трансформируется в собственно познавательный процесс. Только совместные действия этих полярных начал и борьба за их синтез обеспечивают жизненность, полезность и высокую ценность математической науки.

Математика имеет большое значение в жизни общества.

Учащиеся должны относиться к математике с большим интересом, увлечением и пониманием необходимости математических знаний, как для будущей их деятельности, так и для жизни человеческого общества.

Принято считать, что математики сутки напролет сидят за письменным столом, придумывают четырехэтажные формулы и за день изводят по пачке бумаги. Большинство людей не задумывается, что результаты деятельности математиков они ежедневно видят вокруг себя. Без математических расчетов невозможны ни архитектура, ни проектирование техники, ни даже составление режима работы светофоров на загруженных магистралях.

Читайте также: