Доклад на тему роль силы трения в работе автомобиля

Обновлено: 17.05.2024

Уровень фрикционного взаимодействия в узлах трения машин и оборудования во многом определяет их эффективность в работе, а также материальные и энергетические потери. Например, на железнодорожном транспорте в прямой зависимости от величины коэффициента сцепления колес с рельсами находятся такие важные показатели его работы, как скорость движения и масса поездов. Увеличение коэффициента сцепления колес с рельсами всего на 0,01 может дать годовой экономический эффект 10 млн. руб., а уменьшение потерь от сопротивления движению поездов на 1% - экономию 15 млн. руб. в год. Опыт свидетельствует, что в 80. 90 % случаев машины выходят из строя по причинам неудовлетворительной работы узлов трения (износа, задира, связанных с этим поломками и т.п.). Затраты на ремонт и обслуживание машин в несколько раз превышают их первоначальную стоимость: для автомобилей - в 6 раз, самолетов - в 5 раз, станков - до 8 раз. На долю заводов, выпускающих новые тракторы в нашей стране, приходится 22% мощностей, на долю же заводов, изготавливающих запасные части к тракторам - 30%, а на долю ремонтных предприятий - 44%. Это означает, что на ремонт тракторов затрачивается почти в 4 раза больше производственных мощностей, чем на их изготовление. В сумме на запасные части расходуется более одной пятой выплавляемого в стране металла. Трудоемкость ремонта и технического обслуживания многих строительных машин за срок их службы в 15 раз превышает трудоемкость изготовления новых. За весь срок службы двигатели автомобилей, тракторов и комбайнов ремонтируют до 5 раз. Ресурс двигателя после ремонта составляет 30. 50 % от нового. Общий объем отремонтированных двигателей почти в 2 раза превышает объем новых. Отремонтированные двигатели расходуют больше топлива и смазочных материалов на 10% и более. Положение дел усугубляется еще и тем, что выпускаемые в нашей стране моторные масла, служащие для уменьшения потерь энергии, износа и повреждаемости машин, не всегда соответствуют международному уровню. Объем выпуска масел высшего качества для автотракторных дизелей составляет лишь 6%. Крайне мал выпуск моторных масел с улучшенными низкотемпературными свойствами. Выпуск легированных индустриальных масел не превышает 6% от общего объема. Производство многоцелевых литиевых смазок не достигает и 10%. Применяемые же в РФ смазочные материалы, как правило, низкого качества, а также недостаточное развитие триботехнического материаловедения привели к тому, что в РФ расход моторных масел по отношению к расходу топлива в 2. 3 раза превышает этот показатель по США. Все это приводит к тому, что при приблизительно 8 равном потребляемом в стране объеме моторных масел в США обслуживается парк автомобилей, в 8 раз больший, чем в РФ. Принято считать, что в РФ в сложившихся условиях потери от трения и связанных с этим явлений составляют порядка 40 млрд. руб. при имеющейся тенденции ежегодного увеличения их приблизительно на 1 млрд. руб. В США те же самые потери составляют порядка 46 млрд. долларов, причем половина из них приходится на автомобили. Аналогичные явления наблюдаются и в других странах, и в большинстве случаев потери составляют 1,5. 4 % их национального дохода. Это свидетельствует о том, что проблема трения, износа и смазки машин и оборудования, помимо чисто технической, является и экономической проблемой государственного масштаба. Экспертный анализ специалистов свидетельствует, что столь большие потери от трения происходят из-за разрыва между триботехникой и развитием промышленности и транспорта. Большое значение при этом отводится и отсутствию достаточной подготовки специалистов в этой области. Уже сейчас только за счет использования имеющихся достижений триботехники потери от трения можно уменьшить на 30. 40 %, причем первые 10% из них - без дополнительных материальных вложений. При этом, как показывают исследования, проведенные в Великобритании, основная масса экономии средств от внедрения достижений триботехники достигается за счет сокращения затрат на обслуживание и ремонт машин, исключения потери из-за поломки оборудования и экономии капиталовложений за счет повышения долговечности машин (табл. 1.1). Помимо явно выраженных технических и экономических аспектов, решаемых триботехникой, не менее важным является направление ее работ по улучшению экологии. Это, прежде всего, относится к переработке отработанных в машинах смазочных материалов. При производстве в мире смазочных материалов в 100 млн. т проблема их утилизации достаточно сложна. Актуальной стала и проблема поиска путей ускорения процесса разложения смазки, выпадаемой на землю, в ходе работы транспортных средств, а также и обратная проблема по восстановлению работоспособности смазки в климатических условиях с активным воздействием бактерий. В этой области открываются большие перспективы для использования триботехнических технологий. Острой также стала проблема замены на транспорте и в промышленности широко распространенных, но вредных для я организма человека материалов. Этим и другими аналогичными вопросами активно занимаются сейчас трибологи ряда некоторых стран.

Таблица 1.1 Оценка экономии, реализуемой промышленностью Великобритании при последовательном внедрении достижений триботехники в практику

Определение силы трения

Трение — это взаимодействие, которое возникает в плоскости контакта поверхностей соприкасающихся тел.
Сила трения — это величина, которая характеризует это взаимодействие по величине и направлению.

Основная особенность: сила трения приложена к обоим телам, поверхности которых соприкасаются, и направлена в сторону, противоположную мгновенной скорости движения тел друг относительно друга. Поэтому тела, свободно скользящие по какой-либо горизонтальной поверхности, в конце концов остановятся. Чтобы тело двигалось по горизонтальной поверхности без торможения, к нему надо прикладывать усилие, противоположное и хотя бы равное силе трения. В этом заключается суть силы трения.

Откуда берётся трение

Трение возникает по двум причинам:

  1. Все тела имеют шероховатости. Даже у очень хорошо отшлифованных металлов в электронный микроскоп видны неровности. Абсолютно гладкие поверхности бывают только в идеальном мире задач, в которых трением можно пренебречь. Именно упругие и неупругие деформации неровностей при контакте трущихся поверхностей формируют силу трения.
  2. Между атомами и молекулами поверхностей тел действуют электромагнитные силы притяжения и отталкивания. Таким образом, сила трения имеет электромагнитную природу.

Виды силы трения

В зависимости от вида трущихся поверхностей, различают сухое и вязкое трение. В свою очередь, оба подразделяются на другие виды силы трения.

  1. Сухое трение возникает в области контакта поверхностей твёрдых тел в отсутствие жидкой или газообразной прослойки. Этот вид трения может возникать даже в состоянии покоя или в результате перекатывания одного тела по другому, поэтому здесь выделяют три вида силы трения:
  • трение скольжения,
  • трение покоя,
  • трение качения.

Виды силы трения

  1. Вязкое трение возникает при движении твёрдого тела в жидкости или газе. Оно препятствует движению лодки, которая скользит по реке, или воздействует на летящий самолёт со стороны воздуха. Интересная особенность вязкого трения в том, что отсутствует трение покоя. Попробуйте сдвинуть пальцем лежащий на земле деревянный брус и проделайте тот же эксперимент, опустив брус на воду. Чтобы сдвинуть брус с места в воде, будет достаточно сколь угодно малой силы. Однако по мере роста скорости силы вязкого трения сильно увеличиваются.

Сила трения покоя

Рассмотрим силу трения покоя подробнее.

Сила трения покоя

Обычная ситуация: на кухне имеется холодильник, его нужно переставить на другое место.

Когда никто не пытается двигать холодильник, стоящий на горизонтальном полу, трения между ним и полом нет. Но как только его начинают толкать, коварная сила трения покоя тут же возникает и полностью компенсирует усилие. Причина её возникновения — те самые неровности соприкасающихся поверхностей, которые деформируясь, препятствуют движению холодильника. Поднатужились, увеличили силу, приложенную к холодильнику, но он не поддался и остался на месте. Это означает, что сила трения покоя возрастает вместе с увеличением внешнего воздействия, оставаясь равной по модулю приложенной силе, ведь увеличиваются деформации неровностей.

Пока силы равны, холодильник остаётся на месте:


Сила трения, которая действует между поверхностями покоящихся тел и препятствует возникновению движения, называется силой трения покоя


Сила трения скольжения

Что же делать с холодильником и можно ли победить силу трения покоя? Не будет же она расти до бесконечности?

Зовём на помощь друга, и вдвоём уже удаётся передвинуть холодильник. Получается, чтобы тело двигалось, нужно приложить силу, большую, чем самая большая сила трения покоя:


Теперь на движущийся холодильник действует сила трения скольжения. Она возникает при относительном движении контактирующих твёрдых тел.

Итак, сила трения покоя может меняться от нуля до некоторого максимального значения — Fтр. пок. макс И если приложенная сила больше, чем Fтр. пок. макс, то у холодильника появляется шанс сдвинуться с места.

Теперь, после начала движения, можно прекратить наращивать усилие и ещё одного друга можно не звать. Чтобы холодильник продолжал двигаться равномерно, достаточно прикладывать силу, равную силе трения скольжения:


Сила трения скольжения

Как рассчитать и измерить силу трения

Чтобы понять, как измеряется сила трения, нужно понять, какие факторы влияют на величину силы трения. Почему так трудно двигать холодильник?

Самое очевидное — его масса играет первостепенную роль. Можно вытащить из него все продукты и тем самым уменьшить его массу, и, следовательно, силу давления холодильника на опору (пол). Пустой холодильник сдвинуть с места гораздо легче!
Следовательно, чем меньше сила нормального давления тела на поверхность опоры, тем меньше и сила трения. Опора действует на тело с точно такой же силой, что и тело на опору, только направленной в противоположную сторону.

Сила реакции опоры обозначается N. Можно сделать вывод


Второй фактор, влияющий на величину силы трения, — материал и степень обработки соприкасающихся поверхностей. Так, двигать холодильник по бетонному полу гораздо тяжелее, чем по ламинату. Зависимость силы трения от рода и качества обработки материала обеих соприкасающихся поверхностей выражают через коэффициент трения.


Он чаще всего попадает в интервал от нуля до единицы, не имеет размерности и определяется экспериментально.

Можно предположить, что сила трения зависит также от площади соприкасающихся поверхностей. Однако, положив холодильник набок, мы не облегчим себе задачу.

Ещё Леонардо да Винчи экспериментально доказал, что сила трения не зависит от площади соприкасающихся поверхностей при прочих равных условиях.

Сила трения скольжения, возникающая при контакте твёрдого тела с поверхностью другого твёрдого тела прямо пропорциональна силе нормального давления и не зависит от площади контакта.

Этот факт отражён в законе Амонтона-Кулона, который можно записать формулой:


где μ — коэффициент трения, N — сила нормальной реакции опоры.

Для тела, движущегося по горизонтальной поверхности, сила реакции опоры по модулю равна весу тела:


Сила трения качения

Сила трения качения

Ещё древние строители заметили, что если тяжёлый предмет водрузить на колёсики, то сдвинуть с места и затем катить его будет гораздо легче, чем тянуть волоком. Вот бы пригодилась эта древняя мудрость, когда мы тянули холодильник! Однако всё равно нужно толкать или тянуть тело, чтобы оно не остановилось. Значит, на него действует сила трения качения. Это сила сопротивления движению при перекатывании одного тела по поверхности другого.

Причина трения качения — деформация катка и опорной поверхности. Сила трения качения может быть в сотни раз меньше силы трения скольжения при той же силе давления на поверхность. Примерами уменьшения силы трения за счёт подмены трения скольжения на трение качения служат такие приспособления, как подшипники, колёсики у чемоданов и сумок, ролики на прокатных станах.

Направление силы трения

Сила трения скольжения всегда направлена противоположно скорости относительного движения соприкасающихся тел. Важно помнить, что на каждое из соприкасающихся тел действует своя сила трения.

Направление силы трения

Бывают ситуации, когда сила трения не препятствует движению, а совсем наоборот.

Представьте, что на ленте транспортёра лежит чемодан. Лента трогается с места, и чемодан движется вместе с ней. Сила трения между лентой и чемоданом оказалась достаточной, чтобы преодолеть инерцию чемодана, и эти тела движутся как одно целое. На чемодан действует сила трения покоя, возникающая при взаимодействии соприкасающихся поверхностей, которая направлена по ходу движения ленты транспортёра.

Сила трения покоя

Если бы лента была абсолютно гладкой, то чемодан начал бы скользить по ней, стремясь сохранить своё состояние покоя. Напомним, что это явление называется инерцией.

Направление силы трения

Сила трения покоя, помогающая нам ходить и бегать, также направлена не против движения, а вперёд по ходу перемещения. При повороте же автомобиля сила трения покоя и вовсе направлена к центру окружности.

Для того чтобы понять, как направлена сила трения покоя, нужно предположить, в каком направлении стало бы двигаться тело, будь поверхность идеально гладкой. Сила трения покоя в этом случае будет направлена как раз в противоположную сторону. Пример, лестница у стены.

Подведём итоги

  1. Сила трения покоя меняется от нуля до максимального значения 0


Ответ задачи зависит от того, сдвинется ли брусок под действием внешнего воздействия. Поэтому вначале узнаем значение силы, которую нужно приложить к бруску для скольжения. Это будет максимально возможная сила трения покоя, определяющаяся по формуле Fтр. = μ ⋅ N , где N = mg (при условии горизонтальной поверхности). Подставляя значения, получаем, что Fтр. = 35 Н. Данное значение больше прикладываемой силы, следовательно брусок не сдвинется с места. Тогда сила трения покоя будет равна внешней силе: Fтр. = F = 25 H .

Записали!
Скоро с вами свяжется консультант, расскажет об обучении в нашей онлайн-школе.
Проверьте вашу электронную почту — там письмо о том, что стоит сделать перед консультацией.

Записали!
Скоро с вами свяжется консультант, расскажет об обучении в нашей онлайн-школе.
Проверьте вашу электронную почту — там письмо о том, что стоит сделать перед консультацией.

Записали!
Скоро с вами свяжется консультант, расскажет об обучении в нашей онлайн-школе.
Проверьте вашу электронную почту — там письмо о том, что стоит сделать перед консультацией.


У нас вы сможете учиться в удобном темпе, делать упор на любимые предметы и общаться со сверстниками по всему миру.

В статье рассмотрены общие вопросы трения и изнашивания машин и механизмов, и необходимость изучения процессов трения.

Ключевые слова

Текст научной работы

Основная работа всех машин и механизмов, заключается в относительном перемещении сопряженных поверхностей, которые сопровождаются трением и износом, из-за происходит выход из строя узлов и механизмов. Проблема износа и трения является одной из наиболее общих и важных, определяющих, в значительной мере, развитие и прогресс в области машиностроения и эксплуатации техники.

Трение является важнейшим видом вредного сопротивления; в то же время на действие сил трения основан ряд важнейших технологических процессов и работы механизмов: процессы прокатки, дробления, торможения автомобиля, сцепления шины с дорогой, трение в механизме сцепления, работа фрикционов, ременные передачи и т.д. Являясь неизбежным спутником всякого движения, а следовательно и работы машины, трение иногда достигает весьма большой величины; например, при прокатке около 50% все энергии двигателя затрачивается на преодоление трения.

Износ деталей оказывает решающее влияние на долговечность и эксплуатационную надежность узлов трения. Увеличение зазора в сопряжениях вследствие износа часто сопровождается снижением коэффициента полезного действия, возникновением ударных нагрузок, увеличением потерь на трение и интенсивности износа сопряженных деталей [1].

Работа, развиваемая силами трения, отчасти превращается в теплоту, отчасти затрачивается на истирание твердых трущихся поверхностей; при этом появляются колебания, звук (скрип тормозов, свист шин при резком торможении и т.д.).

Повышение температуры частей машины всегда нежелательно и даже опасно, так как перегрев может привести к самовозгоранию смазки, заеданию и поломкам частей машины: с повышением температуры металлы теряют в большей или меньшей степени свою прочность.

Больший интерес представляет новая энергетическая теория А.Д. Дубина; он отмечает, что нельзя правильно оценить и раскрыть природу трения и износа на основе одних только общих законов классической механики и считает, что трение есть процесс возбуждения атомов и атомной решетки поверхностного слоя в результате передачи энергии от одного тела к другому.

Трение и износ - весьма сложное явление физического, механического и химического характера, в настоящее время еще не достаточно изучено.

В машинах следует различать два основных вида трения скольжения: трение сухое и трение жидкостное; промежуточные виды трения скольжения: полусухое, являющееся разновидностью первого, и полужидкостное - разновидностью второго.

При сухом трении неизбежно нагревание трущихся тел и их изнашивание, состоящее отчасти в срыве бугорков, отчасти в деформациях и других более сложных явлениях молекулярного характера; повышение температуры при трении может довести вкладыши коленчатого вала из твердого состояния в расплавленное.

Жидкостное трение имеет совсем другой характер: при нем твердые трущиеся поверхности тел полностью отделены одна от другой сплошным слоем смазки (жидкости или газа) такой толщины, что даже самые высокие бугорки этих поверхностей не соприкасаются или почти не соприкасаются. Поэтому силами трения в этом случае являются главным образом силы сопротивления сдвига внутри самой жидкости, обладающей определенной вязкостью, а износ твердых поверхностей теоретически полностью исключен, таким образом, назначение смазки состоит в разъединении твердых трущихся поверхностей, в устранении непосредственного контакта между ними, неизбежно ведущего при относительном движении их к изнашиванию. [2].

Полусухое трение получается при наличии тонкого смазочного слоя, когда значительная часть бугорков твердых трущихся поверхностей еще соприкасаются, деформируются и срезается; поэтому для этого трения можно считать достаточно правильными законы Кулона.

Полужидкостное трение получается при недостаточной толщине слоя смазки, когда соприкасаются лишь немногие, наиболее выступающие бугорки твердых поверхностей; в этом случае можно пользоваться с достаточным приближением законами жидкостного трения. Однако провести резкую границу между полусухим и полужидкостным трением нельзя, так как оба происходят при неполной смазке: в первом случае - при преобладании контакта твердых поверхностей, во втором - при преобладании слоя смазки, прерываемого лишь в отдельных точках особенно выступающих бугорками. Обычно полусухое трение получается при малых скоростях, в особенности при пуске машины в начале ее движения, а полужидкостное - при неправильной или недостаточной смазке, в качающихся цапфах, а также при неправильной эксплуатации, например при перегрузке цапфы, и т.д. В технике оба основных вида трения (сухое и жидкостное) встречаются весьма часто; сухое трение - в фрикционных и ременных передачах, в тормозах, при прокатке и дроблении, при движении шины по дороге и т.д.; жидкостное трение - в хорошо смазываемых цапфах, пятах, ползунах и т.д.

В большинстве современных машин имеет место трение полужидкостное или полусухое, поэтому ближайшей задачей является переход на жидкостное трение, без износа трущихся поверхностей.

Износ частей машин - явление чрезвычайно вредное. Износ можно определить как нежелательный результат процесса изнашивания пи наличии трения. В основном износ заключается в поверхностном разрушении трущихся твердых тел под влиянием касательных сил трения, что сопровождается перенапряжением поверхностных слоев трущихся тел выше предела текучести или предела прочности, скалывание мельчайших частиц, пластическими деформациями и другими явлениями физического и химического характера

Величина износа характеризуется толщиной стертого слоя металла.

Различают следующие виды естественного износа:

  1. Коррозионный (под коррозией понимается физико-химический процесс разрушения металла под воздействием окружающей среды);
  2. осповидный (выкрашивание), преимущественно при качении;
  3. окислительный;
  4. тепловой;
  5. абразивный.

Работа любой машины неизбежно сопровождается трением при относительном движении ее частей, поэтому полностью устранить износ невозможно; величина же износа при непосредственном контакте поверхностей прямо пропорциональна работе сил трения. Абразивный износ частично вызывается действием пыли и грязи, поэтому очень важно содержать машину в чистоте, особенно ее трущиеся части, важно также, что бы работа машины была спокойной (безударной).

Таким образом, под изнашиванием следует понимать неизбежный и вредный процесс изменения формы и размеров частей машин и сооружений по действием главным образом сил трения и других тесно связанных с ним факторов. [3].

Огромное большинство деталей машин выходят из строя именно в следствии износа. Поэтому уменьшение трения и износа даже на 5-10% даст огромную экономию, что имеет исключительное значение.

Для борьбы с износом и трением заменяют одни металлы другими, применяют термическую и химическую обработку трущихся поверхностей, точную механическую обработку, а также заменяют металлы различными заменителями (пластмассами, древесиной специальной обработки и т.п.), изменяют конструкцию, улучшают смазку и вводят новые виды ее и т.д.

В машинах стремятся не допускать непосредственного трения скольжения твердых поверхностей, для чего или разделяют их слоем смазки (жидкостное трение), или же вводят между ними добавочные элементы качения (шариковые и роликовые подшипники), к перемещению грузов на катках и колесах и т.п.

Основное правило конструирования трущихся деталей машин состоит в том, что более дорогой и трудно заменяемый элемент трущейся пары (вал) изготовляют из более твердого и более износоустойчивого материала, обычно из твердой стали. А более простые, дешевые и легко сменяемый части (вкладыши подшипника) изготовляют из сравнительно мягкого материала с небольшим коэффициентом трения, обычно из бронзы, бабита, специальных сортов чугуна и т.п.

Кроме физического износа, машина подвержена также старению; при этом стареет ее конструкция и машина становится невыгодной технически и экономически по сравнению с новыми, более совершенными по конструкции и работе.

Список литературы

  1. Гаркунов, Д.Н. Триботехника. Износ и безызносность / Д.Н. Гаркунов. – М.: МСХА, 2001. – 616 с.
  2. Венцель, С.В. Смазка и долговечность двигателей внутреннего сгорания / С.В. Венцель. – Киев: Техника, 1977. – 207 с.
  3. Виноградов, В.Н. Абразивное изнашивание / В.Н. Виноградов, Г. М. Сорокин, М. Г. Колокольников. – М.: Машиностроение, 1990. – 221 с

Цитировать


Трение – это сила, которая противостоит движению объекта. Чтобы остановить движущийся объект, сила должна действовать в направлении, противоположном направлению движения. Например, если толкнуть мяч, лежащий на полу, он будет двигаться. Сила толчка перемещает его на другое место. Постепенно мяч замедляется и перестает двигаться. Сила, которая противостоит движению объекта, называется трением. В природе и в технике существует огромное количество примеров применения этой силы.

Физика трение в природе и технике

Типы трения

Существуют различные типы трения:

  • Лезвие конька, движущееся по льду, является примером скольжения. Когда фигурист двигается по катку, нижняя часть коньков касаются пола. Источником трения является контакт между поверхностью лезвия и льдом. Вес объекта и тип поверхности, по которой он перемещается, определяют величину скольжения (трения) между двумя объектами. Тяжелый предмет оказывает большее давление на поверхность, над которой он скользит, поэтому трение скольжения будет больше. Поскольку трение возникает из-за сил притяжения между поверхностями объектов, его количество зависит от материалов этих двух взаимодействующих объектов. Попробуйте кататься на коньках по гладкому озеру, и вам будет намного легче, чем кататься по грубой гравийной дороге!

Роль трения в природе

  • Трение покоя (сцепления) – сила, которая возникает между 2 контактирующими телами и препятствует появлению движения. Например, чтобы сдвинуть с места шкаф, забить гвоздь или завязать шнурки, нужно преодолеть силу сцепления. Подобных примеров трения в природе и технике существует масса.
  • Когда вы катаетесь на велосипеде, контакт между колесом и дорогой является примером трения качения. Когда объект катится по поверхности, сила, необходимая для преодоления трения качения, намного меньше, чем требуется для преодоления скольжения.

Мальчик на велосипеде

Кинетическое трение

Когда вы толкнули книгу на столе и она переместилась на определенное расстояние, то она испытала трение, воздействующее на движущиеся объекты. Эта сила известна как сила кинетического трения. Она воздействует на одну поверхность другой, когда две поверхности натирают друг друга, потому что движутся одна или обе поверхности. Если вы положите дополнительные книги поверх первой книги, чтобы увеличить нормальную силу, сила кинетического трения будет увеличиваться.

Существует следующая формула: Fтрения= μFn. Сила кинетического трения равна произведению коэффициента кинетического трения и нормальной силы. Существует линейная зависимость между этими двумя силами. Коэффициент кинетического трения связывает силу трения с нормальной силой. Раз это сила, единицей для ее измерения является Ньютон.

Трение в природе и технике примеры

Статическое трение

Представьте, что вы пытаетесь подтолкнуть диван по полу. Вы нажимаете на него с небольшой силой, но он не двигается. Статическая сила трения действует в ответ на усилие, с попыткой вызвать движение неподвижного объекта. Если на объект нет такой силы, сила статического трения равна нулю. Если есть сила, пытающаяся вызвать движение, то вторая будет увеличиваться до максимального значения до того, как она будет преодолена, и начнется движение.

Формула для этого вида: Fтрения= μsFn. Статическая сила трения меньше или равна произведению коэффициента статического трения μ (s) и нормальной силы F (n). В примере про диван максимальная сила статического трения уравновешивает силу человека, надавливающего на него, до момента, когда диван начнет двигаться.

Роль трения в природе технике

Измерение коэффициентов трения

От чего зависит сила трения? В природе и технике материалы, из которых сделаны поверхности, играют определенную роль. Например, представьте, что вы пытаетесь играть в баскетбол, нося носки вместо спортивной обуви. Это может значительно ухудшить ваши шансы на победу. Обувь помогает обеспечить силу, необходимую для торможения и быстрого изменения направлений во время бега по поверхности. Между вашей обувью и баскетбольной площадкой трения больше, чем между вашими носками и полированным деревянным полом.

Различные коэффициенты показывают, как легко один объект может скользить по сравнению с другим. Точные их измерения достаточно чувствительны к условиям поверхностей и определяются экспериментально. Влажные поверхности ведут себя совершенно иначе, чем сухие поверхности.

Физика сила трения природе и технике

Физика: сила трения природе и технике

Вы испытываете трение все время, и вы должны быть рады, что это возможно. Именно эта сила помогает сохранять неподвижные объекты на месте, а человеку не падать при ходьбе. Что такое трение? В природе и технике примеры можно встретить на каждом шагу. Вы можете этого не осознавать, но вы уже хорошо знакомы с этой силой. Оно происходит в направлении, противоположном движению, и из-за этого это сила, которая влияет на движение объектов.

Когда вы передвигаете коробку по полу, трение работает против коробки в направлении, противоположном движению коробки. Когда вы идете вниз по горе, трение работает против вашего движения вниз. Когда вы нажимаете на тормоз в машине и двигаетесь еще какое-то время, трение работает против вашего направления скольжения, что помогает в конечном итоге полностью остановить скольжение.

Когда два объекта "втираются" друг в друга, устанавливаются силы притяжения между молекулами объектов, вызывая трение. В природе и технике оно может происходить между практически любыми фазами материи – твердыми веществами, жидкостями и газами. Трение происходит между двумя объектами, такими как коробка и пол, но также может происходить между рыбой и водой, в которой они плавают, и предметами, падающими в воздухе. Трение из-за воздуха имеет особое название: сопротивление воздуха.

Роль трения

Роль трения в природе, технике, жизни

Трение является неотъемлемой частью человеческого опыта. Нам нужна тяга, чтобы ходить, стоять, работать и ездить. В то же время нам нужна энергия, чтобы преодолеть сопротивление движению, поэтому слишком много трения требует избыточной энергии для выполнения работы, что приводит к неэффективности. В 21 веке человечество столкнулось с двойной проблемой нехватки энергии и глобального потепления от сжигания ископаемого топлива. Таким образом, способность контролировать трение стала сегодня главным приоритетом в современном мире.Тем не менее у многих понимание фундаментальной природы трения все еще отсутствует.

Трение в природе и технике (физика) всегда было предметом любопытства. Интенсивное изучение происхождения этой силы началось в 16 веке, после новаторской работы Леонардо да Винчи. Однако прогресс в понимании его природы был медленным, что затруднялось отсутствием инструмента для точного измерения. Гениальные эксперименты, выполненные ученым Кулоном и другими, дали важную информацию, чтобы заложить основу для понимания. Начиная с конца 1800-х и начала 1900-х годов появились паровые двигатели, локомотивы, а затем самолеты. Также освоение космоса требует четкого понимания трения и способности контролировать его.

Значительный прогресс в том, как применять и контролировать трение в природе технике, в быту, был сделан путем проб и ошибок. В начале 21 века появилось новое измерение нано-масштабного трения в связи с использованием нано-технологий. Человеческое понимание атомного и молекулярного трения быстро расширяется. Сегодня энергоэффективность и производство возобновляемых источников энергии требуют непосредственного внимания, в то время как наука стремится к сокращению выбросов углерода. Способность контролировать трение становится важным шагом в поиске устойчивых технологий. Именно оно является показателем энергоэффективности. Если получится уменьшить ненужные потери энергии и увеличить текущую эффективность использования энергии, это даст время для разработки альтернативных источников энергии.

Трение в природе, технике и быту

Примеры трения в жизни

Трение – это сила, которая носит резистивный характер. Она препятствует движению другого объекта, применяя некоторую силу. Но откуда генерируются эта сила? Во-первых, стоит начать рассматривать ее с молекулярного уровня. Трение, которое мы наблюдаем в повседневной жизни, может быть вызвано шероховатостью поверхности. Это то, что ученые считали долгое время основной причиной его появления.

Самыми простыми примерами трения в природе и технике являются следующие:

  • При ходьбе сила трения, которая воздействует на подошву, дает нам возможность двигаться вперед.
  • Прислоненная к стене лестница не падает на пол.
  • Люди завязывают шнурки на кроссовках.
  • Без силы трения машины не смогли бы ездить не только в гору, но и по ровной дороге.
  • В природе оно помогает животным лазать по деревьям.

Подобных пунктов существует множество, есть также случаи, где эта сила, наоборот, может помешать. Например, для уменьшения трения у рыб выделяется специальная смазка, благодаря которой, а также обтекаемой форме тела они могут спокойно передвигаться в воде.

Читайте также: