Доклад на тему полное отражение света

Обновлено: 30.06.2024

В случае, когда попадает из менее плотной среды в более плотную, показатель преломления n становится больше единицы. Допустим, что у нас нет данных о показателях преломления двух сред. Как нам определить, какая из них более плотная, а какая менее? Всё очень просто. Если угол падения превышает угол преломления, то мы имеем дело со случаем, когда свет проходит из оптически менее плотной среды в более плотную. Важно учесть, что луч при этом во второй среде прижимается к нормали к границе раздела сред.

Теперь направим луч в противоположную сторону, то есть из более оптически плотной среды в менее плотную. Закон преломления в таком случае записывается так: sinɑ/sinβ=v2/v1=1/n. В этом случае луч, наоборот, отклоняется от нормали.

Если постепенно увеличивать угол падения, то можно проследить и за увеличением угла преломления. В какой-то момент значение угла β может и вовсе приблизиться к 90° и сориентироваться вдоль границы раздела двух сред. Допустим, что мы достигли таких условий при некотором значении ɑ0 (луч 1). Дальнейшее преломление, т.е. случай при ɑ> ɑ0, невозможно. Луч просто отразится без деформаций (луч 2).

Случай полного отражения

Рассмотренная выше ситуация соответствует эффекту полного отражения света. Этот оптический случай возникает тогда, когда луч проходит из менее плотной среды в более плотную под углом падения, большим некоторого критического угла ɑ0.

Чтобы наблюдать полное отражение света, необходимо воспользоваться стеклянным полуцилиндром, задняя поверхность которого имеет матовую фактуру. Этот полуцилиндр фиксирует на диске таким образом, чтобы середина его плоской поверхности совпадала с центром диска. Далее узкий световой пучок направляют на боковую поверхность полуцилиндра перпендикулярно его поверхности. Наблюдатель замечает, что луч в такой плоскости не преломляется. А вот на плоской поверхности луч некоторым образом деформируется. В этой деформации участвует как отражение, так и преломление света.

эксперимент с диском и полуцилиндром

При увеличении угла падения увеличивается яркость отражённого луча, в то время как преломлённый пучок начинает угасать. В случае полного отражения затухание интенсивности преломлённого луча происходит наиболее быстро. В момент, когда преломлённый пучок начинает двигаться вдоль границы раздела двух сред, процент отражённой энергии приравнивается к 100.

Если повернуть источник излучения и увеличить при этом угол падения до значения ɑ, то преломлённый луч и вовсе исчезнет. Получается, что преломление заменится отражением.

Угол падения ɑ0, при котором преломлённый луч начинается двигаться вдоль границы раздела двух сред, называется предельным углом полного отражения. В случае, когда sinβ=1, закон преломления имеет вид: sin ɑ0=1/n.

Применение эффекта полного отражения

Волоконная оптика использует эффект полного отражения для передачи электромагнитных волн по пучкам световодов, которые представляют собой стеклянные цилиндры, покрытые оболочкой из прозрачного материала с показателем преломления меньшим, чем у волокна.

устройство оптического волокна

Как происходит передача электромагнитного сигнала в виде света или изображения? Волокна компонуются в жгуты. Каждому элементу передают некоторую часть информации. При этом объём передаваемой информации пропорционален частоте несущей волны.

Для сравнения нужно сказать, что частота радиоволн меньше световых волн в 10 5 -10 6 раз. Поэтому получается, что с помощью световых волн можно передавать большие объемы данных.

Не нужно далеко ходить, чтобы найти примеры применения волоконной оптики. Те же самые компьютерные сигналы – это информация, передаваемая в световом диапазоне.

поворотная и оборотная призма

После полного отражения от левой стороны лучи падают на противоположную грань и заново отражаются, выходя из призмы перпендикулярно относительно основания призмы. Получается, что направление первоначального и конечного пучков отличаются поворотом на 180 градусов. Этот эффект нашёл применение в призматических биноклях.

Почему лучше использовать призму, а не зеркало? Потому что в призмах происходит практически 100% отражение энергии. Это гарантирует получение яркого и насыщенного изображения.

Моя работа называется ”Явление отражения света. Перископ”.

Я взяла эту тему, потому что она интересна тем, что объясняет многие факты отражения света с научной точки зрения. Когда я беру зеркало и смотрюсь прямо в него, то я вижу свое отражение, а когда я смотрю сбоку в него, то отражение своего я не наблюдаю. Из этого можно сделать вывод, что зеркальная поверхность имеет много интересных свойств, и мне хотелось бы узнать о них поподробнее. Например, почему при изменении положения зеркала предметы в нем отражаются по-разному и почему плоские поверхности отражают лучше, чем шероховатые.

Кроме того, меня интересовало, каким образом предмет отражается в двух зеркалах направленных отражающими поверхностями друг к другу или под небольшим углом. Это свойство зеркал используется в перископе. Мне захотелось создать свой собственный перископ и посмотреть подтвердятся

ли на практике мои предположения.

Человек видит источник света, когда луч, исходящий из этого источника, попадает в глаз. Если же тело не является источником, то глаз может воспринимать лучи от какого-либо источника, отраженные этим телом, то есть, упавшие на поверхность этого тела и изменившие при этом направление дальнейшего распространения. Тело, отражающее лучи, становится источником отраженного света. Упавшие на поверхность тела лучи изменяют направление дальнейшего распространения. При отражении свет возвращается в ту же среду, из которой он упал на поверхность тела. Тело, отражающее лучи, становится источником отраженного света.

Когда мы слышим это слово "отражение", прежде всего, нам вспоминается зеркало. В быту чаще всего используются плоские зеркала. С помощью плоского зеркала можно провести простой опыт, чтобы установить закон, по которому происходит отражение света.

При падении света на зеркальную поверхность свет отражается, причем луч падающий, луч отраженный и нормаль к отражающей поверхности лежат в одной плоскости. Угол падения равен углу отражения: q1 = q'1 . Закон отражения справедлив как для плоских, так и для искривленных поверхностей.

S 1 - отражающая поверхность; S 2 - плоскость падения; АО - падающий луч; ОВ - отраженный луч; ON - нормаль к отражающей поверхности.

Закон отражения (q1 = q'1 ) определяет также направление отраженного луча при пересечении светом границы раздела прозрачных сред. Интенсивность и состояние поляризации отраженного света в этом случае определяется формулами Френеля.

Пучок лучей, выходящих из точечного источника (т. е. гомоцентрический пучок), после отражения в плоском зеркале остается гомоцентрическим: если отраженные лучи мысленно продолжить назад, эти продолжения лучей пересекутся за зеркалом в одной точке, которую можно считать мнимым изображением источника. Источник и его изображение расположены симметрично относительно зеркала. Наблюдателю кажется, что отраженные от зеркала лучи выходят из точки S', расположенной за зеркалом симметрично точке S.

При отражении от плоской зеркальной поверхности световых лучей, исходящих от некоторого предмета, возникает мнимое изображение предмета. Предмет и его мнимое изображение располагаются симметрично относительно зеркальной поверхности. Изображение предмета в плоском зеркале равно по размеру самому предмету.

Мнимое изображение пространственного (трехмерного) предмета в плоском зеркале отличается от самого предмета как правая система координат отличается от левой (т.е. как правая рука отличается от левой).

Рис.1. Принцип Ферма и закон отражения

Действительно, на рис. 1 DADC=DFDC, тогда согласно постулату Герона:

Здесь учтено, что кратчайший путь между двумя точками (F и B) будет по прямой FB через точку О.

Заметим, что аналогичным образом из принципа Ферма можно вывести закон преломления света.

Закон отражения света.

Луч падающий, нормаль к отражающей поверхности и луч отраженный лежат в однойплоскости (рис. 2), причем углы между лучами и нормалью равны между собой:угол падения i равен углу отражения i'. Этот закон также упоминается всочинениях Евклида. Установление его связано с употреблением полированныхметаллических поверхностей (зеркал), известных уже в очень отдаленную эпоху. Рис. 2 Закон отражения. Рис. 3 Закон преломления.

Закон преломления света.

Отражение света при любых зеркалах.

СФЕРИЧЕСКИЕ ЗЕРКАЛА

Исходя, из закона отражения можно также решать задачи о кривых зеркалах, не только тех, что вешают в комнате смеха, но о сферических зеркалах используемых на транспорте, в фонариках и прожекторах, зеркале гиперболоида инженера Гарина.

На рис. 3, 4 показаны примеры построения изображения предмета в виде стрелки в вогнутом и выпуклом сферических зеркалах. Методы построения изображений аналогичны, применяемым к тонким линзам. Так, например, параллельный пучок лучей падающих, на вогнутое зеркало, собирается в одной точке - фокусе, который находится на фокусном расстоянии f от линзы, равном половине радиуса кривизны R зеркала.

Рис. 3. Построение изображения в вогнутом сферическом зеркале

В вогнутом зеркале действительное изображение - перевернутое, оно может быть увеличенным или уменьшенным в зависимости от расстояния между предметом и зеркалом, а мнимое - прямое и увеличенное, как в собирающей линзе. В выпуклом зеркале изображение всегда мнимое, прямое и уменьшенное, как в рассеивающей линзе.

Рис. 4. Построение изображения в выпуклом сферическом зеркале

К сферическим зеркалам применима формула, аналогичная формуле тонкой линзы:

где a и b - расстояния от предмета и изображения до линзы [1]. Первая из этих формул верна для вогнутого зеркала, вторая - для выпуклого.

В этом случае точки Р и Р1 находятся внутри зеркальной поверхности. Принцип Ферма требует выполнения следующих равенств:

Кривая, для каждой точки которой сумма расстояний до двух заданных точек (фокусов) имеет одно и то же значение, представляет собой эллипс. Поэтому фокусировка выходящих из точки Р лучей в заданной точке Р 1 обеспечивается зеркалом в форме эллипсоида вращения с фокусами в точках Р и Р 1 .


При конструировании лазеров рубиновый стержень P и лампу оптической накачки располагают в фокусах зеркального оптического цилиндра. А этом случае свет, излученный лампой Л, весь попадет на стержень Р.


Если применяется несколько ламп, то используются совмещенные эллиптические отражатели.


В этом случае параллельные лучи света идущие от бесконечно удаленного источника Р, должны собраться в одной точке Р1 . Принцип Ферма требует выполнения следующих равенств:

Из математики известно, что таким свойством обладает парабола, где точка Р1 - её фокус.

Параболическое зеркало - основной элемент телескопов- рефлекторов

При помощи таких телескопов удается изучать самые удаленные уголки Вселенной.

Спиральные галактики в созвездии Андромеды.

Для локации планет солнечной системы используют радиолокаторы, в основе которых лежит параболическое зеркало.

Радиолокация дает возможность "прощупать" рельеф поверхности планет, даже окутанных густыми облаками, сквозь которые в обычный телескоп поверхность не видна.

Радиолокационная карта Венеры.


Когда два зеркала расположены под углом друг к другу, образуется множество изображений предмета.


Уголковый отражатель обладает тем свойством, что под каким бы углом ни падал на него луч света, отраженный луч всегда будет параллелен падающему лучу.


Многократные отражения света параллельными зеркалами используется в интерферометре Фабри-Перо , где зеркалами служат параллельные кварцевые пластины с нанесенными на них металлическими или многослойными диэлектрическими отражающими покрытиями.

Плоские зеркала используют в таком приборе, как перископ.

(от греч. periskopéo - смотрю вокруг, осматриваю), оптический прибор для наблюдения из укрытий (окопов, блиндажей и др.), танков, подводных лодок. Многие П. позволяют измерять горизонтальные и вертикальные углы на местности и определять расстояние до наблюдаемых объектов. Устройство и оптические характеристики П. обусловлены его назначением, местом установки и глубиной укрытия, из которого ведётся наблюдение. Простейшим является вертикальный перископ, состоящий из вертикальной зрительной трубы и 2 зеркал, установленных под углом 45° к оси трубы и образующих оптическую систему, которая преломляет световые лучи, идущие от наблюдаемого предмета, и направляет их в глаз наблюдателя. Распространены призменные перископы, в трубе которых вместо зеркал установлены прямоугольные призмы, а также телескопическая линзовая система и оборачивающая система, с помощью которых можно получать увеличенное прямое изображение. Поле зрения перископ при малом увеличении (до 1,5 раза) составляет около 40°; оно обычно уменьшается с ростом увеличения. Некоторые типы перископ позволяют вести круговой обзор.

Оптическая схема перископа

Впервые прототип перископа использовал Ливчак Иосиф Николаевич. Ливчак Иосиф Николаевич [1839, с. Тисовы, близ г. Перемышль, - 27.10 (9.11).1914, Петроград], русский изобретатель в области полиграфии, военного дела и транспорта. С 1863 жил в Вене, где издавал сатирический журнал "Страхопуд" (1863-68), а также участвовал в издании журналов "Золотая грамота" (1864-1868) и "Славянская заря" (1867-68). Л. призывал к освобождению славянских земель из-под власти Австро-Венгрии и объединению их вокруг России. В начале 70-х гг. переехал в Россию, где занялся изобретательской деятельностью. Создал матрицевыбивательную наборную машину, которая в 1875 использовалась при наборе газеты "Виленский вестник". Изобрёл прицельный станок (1886), оптический прибор диаскоп (прототип перископа), отмеченный большой золотой медалью Парижской академии. Сконструировал указатель пути и скорости движения локомотива; за эту работу Русским техническим обществом награжден золотой медалью им. А. П. Бородина (1903).

Изучив научную литературу и создав собственную модель перископа, я считаю, мне удалось достигнуть поставленных мною задач.

Также я считаю, что знать и применять в быту знания об отражении в плоском зеркале очень важно. Теперь я намного лучше разбираюсь в отражении света. Теперь мне будет намного проще изучать тему ”Оптика” в 11 классе.

1. Мякишев Г.Я. Физика: Учебник для 11 кл. ОУ – М.:Просвещение, 2004.

2. Пинский А.А. Физика. Углубленно изучение физики: учеб. пособие. – М.:Просвещение, 1994.

При прохождении света из оптически менее плотной среды в более плотную, например из воздуха в стекло или воду, υ1 > υ2 и, следовательно, согласно закону преломления показатель преломления n > 1.


Поэтому α > β: в результате преломления луч приближается к нормали к границе раздела сред.


то закон преломления можно записать так:



Преломленный луч по выходе из оптически более плотной среды будет направлен по линии ранее падавшего луча, поэтому α

Наконец, при некотором угле падения а значение угла преломления β приблизится к 90°, и преломленный луч будет направлен почти по границе раздела двух сред.
Наибольшему возможному углу преломления β = 90° соответствует угол падения α0.

При α > α0 преломление света невозможно.
Значит, луч должен полностью отразиться.
Это явление и называется полным отражением света.

Для наблюдения полного отражения света можно использовать стеклянный полуцилиндр с матовой задней поверхностью.


Полуцилиндр закрепляют на диске так, чтобы середина плоской поверхности полуцилиндра совпадала с центром диска.
Узкий пучок света от осветителя направляют снизу на боковую поверхность полуцилиндра перпендикулярно его поверхности.
На этой поверхности луч не преломляется.
На плоской поверхности луч частично преломляется и частично отражается.
Отражение происходит в соответствии с законом отражения, а преломление — в соответствии с законом преломления.

Если увеличивать угол падения, то можно заметить, что яркость (и следовательно, энергия) отраженного пучка усиливается, в то время как яркость (энергия) преломленного пучка падает.
Особенно быстро убывает энергия преломленного пучка, когда угол преломления приближается к 90°.
Наконец, когда угол падения становится таким, что преломленный пучок идет вдоль границы раздела двух сред, доля отраженной энергии составляет почти 100%.
Повернем осветитель, увеличив угол падения до α0.
Мы увидим, что преломленный пучок исчез и весь свет отражается от границы раздела двух сред, т. е. происходит полное отражение света.

Угол падения α0, соответствующий углу преломления 90°, называют предельным углом полного отражения.
При sin β = 1 формула принимает вид


Из этого равенства и может быть найдено значение предельного угла полного отражения α0.
Для воды (n = 1,33) оно равно 48°35',
для стекла (n = 1,5) принимает значение 41°51',
а для алмаза (n = 2,42) составляет 24°40'.
Во всех случаях второй средой является воздух.

Явление полного отражения легко наблюдать на простом опыте.
Нальем в стакан воду и поднимем его несколько выше уровня глаз.
Поверхность воды, если рассматривать ее снизу сквозь стенку, кажется блестящей, словно посеребренной вследствие полного отражения света.

Явление полного отражения света используют в так называемой волоконной оптике для передачи света и изображения по пучкам прозрачных гибких волокон — световодов.
Световод представляет собой стеклянное волокно цилиндрической формы, покрытое оболочкой из прозрачного материала с меньшим, чем у волокна, показателем преломления.


За счет многократного полного отражения свет может быть направлен по любому (прямому или изогнутому) пути.
Волокна собираются в жгуты.
При этом по каждому из волокон передается какой-нибудь элемент изображения.
Жгуты из волокон используются, например, в медицине для исследования внутренних органов.


Согласно формуле энергия, переносимая волной, а следовательно, и передаваемый объем информации пропорциональны четвертой степени частоты.
Частота же световых волн в 105—106 раз больше частоты радиоволн.
Таким образом, с помощью световых волн можно передавать большой объем информации.

В последнее время волоконная оптика широко используется для быстрой передачи компьютерных сигналов.
По волоконному кабелю передается модулированное лазерное излучение.

Полное отражение света показывает, какие богатые возможности для объяснения явлений распространения света заключены в законе преломления.
Вначале полное отражение представляло собой лишь любопытное явление.
Сейчас оно постепенно приводит к революции в способах передачи информации.

Световые волны. Физика, учебник для 11 класса - Класс!ная физика

Закон отражения света был открыт в результате наблюдений и экспериментов. Конечно, это можно вывести теоретически, но все принципы, которые используются сейчас, определены и обоснованы на практике. Знание основных характеристик этого явления помогает при планировании освещения и выборе оборудования. Этот принцип работает и в других областях: радиоволны, рентгеновские лучи и т.д. Ведут себя точно так же при отражении.

Что такое отражение света и его разновидности, механизм

Закон формулируется следующим образом: падающий и отраженный лучи лежат в одной плоскости, имеющей перпендикуляр к отражающей поверхности, выступающей из точки падения. Угол падения равен углу отражения.

По сути, отражение — это физический процесс, в котором луч, частицы или излучение взаимодействуют с плоскостью. Направление волн меняется на границе двух сред, так как они обладают разными свойствами. Отраженный свет всегда возвращается в окружающую среду, откуда он исходит. Очень часто при отражении также наблюдается явление преломления волн.

Законы отражения света и история их открытия

Это схематическое объяснение закона отражения света.

Зеркальное отражение

В этом случае существует четкая взаимосвязь между отраженными и падающими лучами, это главная особенность данной разновидности. Вот несколько ключевых моментов о зеркальном отражении:

  1. Отраженный луч всегда находится в плоскости, проходящей через падающий луч, и перпендикулярно отражающей поверхности, которая восстанавливается в точке падения.
  2. Угол падения равен углу отражения светового луча.
  3. Характеристики отраженного луча пропорциональны поляризации луча и углу падения. Кроме того, на индикатор влияют характеристики двух сред.

Законы отражения света и история их открытия

В случае зеркального отражения углы падения и отражения всегда одинаковы.

В этом случае показатели преломления зависят от свойств плоскости и характеристик света. Это отражение можно найти везде, где есть гладкие поверхности. Но для разных сред условия и принципы могут меняться.

Полное внутреннее отражение

Типично для звуковых и электромагнитных волн. Это происходит там, где встречаются две среды. В этом случае волны должны падать из среды с меньшей скоростью распространения. Что касается света, то можно сказать, что показатели преломления в этом случае значительно увеличиваются.

Законы отражения света и история их открытия

Полное внутреннее отражение характерно для водной поверхности.

Угол падения светового луча влияет на угол преломления. С увеличением его значения интенсивность отраженных лучей увеличивается, а интенсивность преломленных лучей уменьшается. При достижении определенного критического значения показатели преломления уменьшаются до нуля, что приводит к полному отражению лучей.

Критический угол рассчитывается индивидуально для разных сред.

Диффузное отражение света

Этот вариант отличается тем, что при попадании на неровную поверхность лучи отражаются в разные стороны. Отраженный свет просто рассеивается, поэтому вы не можете увидеть свое отражение на неровной или непрозрачной плоскости. Явление диффузии лучей наблюдается, когда неровности равны длине волны или превышают ее.

При этом одна и та же плоскость может диффузно отражать свет или ультрафиолетовое излучение, но при этом хорошо отражать инфракрасный спектр. Все зависит от характеристик волн и свойств поверхности.

Законы отражения света и история их открытия

Диффузное отражение хаотично из-за неровностей поверхности.

Обратное отражение

Это явление наблюдается, когда лучи, волны или другие частицы отражаются назад, то есть к источнику. Это свойство можно использовать в астрономии, естествознании, медицине, фотографии и других областях. Благодаря системе выпуклых линз в телескопах можно видеть свет звезд, невидимый невооруженным глазом.

Законы отражения света и история их открытия

Обратным отражением можно управлять за счет сферической формы отражающей поверхности.

важно создать определенные условия для возврата света к источнику, чаще это достигается за счет оптики и направления луча лучей. Например, этот принцип используется в ультразвуковых исследованиях, благодаря отраженным ультразвуковым волнам на мониторе выводится изображение исследуемого органа.

История открытия законов отражения

Формулы Френеля

Огюст Френель был французским физиком, который разработал ряд формул, широко используемых по сей день. Они используются для расчета интенсивности и амплитуды отраженных и преломленных электромагнитных волн. Кроме того, они должны проходить через резкую границу между двумя средами с разными значениями преломления.

Все явления, которые соответствуют формулам французского физика, называются отражением Френеля. Но следует помнить, что все полученные закономерности верны только тогда, когда средние изотропны и граница между ними четкая. В этом случае угол падения всегда равен углу отражения, а величина преломления определяется по закону Снеллиуса.

важно, что когда свет падает на плоскую поверхность, может быть два типа поляризации:

  1. p-поляризация характеризуется тем, что вектор напряженности электромагнитного поля лежит в плоскости падения.
  2. поляризация s отличается от первого типа тем, что вектор интенсивности электромагнитных волн перпендикулярен плоскости, в которой лежат как падающие, так и отраженные лучи.

Законы отражения света и история их открытия

Френель вывел целый ряд формул, которые позволяют выполнять все необходимые вычисления.

Формулы для ситуаций с разной поляризацией разные. Это связано с тем, что поляризация влияет на характеристики луча и по-разному отражается. Когда свет падает под определенным углом, отраженный луч может быть полностью поляризован. Этот угол называется углом Брюстера, он зависит от преломляющих характеристик среды на границе раздела.

Говоря о которых! Отраженный луч всегда поляризован, даже если падающий свет не поляризован.

Принцип Гюйгенса

Гюйгенс — голландский физик, которому удалось вывести принципы, позволяющие описывать волны любой природы. Именно с его помощью часто демонстрируются как закон отражения, так и закон преломления света.

Законы отражения света и история их открытия

Это простейшее схематическое изображение принципа Гюйгенса.

В данном случае под светом понимается плоская волна, то есть все поверхности волны плоские. В этом случае поверхность волны представляет собой набор точек с колебаниями в одной фазе.

Формулировка такова: каждая точка, до которой доходит возмущение, становится источником сферических волн.

Сдвиг Федорова

его еще называют эффектом Федорова-Амбера. В этом случае происходит смещение светового пучка с полным внутренним отражением. В этом случае смещение незначительное, оно всегда меньше длины волны. Из-за этого смещения отраженный луч не лежит в той же плоскости, что и падающий, что противоречит закону отражения света.

Диплом о научном открытии был вручен Ф.И. Федорову в 1980 году.

Боковое смещение лучей было теоретически доказано советскими учеными в 1955 году благодаря математическим расчетам. Что касается экспериментального подтверждения этого эффекта, то вскоре его сделал французский физик Эмбер.

Использование закона на практике

Законы отражения света и история их открытия

Примеры отражения света вездесущи.

Рассматриваемый закон гораздо более распространен, чем кажется. Этот принцип широко используется в различных сферах:

  1. Зеркало — самый простой пример. Это гладкая поверхность, хорошо отражающая свет и другие виды излучения. Используются как плоские версии, так и элементы других форм, например, сферические поверхности позволяют отталкивать предметы, что делает их незаменимыми в качестве зеркал заднего вида в автомобиле.
  2. Различные оптические устройства также работают в соответствии с обсуждаемыми принципами. Это включает в себя все, от очков, которые можно найти повсюду, до мощных телескопов с выпуклыми линзами или микроскопов, используемых в медицине и биологии.
  3. Ультразвуковые аппараты также используют этот принцип. Ультразвуковое оборудование позволяет проводить точные исследования. Рентгеновские лучи распространяются таким же образом.
  4. Микроволновые печи — еще один пример практического применения этого закона. Также сюда входит все оборудование, использующее инфракрасное излучение (например, приборы ночного видения).
  5. Вогнутые зеркала позволяют улучшить характеристики фонарей и светильников. В этом случае мощность лампочки может быть намного ниже, чем без использования зеркального элемента.

Говоря о которых! Через отражение света мы видим луну и звезды.

Закон отражения света объясняет многие природные явления, а знание его характеристик позволило нам создать оборудование, которое широко используется в наше время.


Термин “отражение” в физике охватывает все явления взаимодействия тел, частиц или волн с какой-либо поверхностью на границе раздела двух сред, имеющих разные параметры, при этом волны или частицы возвращаются (отражаются) обратно, в “свою” среду. Свет — это электромагнитные колебания определенного диапазона длин волн — видимое оптическое излучение (от фиолетового до красного), которые воспринимает человеческий глаз. Рассмотрим общие закономерности процессов отражения света.

Мы видим предметы за счет отражения света

С явлением отражения света мы сталкиваемся ежедневно. Наше утро начинается с умывания перед зеркалом, в котором мы видим свое отражение. Свет отражается в окнах домов, витринах магазинов, в автомобильных зеркалах и т.д.

Отражаясь от поверхностей предметов, свет попадает в глаз человека, формирует изображение на сетчатке глаза и, тем самым, позволяет нам видеть окружающий мир. В ночное время солнечный свет отсутствует, поэтому разглядеть предметы можно только, если они сами излучают свет (например, фонари, окна домов), либо, если мы сами воспользуемся внешней подсветкой (фонариком, прожектором).

Примеры отражения света. Зеркальное и диффузное отражения

Рис. 1. Примеры отражения света. Зеркальное и диффузное отражения.

В зависимости от качества границы раздела различают зеркальное и диффузное отражения. Зеркальным называется отражение от очень гладких поверхностей, которые еще называют оптически гладкими, когда величина неровностей поверхности меньше 1 мкм. Лучи света при этом отражаются в одном направлении.

Диффузное отражение света происходит от шероховатых (матовых) поверхностей. Отражение лучей света происходит в разных направлениях. Когда часть поверхности зеркальная, а часть матовая, то в таком случае говорят о смешанном отражении.

Первые попытки сформулировать закономерности отражения света найдены в трактате “Катоптрика” знаменитого древнегреческого математика Эвклида, написанного им примерно в 300 г. до н. э.

Что такое принцип Гюйгенса

Для построения волновой теории распространения световых волн голландский физик Христиан Гюйгенс в 1678 г. предложил взять за основу принцип, состоящий из двух постулатов (утверждений, принимаемых в качестве аксиом):

  • Каждая точка среды, до которой дошло возмущение (световая волна), сама становится источником вторичных, сферических волн;
  • Поверхность, касательная ко всем вторичным волнам, представляет собой волновую поверхность в следующий момент времени. Фронт волны — это огибающая фронта вторичных волн.

На представленном рисунке показан фронт световой волны, распространяющийся со скоростью v в два соседних момента времени — t и t+Δt. Точки фронта волны в момент времени t являются источниками вторичной волны в момент времени t+Δt.

Принцип Гюйгенса позволил получить два закона отражения света, которые подтвердились результатами многочисленных экспериментов:

Луч падающий, луч отраженный и перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости;

Второй закон устанавливает только соотношение между углом падения и углом отражения. Но часть света может преодолеть границу раздела сред (преломиться) и пройти внутрь второй среды. Количество прошедшего света и величина угла преломления вычисляются с помощью других формул.

Коэффициент отражения

Полное, почти стопроцентное, отражение света возможно только от идеальных зеркальных поверхностей. Часть света преломляется и проходит через границу под углом γ. Например, мы видим предметы и рыб в море за счет того, что свет падает на поверхность воды, преломляется, проходит в толщу воды, отражается и выходит обратно, преломившись еще раз.

Способность тел или границ раздела тел (сред) отражать падающий на него свет характеризуется безразмерной величиной, которая называется коэффициентом отражения R :

Ф0 — поток света, упавшего на поверхность раздела;

Ф — поток отраженного света.

Измерение коэффициента отражения света от зеркальных поверхностей

Рис. 3. Измерение коэффициента отражения света от зеркальных поверхностей.

Коэффициент отражения от различных поверхностей измеряют экспериментально и приводят потом в справочных таблицах.

В общем случае коэффициент отражения равен сумме коэффициентов зеркального и диффузного отражений. Величина коэффициента отражения зависит от физических свойств тела, угла падения и длины волны (цвета) света.

Что мы узнали?

Итак, мы узнали, что отражение света от поверхностей тел бывает зеркальным, диффузным и смешанным. По принципу Гюйгенса при отражении света угол отражения β равен углу падения α. Коэффициент отражения R характеризует способность тела отражать падающий на него свет.

Читайте также: