Доклад на тему биотехнология клонирование генная и клеточная инженерия

Обновлено: 15.05.2024

Биотехнология — это сознательное производство необходимых человеку продуктов и материалов с помощью живых организмов и биологических процессов.

С незапамятных времен биотехнология применялась преимущественно в пищевой и легкой промышленности: в виноделии, хлебопечении, сбраживании молочных продуктов, при обработке льна и кож, основанных на применении микроорганизмов. В последние десятилетия возможности биотехнологии необычайно расширились. Это связано с тем, что ее методы выгоднее Обычных по той простой причине, что в живых организмах биохимические реакции, катализируемые ферментами, идут при оптимальных условиях (температуре и давлении), более производительны, экологически чисты и не требуют химических реактивов, отравляющих среду.

Объектами биотехнологии являются многочисленные представители групп живых организмов — микроорганизмы (вирусы, бактерии, простейшие, дрожжевые грибы), растения, животные, а также изолированные из них клетки и субклеточные компоненты (органеллы) и даже ферменты. Биотехнология базируется на протекающих в живых системах физиолого-биохимических процессах, в результате которых осуществляются выделение энергии, синтез и расщепление продуктов метаболизма, формирование химических и структурных компонентов клетки.

Главным направлением биотехнологии является производство с помощью микроорганизмов и культивируемых эукариотических клеток биологически активных соединений (ферменты, витамины, гормоны), лекарственных препаратов (антибиотики, вакцины, сыворотки, высокоспецифичные антитела и др.), а также ценных соединений (кормовые добавки, например, незаменимые аминокислоты, кормовые белки и т. д.). Методы генетической инженерии позволили осуществить синтез в промышленных количествах таких гормонов, как инсулин и соматотропин (гормон роста), которые необходимы для лечения генетических болезней человека.

Одним из важнейших направлений современной биотехнологии является также использование биологических методов борьбы с загрязнением окружающей среды (биологическая очистка сточных вод, загрязненной почвы и т. п.).

Так, для извлечения металлов из сточных вод могут широко использоваться штаммы бактерий, способные накапливать уран, медь, кобальт. Другие бактерии родов Rhodococcus и Nocardia с успехом применяют для эмульгирования и сорбции углеводородов нефти из водной среды. Они способны разделять водную и нефтяную фазы, концентрировать нефть, очищать сточные воды от примесей нефти. Ассимилируя углеводороды нефти, такие микроорганизмы преобразуют их в белки, витамины из группы В и каротины.

Некоторые из штаммов галобактерий с успехом применяют для удаления мазута с песчаных пляжей. Получены также генно-инженерные штаммы, способные расщеплять октан, камфару, нафталин, ксилол, эффективно утилизировать сырую нефть.

Большое значение имеет использование методов биотехнологии для защиты растений от вредителей и болезней.

Биотехнология проникает в тяжелую промышленность, где микроорганизмы используются для добычи, превращения и переработки природных ископаемых. Уже в древности первые металлурги получали железо из болотных руд, производимых железобактериями, которые способны концентрировать железо. Теперь разработаны способы бактериальной концентрации ряда других денных металлов: марганца, цинка, меди, хрома и др. Эти методы используются для разработки отвалов старых рудников и бедных месторождений, где традиционные методы добычи экономически невыгодны[4].

Генетическая инженерия — один из важнейших методов биотехнологии. Она предполагает целенаправленное искусственное создание определенных комбинаций генетического материала, способных нормально функционировать в клетке, т. е. размножаться и контролировать синтез конечных продуктов. Можно выделить несколько разновидностей метода генетической инженерии в зависимости от уровня и особенностей его использования.




Развитие генетической инженерии стало возможным благодаря открытию двух ферментов — рестриктаз, разрезающих молекулу ДНК в строго определенных участках, и лигаз, сшивающих кусочки различных молекул ДНК друг с другом. Кроме того, в основе генетической инженерии лежит открытие векторов, которые представляют собой короткие, самостоятельно размножающиеся в клетках бактерий кольцевые молекулы ДНК. С помощью рестриктаз и лигаз в векторы и встраивают необходимый ген, добиваясь впоследствии его включения в геном клетки-хозяина.

Клеточная инженерия — это метод конструирования клеток нового типа на основе их культивирования, гибридизации и реконструкции. Она базируется на использовании методов культуры клеток и тканей. Выделяются два направления клеточной инженерии: 1) использование клеток, переведенных в культуру, для синтеза различных полезных для человека соединений; 2) применение культивируемых клеток для получения из них растений-регенерантов.

Растительные клетки в культуре — это важный источник ценнейших природных веществ, так как они сохраняют способность синтезировать свойственные им вещества: алкалоиды, эфирные масла, смолы, биологически активные соединения. Так, переведенные в культуру клетки женьшеня продолжают синтезировать, как и в составе целостного растения, ценное лекарственное сырье. Причем, в культуре с клетками и их геномами можно проводить любые манипуляции. Используя индуцированный мутагенез, можно повышать продуктивность штаммов культивируемых клеток и проводить их гибридизацию (в том числе и отдаленную) гораздо легче и проще, чем на уровне целостного организма. Кроме этого, с ними, как и с прокариотическими клетками, можно проводить генно-инженерные работы.

Путем гибридизации лимфоцитов (клеток, синтезирующих антитела, но неохотно и недолго растущих в культуре) с опухолевыми клетками, обладающими потенциальным бессмертием и способными к неограниченному росту в искусственной среде, решена одна из важнейших задач биотехнологии на современном этапе — получены клетки гибридомы, способные к бесконечному синтезу высокоспецифических антител определенного типа.

Таким образом, клеточная инженерия позволяет конструировать клетки нового типа с помощью мутационного процесса, гибридизации и, более того, комбинировать отдельные фрагменты разных клеток (ядра, митохондрии, пластиды, цитоплазму, хромосомы и т. д.), клетки различных видов, относящиеся к разным родам, семействам. Это облегчает решение многих теоретических проблем и имеет практическое значение.

Заключение

Для того чтобы обеспечить себя доброкачественной пищей и сырьем и при этом не привести планету к экологической катастрофе, человечеству необходимо научиться эффективно изменять наследственную природу живых организмов. Поэтому не случайно главной задачей селекционеров в наше время стало решение проблемы создания новых форм растений, животных и микроорганизмов, хорошо приспособленных к индустриальным способам производства, устойчиво переносящих неблагоприятные условия, эффективно использующих солнечную энергию и, что особенно важно, позволяющих получать биологически чистую продукцию без чрезмерного загрязнения окружающей среды. Принципиально новыми подходами к решению этой фундаментальной проблемы является использование в селекции генной и клеточной инженерии.

Биотехнология решает не только конкретные задачи науки и производства. У нее есть более глобальная методологическая задача — она расширяет и ускоряет масштабы воздействия человека на живую природу и способствует адаптации живых систем к условиям существования человека, т. е. к ноосфере. Биотехнология, таким образом, выступает в роли мощного фактора антропогенной адаптивной эволюции.

У биотехнологии, генетической и клеточной инженерии хорошие перспективы. При появлении все новых векторов человек с их помощью будет внедрять нужные гены в клетки растений, животных и человека. Это позволит постепенно избавиться от многих наследственных болезней человека, заставить клетки синтезировать необходимые лекарства и биологически активные соединения, а затем — непосредственно белки и незаменимые аминокислоты, употребляемые в пищу.

Список литературы

1. Колесников С.И. Экология. – Ростов-на-Дону: Феникс, 2003. – 384с.

2. Лемеза Н.А., Камлюк Л.В., Лисов Н.Д. Биология.– М.: Айрис-пресс, 2005. 512с.

3. Петров Б.Ю. Общая биология. – СПб.: Химия, 1999. – 420с

4. Петров К.М. Взаимодействие общества и природы: Учебное пособие для вузов. - СПб: Химия, 1998. – 408с.

Приложение 1

Наследование формы гребня у кур


Биотехнология — это сознательное производство необходимых человеку продуктов и материалов с помощью живых организмов и биологических процессов.

С незапамятных времен биотехнология применялась преимущественно в пищевой и легкой промышленности: в виноделии, хлебопечении, сбраживании молочных продуктов, при обработке льна и кож, основанных на применении микроорганизмов. В последние десятилетия возможности биотехнологии необычайно расширились. Это связано с тем, что ее методы выгоднее Обычных по той простой причине, что в живых организмах биохимические реакции, катализируемые ферментами, идут при оптимальных условиях (температуре и давлении), более производительны, экологически чисты и не требуют химических реактивов, отравляющих среду.

Объектами биотехнологии являются многочисленные представители групп живых организмов — микроорганизмы (вирусы, бактерии, простейшие, дрожжевые грибы), растения, животные, а также изолированные из них клетки и субклеточные компоненты (органеллы) и даже ферменты. Биотехнология базируется на протекающих в живых системах физиолого-биохимических процессах, в результате которых осуществляются выделение энергии, синтез и расщепление продуктов метаболизма, формирование химических и структурных компонентов клетки.

Главным направлением биотехнологии является производство с помощью микроорганизмов и культивируемых эукариотических клеток биологически активных соединений (ферменты, витамины, гормоны), лекарственных препаратов (антибиотики, вакцины, сыворотки, высокоспецифичные антитела и др.), а также ценных соединений (кормовые добавки, например, незаменимые аминокислоты, кормовые белки и т. д.). Методы генетической инженерии позволили осуществить синтез в промышленных количествах таких гормонов, как инсулин и соматотропин (гормон роста), которые необходимы для лечения генетических болезней человека.

Одним из важнейших направлений современной биотехнологии является также использование биологических методов борьбы с загрязнением окружающей среды (биологическая очистка сточных вод, загрязненной почвы и т. п.).

Так, для извлечения металлов из сточных вод могут широко использоваться штаммы бактерий, способные накапливать уран, медь, кобальт. Другие бактерии родов Rhodococcus и Nocardia с успехом применяют для эмульгирования и сорбции углеводородов нефти из водной среды. Они способны разделять водную и нефтяную фазы, концентрировать нефть, очищать сточные воды от примесей нефти. Ассимилируя углеводороды нефти, такие микроорганизмы преобразуют их в белки, витамины из группы В и каротины.

Некоторые из штаммов галобактерий с успехом применяют для удаления мазута с песчаных пляжей. Получены также генно-инженерные штаммы, способные расщеплять октан, камфару, нафталин, ксилол, эффективно утилизировать сырую нефть.

Большое значение имеет использование методов биотехнологии для защиты растений от вредителей и болезней.

Биотехнология проникает в тяжелую промышленность, где микроорганизмы используются для добычи, превращения и переработки природных ископаемых. Уже в древности первые металлурги получали железо из болотных руд, производимых железобактериями, которые способны концентрировать железо. Теперь разработаны способы бактериальной концентрации ряда других денных металлов: марганца, цинка, меди, хрома и др. Эти методы используются для разработки отвалов старых рудников и бедных месторождений, где традиционные методы добычи экономически невыгодны[4].

Генетическая инженерия — один из важнейших методов биотехнологии. Она предполагает целенаправленное искусственное создание определенных комбинаций генетического материала, способных нормально функционировать в клетке, т. е. размножаться и контролировать синтез конечных продуктов. Можно выделить несколько разновидностей метода генетической инженерии в зависимости от уровня и особенностей его использования.

Развитие генетической инженерии стало возможным благодаря открытию двух ферментов — рестриктаз, разрезающих молекулу ДНК в строго определенных участках, и лигаз, сшивающих кусочки различных молекул ДНК друг с другом. Кроме того, в основе генетической инженерии лежит открытие векторов, которые представляют собой короткие, самостоятельно размножающиеся в клетках бактерий кольцевые молекулы ДНК. С помощью рестриктаз и лигаз в векторы и встраивают необходимый ген, добиваясь впоследствии его включения в геном клетки-хозяина.

Клеточная инженерия — это метод конструирования клеток нового типа на основе их культивирования, гибридизации и реконструкции. Она базируется на использовании методов культуры клеток и тканей. Выделяются два направления клеточной инженерии: 1) использование клеток, переведенных в культуру, для синтеза различных полезных для человека соединений; 2) применение культивируемых клеток для получения из них растений-регенерантов.

Растительные клетки в культуре — это важный источник ценнейших природных веществ, так как они сохраняют способность синтезировать свойственные им вещества: алкалоиды, эфирные масла, смолы, биологически активные соединения. Так, переведенные в культуру клетки женьшеня продолжают синтезировать, как и в составе целостного растения, ценное лекарственное сырье. Причем, в культуре с клетками и их геномами можно проводить любые манипуляции. Используя индуцированный мутагенез, можно повышать продуктивность штаммов культивируемых клеток и проводить их гибридизацию (в том числе и отдаленную) гораздо легче и проще, чем на уровне целостного организма. Кроме этого, с ними, как и с прокариотическими клетками, можно проводить генно-инженерные работы.

Путем гибридизации лимфоцитов (клеток, синтезирующих антитела, но неохотно и недолго растущих в культуре) с опухолевыми клетками, обладающими потенциальным бессмертием и способными к неограниченному росту в искусственной среде, решена одна из важнейших задач биотехнологии на современном этапе — получены клетки гибридомы, способные к бесконечному синтезу высокоспецифических антител определенного типа.

Таким образом, клеточная инженерия позволяет конструировать клетки нового типа с помощью мутационного процесса, гибридизации и, более того, комбинировать отдельные фрагменты разных клеток (ядра, митохондрии, пластиды, цитоплазму, хромосомы и т. д.), клетки различных видов, относящиеся к разным родам, семействам. Это облегчает решение многих теоретических проблем и имеет практическое значение.

Заключение

Для того чтобы обеспечить себя доброкачественной пищей и сырьем и при этом не привести планету к экологической катастрофе, человечеству необходимо научиться эффективно изменять наследственную природу живых организмов. Поэтому не случайно главной задачей селекционеров в наше время стало решение проблемы создания новых форм растений, животных и микроорганизмов, хорошо приспособленных к индустриальным способам производства, устойчиво переносящих неблагоприятные условия, эффективно использующих солнечную энергию и, что особенно важно, позволяющих получать биологически чистую продукцию без чрезмерного загрязнения окружающей среды. Принципиально новыми подходами к решению этой фундаментальной проблемы является использование в селекции генной и клеточной инженерии.

Биотехнология решает не только конкретные задачи науки и производства. У нее есть более глобальная методологическая задача — она расширяет и ускоряет масштабы воздействия человека на живую природу и способствует адаптации живых систем к условиям существования человека, т. е. к ноосфере. Биотехнология, таким образом, выступает в роли мощного фактора антропогенной адаптивной эволюции.

У биотехнологии, генетической и клеточной инженерии хорошие перспективы. При появлении все новых векторов человек с их помощью будет внедрять нужные гены в клетки растений, животных и человека. Это позволит постепенно избавиться от многих наследственных болезней человека, заставить клетки синтезировать необходимые лекарства и биологически активные соединения, а затем — непосредственно белки и незаменимые аминокислоты, употребляемые в пищу.

Список литературы

1. Колесников С.И. Экология. – Ростов-на-Дону: Феникс, 2003. – 384с.

2. Лемеза Н.А., Камлюк Л.В., Лисов Н.Д. Биология.– М.: Айрис-пресс, 2005. 512с.

3. Петров Б.Ю. Общая биология. – СПб.: Химия, 1999. – 420с

4. Петров К.М. Взаимодействие общества и природы: Учебное пособие для вузов. - СПб: Химия, 1998. – 408с.

Вступление. Биотехноло́гия — дисциплина, изучающая возможности использования живых организмов, их систем или продуктов их жизнедеятельности для решения технологических задач, а также возможности создания живых организмов с необходимыми свойствами методом генной инженерии.

Биотехнологией часто называют применение генной инженерии в XX—XXI веках, но термин относится и к более широкому комплексу процессов модификации биологических организмов для обеспечения потребностей человека, начиная с модификации растений и одомашненных животных путем искусственного отбора и гибридизации. С помощью современных методов традиционные биотехнологические производства получили возможность улучшить качество пищевых продуктов и увеличить продуктивность живых организмов.

Биотехнология основана на генетике, молекулярной биологии, биохимии, эмбриологии и клеточной биологии, а также прикладных дисциплинах — химической и информационной технологиях и робототехнике.

История биотехнологии

Так, в 1814 году петербургский академик К. С. Кирхгоф (биография) открыл явление биологического катализа и пытался биокаталитическим путём получить сахар из доступного отечественного сырья (до середины XIX века сахар получали только из сахарного тростника). В 1891 году в США японский биохимик Дз. Такамине получил первый патент на использование ферментных препаратов в промышленных целях: учёный предложил применить диастазу для осахаривания растительных отходов.

В начале XX века активно развивалась бродильная и микробиологическая промышленность. В эти же годы были предприняты первые попытки наладить производство антибиотиков, пищевых концентратов, полученных из дрожжей, осуществить контроль ферментации продуктов растительного и животного происхождения.

Первый антибиотик — пенициллин — удалось выделить и очистить до приемлемого уровня в 1940 году, что дало новые задачи: поиск и налаживание промышленного производства лекарственных веществ, продуцируемых микроорганизмами, работа над удешевлением и повышением уровня биобезопасности новых лекарственных препаратов.

Нужна помощь в написании доклада?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Помимо широкого применения в сельском хозяйстве, на основе генной инженерии возникла целая отрасль фармацевтической промышленности, называемая “индустрией ДНК” и представляющая собой одну из современных ветвей биотехнологии. Более четверти всех лекарств, используемых сейчас в мире, содержат ингредиенты из растений. Генно-модифицированные растения являются дешевым и безопасным источником для получения полностью функциональных лекарственных белков (антител, вакцин, ферментов и др.) как для человека, так и для животных. Примерами применения генной инженерии в медицине являются также производство человеческого инсулина путем использования генно-модифицированных бактерий, производство эритропоэтина (гормона, стимулирующего образование эритроцитов в костном мозге. Физиологическая роль данного гормона состоит в регуляции продукции эритроцитов в зависимости от потребности организма в кислороде) в культуре клеток (т.е. вне организма человека) или новых пород экспериментальных мышей для научных исследований.

В XX веке в большинстве стран мира основные усилия медицины были направлены на борьбу с инфекционными заболеваниями, снижение младенческой смертности и увеличение средней продолжительности жизни. Страны с более развитой системой здравоохранения настолько преуспели на этом пути, что сочли возможным сместить акцент на лечение хронических заболеваний, болезней сердечно-сосудистой системы и онкологических заболеваний, поскольку именно эти группы болезней давали наибольший процент прироста смертности.

В настоящее время уже появились практические возможности значительно снизить или скорректировать негативное воздействие наследственных факторов. Медицинская генетика объяснила, что причиной многих генных мутаций является взаимодействие с неблагоприятными условиями среды, а, следовательно, решая экологические проблемы можно добиться снижения заболеваемости раком, аллергией, сердечно-сосудистыми заболеваниями, сахарным диабетом, психическими болезнями и даже некоторыми инфекционными заболеваниями. Вместе с тем, ученым удалось выявить гены, ответственные за проявление различных патологий и способствующие увеличению продолжительности жизни. При использовании методов медицинской генетики хорошие результаты получены при лечении 15% болезней, в отношении почти 50% заболеваний наблюдается существенное улучшение.

Таким образом, значительные достижения генетики позволили не только выйти на молекулярный уровень изучения генетических структур организма, но и вскрыть сущность многих серьезных болезней человека, вплотную подойти к генной терапии.

Клонирование – это один из методов, применяемых в биотехнологии для получения идентичных потомков при помощи бесполого размножения. Иначе клонирование можно определить как процесс изготовления генетически идентичных копий отдельной клетки или организма. То есть полученные в результате клонирования организмы похожи не только внешне, но и генетическая информация, заложенная в них, абсолютно одинакова.

Первым искусственно клонированным многоклеточным организмом стала в 1997 г. овца Долли. В 2007 году одного из создателей клонированной овцы Елизавета II наградила за это научное достижение рыцарским званием.

Достижения биотехнологии

Уже получены трансгенные мыши, кролики, свиньи, овцы, в геноме которых работают чужеродные гены различного происхождения, в том числе гены бактерий, дрожжей, млекопитающих, человека, а также трансгенные растения с генами других, неродственных видов. Например, в последние годы получено новое поколение трансгенных растений, для которых характерны такие ценные признаки, как устойчивость к гербицидам, к насекомым и др.

На сегодняшний день методы генной инженерии позволили осуществить синтез в промышленных количествах таких гормонов, как инсулин, интерферон и соматотропин (гормон роста), которые необходимы для лечения ряда генетических болезней человека — сахарного диабета, некоторых видов злокачественных образований, карликовости,

Нужна помощь в написании доклада?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

С помощью генетических методов были получены также штаммы микроогранизмов (Ashbya gossypii, Pseudomonas denitrificans и др.), которые производят в десятки тысяч раз больше витаминов (С, В3, В13, и др.), чем исходные формы.

Очень важное направление клеточной инженерии связано с ранними стадиями эмбриогенеза. Например, оплодотворение яйцеклеток в пробирке уже сейчас позволяет преодолевать некоторые распространенные формы бесплодия у человека.

Культуру растительных клеток выгодно использовать для быстрого размножения медленно растущих растений — женьшеня, маслинной пальмы, малины, персиков и др.

Уже многие годы для решения проблемы загрязнения окружающей среды используются биологические методы, разработанные биотехнологами. Так, бактерии родов Rhodococcus и Nocardia с успехом применяют для эмульгирования и сорбции углеводородов нефти из водной среды. Они способны разделять водную и нефтяную фазы, концентрировать нефть, очищать сточные воды от примесей нефти.


Обзор

Молекулярный биолог Пробирочка расскажет про биотехнологию и все ее аспекты — от становления до прогресса

Автор
Редакторы


Спонсором приза зрительских симпатий выступил медико-генетический центр Genotek.

Генная инженерия и биотехнология, будучи одними из главных направлений научно-технического прогресса, хорошо способствуют решению разнообразных задач.

В настоящее время биотехнология способна решить множество проблем медицины и создания пищевых продуктов. Также особая роль биотехнологии отводится в сельском хозяйстве. Ученые занимаются созданием и дальнейшим культивированием трансгенных растений и синтезом средств их защиты.

За счет генной инженерии был совершен огромный шаг навстречу новым технологиям. Однако ее развитие породило множество споров, в том числе и о ГМО. Несмотря на все слухи, польза ГМО явно видна. ГМ-растениям не страшен холод, пестициды или засуха. Помимо этого, использование генномодифицированных организмов может улучшить качество жизни населения стран третьего мира.

Биотехнология. Генная инженерия

Самая главная молекула. Открытие ДНК

Несомненно, молекула ДНК занимает особое место в биологической науке. Ведь ДНК является носителем всей наследственной информации, сохраняет ее и передает следующему поколению. Именно с открытия знаменитой двойной спирали учеными Фрэнсисом Криком и Джеймсом Уотсоном (1953 г.) начался новый виток в истории человеческой культуры — эпоха генетики, молекулярной биологии, биотехнологии и биомедицины.

Биотехнология. Генная инженерия

Значение ДНК колоссально, поскольку во всех живых организмах генетическая информация существует в виде особой структуры — двойной спирали. Рассмотрим ДНК с химической точки зрения. Молекула представляет собой достаточно длинную цепь из строительных блоков — нуклеотидов. А каждый нуклеотид состоит из азотистого основания, дезоксирибозы (особого сахара) и фосфатной группы.

Язык науки. Генетический алфавит

Двухцепочечная молекула ДНК хранит генетическую информацию, а генетическим кодом называют систему записи последовательности кодируемого белка нуклеотидами в гене.

Свойства генетического кода:

  • Триплетность. Генетический код состоит из трех букв — триплетов нуклеотидов ДНК. Они комбинируются в разной последовательности: ГЦА, АЦГ, ААТ и т.д. Каждый из триплетов кодирует конкретную аминокислоту, а это значит, что все 20 существующих аминокислот зашифрованы тремя определенными нуклеотидами.
  • Вырожденность. Триплетов, кодирующих аминокислоты, существует 61, а аминокислот только 20, поэтому каждая аминокислота может кодироваться несколькими триплетами.
  • Однозначность. Каждому триплету соответствует только одна аминокислота.

Биотехнология. Генная инженерия

Кольцо и спираль. Разнообразие форм

После открытия структуры ДНК началось активное развитие молекулярной биологии. Тем не менее, понимая строение ДНК на уровне химической структуры, никто не мог представить, что эта молекула может быть кольцевой. Как теперь известно, кольцевую ДНК имеют бактерии. Но кольцевая молекула есть и у человека, она находится в митохондриях.

Кольцевое строение ДНК наиболее эффективно для ее удвоения, то есть репликации. Репликация кольцевого типа — относительно простой процесс удвоения молекулы. Происходит разделение цепочек исходной молекулы и наращивание по принципу комплементарности новых цепочек по существующим. В результате получаются дочерние ДНК, которые окажутся идентичными копиями исходной. При кольцевом строении молекулы процесс удвоения протекает более точно.

Биотехнология. Генная инженерия

Роль биотехнологии. Правда о ГМО

Переход биологии на молекулярный уровень дал начало развитию биотехнологии. Ее суть состоит в использовании методов генной инженерии для рыночного производства значимых биологических продуктов: новейших лекарств, реагентов для научных исследований и продуктов питания.

Для создания всего вышеперечисленного используют рекомбинантные белки. Это такие искусственно созданные и обладающие новыми свойствами белки, синтез которых контролируют новые гены, внедренные в клетки.

Рекомбинантные ДНК

ДНК — главный материал, с которым работает генный инженер. Но проверять результаты работы и производить рекомбинантный продукт придется с помощью живых организмов. Так, при создании рекомбинантных ДНК нельзя обойтись без кишечной палочки, которая подходит для производства некоторых биотехнологических продуктов. А при работе с эукариотическими генами и белками часто используют пекарские дрожжи. Главная особенность дрожжей — отличная способность к гомологичной рекомбинации. Дрожжи также удобно использовать при производстве рекомбинантных белков, так как они умеют редактировать матричную РНК, их продукты лишены токсичности, а у некоторых видов достаточно высокий выход продукта.

Вышеуказанные микроорганизмы стали моделями для изучения молекулярной организации и отработки генетических техник у прокариот и эукариот. Для обеспечения техники безопасности и удобства работы с рекомбинантными ДНК были созданы различные мутанты кишечной палочки. К примеру, следующие:

  • неспособные передавать плазмиды другим клеткам;
  • устойчивые к бактериофагам;
  • содержащие мутации для выявление клеток с рекомбинантными ДНК.

Для генных инженеров эта бактерия особо значима, так как:

  • для работы с ней не требуется дорогое и сложное оборудование;
  • она чувствительна к большинству стандартных антибиотиков (это существенно облегчает подбор маркеров для клонирования);
  • ее геном и биохимия хорошо изучены, разработано огромное множество инструментов для работы с ней.

Однако у кишечной палочки есть и ряд недостатков:

  • продукты, полученные при работе, могут обладать токсическими свойствами, поэтому необходимы постоянный контроль и очистка;
  • она не умеет самостоятельно сворачивать и модифицировать синтезируемые белки;
  • иногда снижается выход целевого продукта из-за формирования неполноценных белков.

Биотехнология. Генная инженерия

Постепенно увеличивалось влияние биологии на быт и жизнь человека в целом. Это привлекло к ней всеобщее внимание. Рост возможностей современной биотехнологии породило множество споров, в том числе и о ГМО.

Интересный факт

Человечество тысячи лет вмешивается в эволюционные процессы, проводя искусственный отбор организмов с полезными, значимыми для человека спонтанно возникшими мутациями — селекцию. К примеру, когда-то всем известной кукурузы (в современном понимании) и вовсе не существовало. Древние люди занимались скрещиваниями дикого родственника нынешней кукурузы — теосинте. И как выяснилось в результате исследований, геномы теосинте и кукурузы оказались уж очень схожими. Разницу между двумя видами определили несколько десятков генетических мутаций.

ГМО — это организмы, геном которых был изменен при помощи генетической инженерии. Тем не менее факт остается фактом: за счет эволюционных процессов гены изменяются сами по себе у всех живых организмов. Отличие лишь одно: в процессе эволюции мы не можем контролировать процесс изменения генома, а в лаборатории, используя современные знания и технологии, способны изменять и улучшать гены.

Кстати говоря, у ученых-генетиков нет ни стимулов, ни целей создавать что-либо угрожающее здоровью всего человечества. Специалисты стремятся продвигать научный прогресс и производить те продукты, которые будут нужны людям.

Биотехнология. Генная инженерия

Современная биотехнология. Генная инженерия сегодня

На данный момент перед учеными стоит ряд технологических задач. Можно изменить биологические организмы с помощью генноинженерных и клеточных методов для удовлетворения потребностей человека. К примеру, улучшить качество продуктов, получить новые виды растений и животных, придать различным живым организмам улучшенные свойства и создать необходимые лекарственные препараты за счет методов генетической инженерии.

Биотехнология. Генная инженерия

Трансгенные растения: вред или польза?

Люди могли изменять ДНК растений на протяжении многих лет. Скрещивая друг с другом растения с самыми лучшими свойствами, специалисты замечали, что эти свойства будут сохранены в потомстве. Так зародилась селекция.

Работа специалистов-селекционеров упростилась, когда в науке стали применять генетические законы Грегора Менделя. Позже было обнаружено, что возможно улучшить необходимые свойства растений при помощи мутаций. Число этих мутаций можно увеличивать за счет химикатов и рентгеновских лучей. В результате таких экспериментов было получено огромное количество разнообразных сортов растений. Важно знать, что такой метод может дать непредсказуемые результаты, поскольку, как известно, мутации спонтанны.

Конечно, из различных источников информации можно узнать о предполагаемом вреде трансгенных растений. И на второй план уходит одна из главных задач трансгенных организмов — спасение от нехватки важных питательных веществ и голода населения Земли. Существуют такие трансгенные растения, за счет которых удалось спасти человеческие жизни. Хорошим примером послужит золотой рис.

Биотехнология. Генная инженерия

Золотой рис — генетически модифицированный сорт посевного риса, в зернах которого содержится огромное количество бета-каротина. Эти зерна имеют золотисто-желтый цвет. Считается, что это первая сельскохозяйственная культура, которая целенаправленно генетически модифицирована для улучшения пищевой ценности.

Вообще, при обширном выращивании, золотой рис может в несколько раз улучшить качество питания во многих странах (в том числе и в ряде стран третьего мира), где наблюдается нехватка витамина A. В организме человека витамин A производится из бета-каротина, который поступает преимущественно с растительной пищей. Для модификации риса использовали два гена: ген цветка нарцисса и ген бактерии Erwinia uredovora.

Биотехнология. Генная инженерия

Разумеется, сегодня человечество нуждается в развитии новых технологий, а также ресурсов для жизни, удовлетворяющих потребности организма. Инновации вызывают опасения: сейчас некоторые люди не доверяют современным достижениям генетической инженерии.

Все же важно понимать, что новое — не обязательно плохое, всего лишь нужно попытаться разглядеть и положительные стороны, узнать больше о новых достижениях, открытиях, сделать последующие выводы исключительно на основе достоверных фактов. Именно тогда человечество может отграничиться от ряда споров, заблуждений, встать на путь новейших биологических открытий, сделать огромный рывок вперед.

Гост

ГОСТ

Основные направления и достижения биотехнологии

Биотехнология – это целая совокупность различных промышленных методов, которые применяются для производства разного рода продукции (веществ и соединений) с использованием живых организмов, биологических процессов и явлений.

Биотехнологические процессы, которые основаны на процессах жизнедеятельности различных микроорганизмов, человечество разработало очень давно, много тысяч лет тому назад. Вспомним выпекание хлеба, пивоварение, виноделие, изготовление сыров и других кисломолочных продуктов. Например, производство кефира хранилось горцами Кавказа в строгом секрете. Только в $XІX$ веке русским удалось получить технологию изготовления этого продукта и применять его изначально как лекарство.

Использование микроорганизмов - это экологически чистый процесс, не требующий дополнительных химических реактивов. Он происходит под воздействием ферментов, при оптимальных температурах и не загрязняет окружающую среду.

Так как некоторые бактерии могут разлагать органические соединения как в воздушной (аэробной), так и в безвоздушной (анаэробной) среде, то биотехнологические процессы можно использовать для очищения окружающей среды от бытовых и промышленных загрязнений. Некоторые микроорганизмы могут накапливать в своих клетках некоторые соединения или отдельные химические элементы. Их можно использовать для очистки сточных вод и загрязненных водоемов.

Готовые работы на аналогичную тему

Биотехнологические процессы используются и для разработки биологических методов нацеленных на борьбу с возбудителями болезней, с вредителями сельского и лесного хозяйств. Использование штаммы некоторых микроорганизмов позволяет изготовить препараты, которые эффективно снижают количество вредных видов без загрязнения окружающей среды токсическими соединениями (ядохимикатами). Но обязательным условием применения этих методов является их безопасность для остальных (не вредных) организмов.

Генетическая (генная) инженерия

Генетическая (генная) инженерия представляет собой прикладную отрасль в современной молекулярной генетике и биохимии, которая специализируется на разработке методов перестройки генотипов организмов путем изъятия или введения отдельных генов или их групп; синтеза генов вне организма; выделения из клеток и перестройка отдельных генов или их частей.

Кроме того эта отрасль науки исследует возможности копирования и размножения выделенных или синтезированных генов; введения генов или их групп в геном других организмов; проводит эксперименты по сочетанию разных геномов в одной клетке.

Объектами исследований в этой отрасли являются преимущественно прокариоты. Но иногда ученые проводят исследования на основе генов эукариот. Продолжаются эксперименты по переносу генов эукариот в клетки бактерий. Методами генной инженерии были получены белки-интерфероны, которые защищают человека и животных от вирусных заболеваний. Удалось также получить гормон роста и использовать его для лечения некоторых форм карликовости. Результаты исследований генной инженерии имеют важное значение и для теоретической биологии.

Клеточная (тканевая) инженерия

Клеточная инженерия – это такая отрасль биотехнологии, в которой применяются методы выделения клеток из организма и перенесения их на различные питательные среды искусственного происхождения, где эти клетки дальше живут и размножаются.

Она проводит соединение соматических клеток различных видов организмов, благодаря чему возможно скрещивание организмов, гибридизация которых невозможна половым путем.

Благодаря выделению из организма соматических клеток и перенесению их на питательную среду можно вывести новую культуру клеток для получения ценных веществ, и таким образом значительно уменьшить себестоимость синтезируемых препаратов (например, препараты женьшеня).

Относительно новым и весьма перспективным направлением в клеточной инженерии признано клонирование.

Клон – это совокупность клеток или особей, которые произошли от единого предка неполовым путем.

Клонированный организм состоит из генетически однородного материала. Возможно, в будущем клонирование будут использовать для пересадки органов.

Еще одним перспективным направлением исследований клеточной инженерии является гибридизация соматических клеток. Это направление дает возможность создавать уникальные препараты, эффективно повышающие стойкость организма к различным инфекциям.

Можно искусственно изменять организмы и в ходе их эмбрионального развития (эмбриональная инженерия). Пересаживая части эмбрионов можно влиять на развитие определенных частей зародыша, изменяя его в том направлении, которое интересует исследователя.

Развитие генетической и клеточной инженерии вызывает в современном обществе неоднозначные отклики. Есть как сторонники, так и противники изысканий в этой области науки. Одно несомненно – все исследования должны проводиться только на благо человечества и без всякого ущерба для окружающей среды. Появление организмов (вирусов, бактерий) с неизученными и неконтролируемыми свойствами может поставить под угрозу существование всего человечества.

Читайте также: