Доклад на тему бинарные соединения

Обновлено: 30.06.2024

  • Бина́рные соедине́ния — химические вещества, образованные двумя химическими элементами. Многоэлементные вещества, в формульной единице которых одна из составляющих содержит несвязанные между собой атомы нескольких элементов, а также одноэлементные или многоэлементные группы атомов (кроме гидроксидов и солей), рассматривают как бинарные соединения.

Бинарные соединения, несмотря на кажущуюся простоту их химического состава, представляют собой следующий после простых веществ принципиально важный объект изучения природы вещества. С химической точки зрения, этот класс веществ обладает и качественно иными характеристиками, с которыми не приходится сталкиваться при изучении простых веществ. Во-первых, помимо внешних факторов, влияющих на состояние и свойства вещества (температура и давление), здесь появляется и внутренний фактор — состав, и связанная с ним проблема постоянства и переменности состава, имеющая фундаментальное значение в химии. Во-вторых, при описании бинарных соединений впервые формируются такие базисные понятия, как валентность, степень окисления, поляризация химической связи. Здесь, в отличие от простых веществ, появляются гетерополярная составляющая химической связи и все эффекты, связанные с разностью электроотрицательностей компонентов.

Связанные понятия

Гидрокси́ды (гидроо́киси, водокиси) — неорганические соединения, содержащие в составе гидроксильную группу -OH. Известны гидроксиды почти всех химических элементов; некоторые из них встречаются в природе в виде минералов. Гидроксиды щелочных и щёлочноземельных металлов, а также аммония являются растворимыми и называются щелочами.

Фтори́ды — химические соединения фтора с другими элементами. Фториды известны для всех элементов, кроме гелия и неона. К фторидам относят как бинарные соединения — ионные фториды (соли фтороводородной кислоты и металлов, ковалентные фториды переходных металлов в высших степенях окисления и фториды неметаллов), так и сложные неорганические соединения (фторангидриды кислот, комплексные фториды, гидрофториды металлов, фторированный графит).

Щелочны́е мета́ллы — элементы 1-й группы периодической таблицы химических элементов (по устаревшей классификации — элементы главной подгруппы I группы): литий Li, натрий Na, калий K, рубидий Rb, цезий Cs, франций Fr, унуненний Uue. При растворении щелочных металлов в воде образуются растворимые гидроксиды, называемые щелочами.

Фтор (F, лат. fluorum) — химический элемент 17-й группы, второго периода периодической системы (по устаревшей короткой форме периодической системы принадлежит к главной подгруппе VII группы, или к группе VIIA) с атомным номером 9. Самый химически активный неметалл и сильнейший окислитель, самый лёгкий элемент из группы галогенов. Как простое вещество при нормальных условиях фтор представляет собой двухатомный газ (формула F2) бледно-жёлтого цвета с резким запахом, напоминающим озон или хлор. Токсичен.

Иодиды — бинарные соединения иода с менее электроотрицательными элементами. Иодиды металлов могут рассматриваться как соли иодоводородной кислоты HI.

Хими́ческое соедине́ние — сложное вещество, состоящее из химически связанных атомов двух или более элементов (гетероядерные молекулы). Некоторые простые вещества также могут рассматриваться как химические соединения, если их молекулы состоят из атомов, соединённых ковалентной связью (азот, кислород, иод, бром, хлор, фтор, предположительно астат).

Щёлочноземе́льные мета́ллы — химические элементы 2-й группы периодической таблицы элементов: бериллий (Be), магний (Mg), кальций (Ca), стронций (Sr), барий (Ba), радий (Ra), унбинилий (Ubn).

Аммоний — полиатомный катион с химической формулой NH4+. Аммоний с анионами образует соли аммония, аммониевые соединения, последние входят в большой класс ониевых соединений. Ион аммония NH4+ является правильным тетраэдром с азотом в центре и атомами водорода в вершинах тетраэдра. Размер иона — 1,43 Å.

Иодная кислота HIO4 (гексаоксоиодат (VII) водорода, периодат Н5IO6)— слабая кислота, гигроскопичное кристаллическое вещество.

Хими́ческая фо́рмула — условное обозначение химического состава и структуры соединений с помощью символов химических элементов, числовых и вспомогательных знаков (скобок, тире и т. п.). Химические формулы являются составной частью языка химии, на их основе составляются схемы и уравнения химических реакций, а также химическая классификация и номенклатура веществ. Одним из первых начал использовать их русский химик А. А. Иовский.

Оксиды — весьма распространённый тип соединений, содержащихся в земной коре и во Вселенной вообще. Примерами таких соединений являются ржавчина, вода, песок, углекислый газ, ряд красителей. Оксидами также является класс минералов, представляющих собой соединения металла с кислородом (см. Окислы).

Нитриды — соединения азота с менее электроотрицательными элементами, например, с металлами (AlN;TiNx;Na3N;Ca3N2;Zn3N2; и т. д.) и с рядом неметаллов (NH3, BN, Si3N4).

Гидри́ды — соединения водорода с металлами и с имеющими меньшую электроотрицательность, чем водород, неметаллами. Иногда к гидридам причисляют соединения всех элементов с водородом,.

Хромовая кислота — кристаллическое вещество красного цвета. Окрашивает раствор в жёлтый цвет. Выделена в свободном состоянии при охлаждении насыщенных водных растворов хромата. Химическая формула H2CrO4. Соли хромовой кислоты называются хроматами. Токсична, канцерогенна.

Вольфрамовая кислота — моногидрат триоксида вольфрама — WO3·H2O, вопреки часто распространенному мнению формула H2WO4 не отвечает действительной структуре соединения. Впервые кислота была получена Карлом Вильгельмом Шееле в 1781 году.

Ацетилениды (Ацетиленистые соедине́ния) — соли ацетилена и его производных, в котором один или два атома водорода замещены атомами элементов, более электроположительных, чем углерод. Углерод в ацетиленидах находится в sp-гибридизации.

Бромноватая кислота — неорганическое соединение, одноосновная кислота с формулой HBrO3, в свободном состоянии не выделена, существует в растворе — бесцветная (или слегка желтоватая) жидкость с максимальной концентрацией до 50%, сильная кислота.

Теллуроводоро́д (теллуран) — бинарное неорганическое соединение водорода и теллура с формулой H2Te. Представляет собой при нормальных условиях бесцветный, горючий, легкоразлагающийся газ с весьма неприятным запахом (напоминает чесночный запах арсина). Очень ядовит.

Немета́ллы — химические элементы с типично неметаллическими свойствами, которые занимают правый верхний угол Периодической системы. Расположение их в главных подгруппах соответствующих периодов следующее.

Азо́тистоводоро́дная кислота́, азоими́д (азидоводород), HN3 — кислота, соединение азота с водородом. Бесцветная, летучая, чрезвычайно взрывоопасная (взрывается при нагреве, ударе или трении) ядовитая жидкость с резким запахом.

Аммиака́ты (амми́ны, аммѝноко́мплексы) — продукты взаимодействия солей с аммиаком, комплексные соединения, содержащие в качестве лигандов молекулы аммиака. Лиганды NH3 связаны в аммиакатах с центральным атомом металла через азот.

Неорганические сульфиды (от лат. sulphur — сера) — класс химических соединений, представляющих собой соединения металлов (а также ряда неметаллов В, Si, Р, As) с серой (S), где она имеет степень окисления −2. Могут рассматриваться как соли сероводородной кислоты H2S. Свойства сульфидов сильно зависят от металлов, входящих в их состав.

Иоднова́тая кислота́ — химическое соединение с формулой HIO3, сильная одноосновная кислота. Бесцветное кристаллическое вещество, со стеклянным блеском и горьковато-кислым вкусом, устойчивое при обычной температуре. Легко образуется в кристаллическом состоянии в виде двух различных, не переходящих друг в друга форм ромбической сингонии.

Оксид бария — соединение бария с кислородом, имеющее химическую формулу BaO. Является основным оксидом. При стандартных условиях представляет собой бесцветные кристаллы с кубической решёткой.

Марганцо́вая кислота́ — сильная, нестабильная, неорганическая кислота фиолетово-красного цвета с химической формулой HMnO4. В чистом виде не выделена, существует в виде раствора. Соли марганцовой кислоты называются перманганаты. Анион MnO4- окрашивает соли в малиново-фиолетовый цвет. Самым известным производным марганцовой кислоты является перманганат калия (марганцовка).

Це́рий (химический символ — Ce; лат. Cerium) — химический элемент из группы лантаноидов, серебристый металл.

Фтороводоро́д (фтористый водород, гидрофторид, фторид водорода, HF) — бесцветный токсичный газ (при стандартных условиях) с резким запахом, при комнатной температуре существует преимущественно в виде димера H2F2, ниже 19,9°C — бесцветная подвижная летучая жидкость. Смешивается с водой в любом отношении с образованием фтороводородной (плавиковой) кислоты. Образует с водой азеотропную смесь с концентрацией 35,4 % HF.

Це́зий (химический символ — Cs; лат. Caesium) — элемент главной подгруппы первой группы шестого периода периодической системы химических элементов Д. И. Менделеева, атомный номер — 55. Простое вещество цезий — мягкий щелочной металл серебристо-жёлтого цвета. Своё название цезий получил за наличие двух ярких синих линий в эмиссионном спектре (от лат. caesius — небесно-голубой).

Просты́е вещества́ — химические вещества, состоящие исключительно из атомов одного химического элемента (из гомоядерных молекул), в отличие от сложных веществ. Являются формой существования химических элементов в свободном виде; или, иначе говоря, химические элементы, не связанные химически ни с каким другим элементом, образуют простые вещества. Известно свыше 400 разновидностей простых веществ.

Арси́н (мышьяковистый водород, арсенид водорода) — вещество с формулой AsH3 (правильнее H3As), химическое соединение мышьяка и водорода. При нормальных условиях — очень токсичный бесцветный газ. Абсолютно химически чистый арсин запаха не имеет, но ввиду неустойчивости продукты его окисления придают арсину чесночный запах. Открыт шведским химиком Карлом Вильгельмом Шееле в 1775 году.

Га́фний — химический элемент 4-й группы длиннопериодной формы периодической системы Д. И. Менделеева (по короткой форме периодической системы — побочной подгруппы IV группы), шестого периода, с атомным номером 72. Обозначается символом Hf (лат. Hafnium). Простое вещество — тяжёлый тугоплавкий серебристо-белый металл.

Бор (B, лат. borum) — химический элемент 13-й группы, второго периода периодической системы (по устаревшей короткой форме периодической системы принадлежит к главной подгруппе III группы, или к группе IIIA) с атомным номером 5. Бесцветное, серое или красное кристаллическое либо тёмное аморфное вещество. Известно более 10 аллотропных модификаций бора, образование и взаимные переходы которых определяются температурой, при которой бор был получен.

Интерметалли́д (интерметаллическое соединение) — химическое соединение двух или более металлов. Интерметаллиды, как и другие химические соединения, имеют фиксированное соотношение между компонентами.

Иодоводород HI — бесцветный удушливый газ (при нормальных условиях), сильно дымит на воздухе. Хорошо растворим в воде, образует азеотропную смесь с Ткип 127 °C и концентрацией HI 57 %. Неустойчив, разлагается при 300 °C.

Оксид кадмия (англ. Cadmium oxide) — химическое соединение с формулой CdO. CdO — основное сырьё для производства других соединений кадмия. Редко встречается в природе в минерале монтепоните. Оксид кадмия может образовывать кристаллическую структуру, сходную с решёткой NaCl. Вещество может образовывать бесцветный порошок или кристаллы красно-бурого цвета. Оксид кадмия является полупроводником n-типа.

Стандартные условия для температуры и давления — значения температуры и давления, с которыми соотносятся значения других физических величин, зависящих от давления и температуры. Принятые в разных дисциплинах и разных организациях точные значения давления и температуры в стандартных условиях могут различаться, поэтому указание значений физических величин (например, молярного объёма газа, электродного потенциала, скорости звука и так далее) без уточнения условий, в которых они приводятся, может приводить.

Карби́ды — соединения металлов и неметаллов с углеродом. Традиционно к карбидам относят соединения, где углерод имеет большую электроотрицательность, чем второй элемент (таким образом из карбидов исключаются такие соединения углерода, как оксиды, галогениды и т. п.)

Силици́ды — соединения кремния с менее электроотрицательными элементами (как правило, металлами). Силициды известны для щелочных и щелочноземельных металлов, большей части d-металлов и f-металлов. Be, Ag, Au, Zn, Cd, Hg и все p-элементы силицидов не образуют.

Бори́ды — бинарные соединения бора с более электроположительными химическими элементами, в частности с металлами. Известны для большинства элементов подгрупп 1-12 (Ia-IIа и IIIб-VIIIб), а также для Аl, Si, As, P. Некоторые элементы подгрупп 11-12 (Iб-IIб) образуют бинарные системы с высоким содержанием бора (например, СuВ22, ZnB22), которые относят не к химическим соединениям, а к твердым растворам.

Селе́нистая кислота́ — неорганическое химическое соединение селена, кислота. Химическая формула H2SeO3.

Халькоге́ны (от греч. χαλκος — медь (в широком смысле), руда (в узком смысле) и γενος — рождающий) — химические элементы 16-й группы периодической таблицы химических элементов (по устаревшей классификации — элементы главной подгруппы VI группы).

Протакти́ний — элемент III группы таблицы Менделеева, принадлежащий к актиноидам; радиоактивный металл.

Ортофо́сфорная кислота́ (фо́сфорная кислота́) — неорганическая кислота средней силы с химической формулой H3PO4, которая при стандартных условиях представляет собой бесцветные гигроскопичные кристаллы. Обычно ортофосфорной (или просто фосфорной) кислотой называют 85 %-ый водный раствор (бесцветная сиропообразная жидкость без запаха). Растворима в этаноле и других растворителях.

Руби́дий — элемент главной подгруппы первой группы, пятого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 37. Обозначается символом Rb (лат. Rubidium). Простое вещество рубидий — мягкий легкоплавкий щелочной металл серебристо-белого цвета.

В бинарные соединения все они образованы двумя химическими элементами, независимо от количества их атомов или их взаимодействия. Общая формула этих соединений: AпBм, где A и B - два разных элемента Периодической таблицы, и п Y м их соответствующие стехиометрические коэффициенты.

Например, вода, H2Или это бинарное соединение, возможно, наиболее представительное из них. Вода состоит из водорода H и кислорода O, таким образом, добавляются два химических элемента. Обратите внимание, что его стехиометрические коэффициенты указывают на наличие двух атомов водорода и одного атома кислорода, но это все же бинарное соединение.

Бинарные соединения могут состоять из ионов, молекул, трехмерных сетей или даже нейтральных атомов металлов. Важно то, что независимо от природы его химической связи или состава, он всегда состоит из двух разных химических элементов. Например, водород, H2, не считается бинарным соединением.

Бинарные соединения могут изначально не казаться такими многочисленными и сложными по сравнению с тройными или четвертичными соединениями. Однако они включают в себя многие важные вещества для наземных экосистем, такие как соли, оксиды, сульфиды и некоторые газы, имеющие огромное биологическое и промышленное значение.

Как образуются бинарные соединения?

Способы получения или пути синтеза для образования бинарных соединений будут зависеть от идентичности двух химических элементов A и B. Однако, в принципе и в целом, оба элемента должны быть объединены в реакторе, чтобы они могли взаимодействовать друг с другом. Таким образом, при благоприятных условиях произойдет химическая реакция.

В ходе химической реакции элементы A и B будут соединяться или связываться (ионно или ковалентно) с образованием соединения AпBм. Многие бинарные соединения могут быть образованы прямым объединением двух их чистых элементов или другими альтернативными, более экономически целесообразными методами.

Возвращаясь к примеру с водой, водородом, H2, а кислород O2, соединяются при высоких температурах так, чтобы между ними возникла реакция горения:

С другой стороны, воду можно получить реакциями дегидратации таких соединений, как спирты и сахара.

Другой пример образования бинарного соединения соответствует сульфиду железа FeS:

Fe (т) + S (т) → FeS (т)

На этот раз и железо, и сера - твердые вещества, а не газообразные. То же самое и с несколькими бинарными солями, например хлоридом натрия, NaCl, соединяющими металлический натрий с газообразным хлором:

2Na (s) + Cl2(г) → 2NaCl (т)

Номенклатура

Названия всех бинарных соединений в основном подчиняются одним и тем же правилам.

Для соединения АпBмсначала упоминается название элемента B в его анионной форме; то есть с окончанием -уро. Однако в случае, когда B состоит из кислорода, он называется оксидом, пероксидом или супероксидом, в зависимости от обстоятельств.

Имени B предшествуют префиксы греческих цифр (моно, ди, три, тетра и т. Д.) В соответствии со значением м.

Наконец, упоминается имя элемента A. Если A имеет более одной валентности, это указывается римскими цифрами в скобках. Или, если хотите, вы можете выбрать традиционную номенклатуру и использовать суффиксы –oso и –ico. Элементу A также иногда предшествуют префиксы греческих цифр в соответствии со значением п.

Рассмотрим следующие бинарные соединения вместе с их соответствующими названиями:

-ЧАС2Или: оксид водорода или монооксид дигидрогена (последнее название вызывает насмешки)

-FeS: сульфид железа (II) или сульфид железа

-NaCl: хлорид натрия или хлорид натрия

-MgCl2: хлорид магния, хлорид магния или дихлорид магния

Типы: классификация бинарных соединений

Бинарные соединения классифицируются в зависимости от того, из чего они сделаны: ионы, молекулы, атомы металлов или сети. Тем не менее, эта классификация не является окончательной или окончательной и может варьироваться в зависимости от рассматриваемого подхода.

Ионика

В ионных бинарных соединениях A и B состоят из ионов. Таким образом, для соединения AпBм, B - обычно анион, B – , а A - катион, A + . Например, NaCl принадлежит к этой классификации, как и все бинарные соли, общие формулы которых лучше всего представлены как MX, где X - анион, а M - катион металла.

Таким образом, фториды, хлориды, бромиды, йодиды, гидриды, сульфиды, арсениды, оксиды, фосфиды, нитриды и т. Д. Также относятся к этой классификации. Однако следует отметить, что некоторые из них ковалентны, поэтому относятся к следующей классификации.

Коваленты

Ковалентные бинарные соединения состоят из молекул. Вода принадлежит к этой классификации, так как состоит из молекул H-O-H. Хлористый водород, HCl, также считается ковалентным бинарным соединением, поскольку он состоит из молекул H-Cl. Обратите внимание, что NaCl является ионным, а HCl - ковалентным, причем оба являются хлоридами.

Металлик или сетки

Бинарные соединения также включают сплавы и твердые тела в трехмерных решетках. Однако для них часто лучше использовать наименования бинарных материалов.

Например, латунь, а не соединение, считается бинарным материалом или сплавом, так как состоит из меди и цинка, Cu-Zn. Обратите внимание, что CuZn не записывается, потому что у него нет определенных стехиометрических коэффициентов.

Также есть диоксид кремния SiO2, образованный кремнием и кислородом. Его атомы связаны, образуя трехмерную сеть, в которой нельзя говорить о молекулах или ионах. Многие нитриды, фосфиды и карбиды, если они не являются ионными, также обрабатываются этим типом сеток.

Примеры бинарных соединений

В нем будут перечислены несколько бинарных соединений, сопровождаемых соответствующими названиями:

-LiBr: бромид лития

-CaCl2: хлорид кальция

-FeCl3: хлорид железа (III) или хлорид железа

-NaO: оксид натрия

-BeH2: гидрид бериллия

-CO2: углекислый газ

-NH3: тригидрид азота или аммиак

-PbI2: иодид свинца (II) или дииодид свинца

-Для2ИЛИ3: оксид алюминия или триоксид диалюминия

-На3P: фосфид натрия

-AlF3: фторид алюминия

-RaCl2: хлорид радия или дихлорид радия

-BF3: трифторид бора

-RbI: йодид рубидия

-WC: карбид вольфрама или вольфрам

У каждого из этих примеров может быть более одного имени одновременно. Из них СО2 он оказывает большое влияние на природу, так как используется растениями в процессе фотосинтеза.

С другой стороны, NH3 Это одно из наиболее промышленных веществ, необходимых для бесконечного полимерного и органического синтеза. И, наконец, унитаз - один из самых твердых материалов, когда-либо созданных.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Выберите документ из архива для просмотра:

Выбранный для просмотра документ Важнейшие бинарные соединения.ppt


Описание презентации по отдельным слайдам:


Важнейшие бинарные соединения Оксиды Водородные соединения Оксиды металлов.

Важнейшие бинарные соединения Оксиды Водородные соединения Оксиды металлов Оксиды неметаллов Гидриды Летучие водородные соединения

Оксиды – это сложные вещества, состоящие из двух химических элементов, оди.

Оксиды – это сложные вещества, состоящие из двух химических элементов, один из которых – кислород со степенью окисления -2. Важнейшие оксиды Агрегатное состояние оксидов ТвердыеЖидкиеГазообразные Al2O3 Fe2O3 CaOH2OCO CO2 SO2

Красный железняк Fe2O3 Оксид железа (III) Синонимы: красный железняк, кровави.

Красный железняк Fe2O3 Оксид железа (III) Синонимы: красный железняк, кровавик, черный.. Fe2O3, или красный железняк

МАГНИТНЫЙ ЖЕЛЕЗНЯК Fe2O4 Магнитный камень (магнитный железняк) Магнетит, он ж.

МАГНИТНЫЙ ЖЕЛЕЗНЯК Fe2O4 Магнитный камень (магнитный железняк) Магнетит, он же магнитный железняк

КРЕМНЕЗЁМ (КВАРЦЕВЫЙ ПЕСОК) SiO2 oксид кремния (IV) Кварцевый песок - желтый.

КРЕМНЕЗЁМ (КВАРЦЕВЫЙ ПЕСОК) SiO2 oксид кремния (IV) Кварцевый песок - желтый Кварцевый песок - белый

Негашенная известь СаО оксид кальция (II)

Негашенная известь СаО оксид кальция (II)

Применение СаО

Вода H2O оксид водорода Особенности воды: Имеет три агрегатных состояния – жи.

Вода H2O оксид водорода Особенности воды: Имеет три агрегатных состояния – жидкость, лед, пар; Обладает большой теплоемкостью; Является хорошим растворителем; Составляет до 80% массы клетки и выполняет в ней важнейшие функции.

Вода в природе:

Вода в промышленности:

Вода в промышленности:

Углекислый газ СО2 оксид углерода (IV) Образуется при: При дыхании; При гниен.

Углекислый газ СО2 оксид углерода (IV) Образуется при: При дыхании; При гниении и тлении органических веществ; При сгорании топлива. Минеральные воды – как источник углекислого газа. Свойства углекислого газа Бесцветные Без запаха В 1,5 раза тяжелее воздуха Хорошо растворим в воде

СО2 оксид углерода (IV)

СО2 оксид углерода (IV)

Водородные соединения элементов Водородные бинарные соединения Гидриды Лету.

Водородные соединения элементов Водородные бинарные соединения Гидриды Летучие соединения Состав Атомы водорода и металлаАтомы водорода и неметалла Тип химической связиИонная Ковалентная Степень окисления водорода -1+1 Характерные физические свойства твердые, нелетучие, тугоплавкиеЛетучие вещества (газы), хорошо растворяются в воде Пример соединенийNaH; CaH2 НCl ; H3N (NH3)

Хлороводород HCl Свойства хлороводорода: Бесцветный газ; Тяжелее воздуха; На.

Хлороводород HCl Свойства хлороводорода: Бесцветный газ; Тяжелее воздуха; На воздухе дымит; Хорошо растворим в воде – образует соляную кислоту.

Аммиак NH3 Свойства аммиака: 1. Бесцветный газ; 2. В два раза легче воздуха;.

Аммиак NH3 Свойства аммиака: 1. Бесцветный газ; 2. В два раза легче воздуха; 3. Хорошо растворяется в воде – нашатырный спирт. н н N

Задания: Задание 1. Назовите вещества, имеющие формулы: CaO, Fe2O3, CO, SO2.

Задания: Задание 1. Назовите вещества, имеющие формулы: CaO, Fe2O3, CO, SO2. Расставьте степени окисления. Задание 2. 2. Выберите формулы оксидов: а) CuS б) P2 O 5 в) MgO г) CH 4 д) CO е) NH3 Почему вы отнесли их к оксидам? Дайте им названия.

Задание 3. Какие названия соответствуют формуле СО2: а) оксид углерода (II) б.

Задание 3. Какие названия соответствуют формуле СО2: а) оксид углерода (II) б) карбид кислорода (II) в) углекислый газ г) оксид углерода (IV) Задание 4 (задача). Рассчитайте массовую долю кислорода в веществах FeO; Fe2O3. В каком из этих веществ содержится больше кислорода?

Домашнее задание

  • подготовка к ЕГЭ/ОГЭ и ВПР
  • по всем предметам 1-11 классов

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания


Курс повышения квалификации

Инструменты онлайн-обучения на примере программ Zoom, Skype, Microsoft Teams, Bandicam

  • Курс добавлен 31.01.2022
  • Сейчас обучается 24 человека из 17 регионов

Курс повышения квалификации

Педагогическая деятельность в контексте профессионального стандарта педагога и ФГОС

  • ЗП до 91 000 руб.
  • Гибкий график
  • Удаленная работа

Дистанционные курсы для педагогов

Свидетельство и скидка на обучение каждому участнику

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 608 064 материала в базе

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

Свидетельство и скидка на обучение каждому участнику

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

  • 03.11.2016 2495
  • RAR 2.4 мбайт
  • 35 скачиваний
  • Оцените материал:

Настоящий материал опубликован пользователем Пономаренко Юлия Александровна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

40%

  • Подготовка к ЕГЭ/ОГЭ и ВПР
  • Для учеников 1-11 классов

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

В Россию приехали 10 тысяч детей из Луганской и Донецкой Народных республик

Время чтения: 2 минуты

Школы граничащих с Украиной районов Крыма досрочно уйдут на каникулы

Время чтения: 0 минут

В приграничных пунктах Брянской области на день приостановили занятия в школах

Время чтения: 0 минут

Время чтения: 2 минуты

Минтруд предложил упростить направление маткапитала на образование

Время чтения: 1 минута

Отчисленные за рубежом студенты смогут бесплатно учиться в России

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Обширный тип неорганических сложных веществ  бинарные соединения. К ним относятся, в первую очередь все двухэлементные соединения (кроме основных, кислотных и амфотерных оксидов), например H2O, KBr, H2S, Cs2(S2), N2O, NH3, HN3, CaC2, SiH4. Электроположительная и электроотрицательная составляющие формул этих соединений включают отдельные атомы или связанные группы атомов одного элемента.

Многоэлементные вещества, в формулах которых одна из составляющих содержит не связанные между собой атомы нескольких элементов, а также одноэлементные или многоэлементные группы атомов (кроме гидроксидов и солей), рассматривают как бинарные соединения, например CSO, IO2F3, SBrO2F, CrO(O2)2, PSI3, (CaTi)O3, (FeCu)S2, Hg(CN)2, (PF3)2O, VCl2(NH2). Так, CSO можно представить как соединение CS2, в котором один атом серы заменен на атом кислорода.

Названия бинарных соединений строятся по обычным номенклатурным правилам, например:

OF2  дифторид кислорода K2O2  пероксид калия
HgCl2  хлорид ртути(II) Na2S  сульфид натрия
Hg2Cl2  дихлорид диртути Mg3N2  нитрид магния
SBr2O  оксид-дибромид серы NH4Br  бромид аммония
N2O  оксид диазота Pb(N3)2  азид свинца(II)
NO2  диоксид азота CaC2  ацетиленид кальция

Для некоторых бинарных соединений используют специальные названия, список которых был приведен ранее.

Химические свойства бинарных соединений довольно разнообразны, поэтому их часто разделяют на группы по названию анионов, т.е. отдельно рассматривают галогениды, халькогениды, нитриды, карбиды, гидриды и т. д. Среди бинарных соединений встречаются и такие, которые имеют некоторые признаки других типов неорганических веществ. Так, соединения CO, NO, NO2, и (Fe II Fe2 III )O4, названия которых строятся с применением слова оксид, к типу оксидов (кислотных, основных, амфотерных) отнесены быть не могут. Монооксид углерода СО, монооксид азота NO и диоксид азота NO2 не имеют соответствующих кислотных гидроксидов (хотя эти оксиды образованы неметаллами С и N), не образуют они и солей, в состав анионов которых входили бы атомы С II , N II и N IV . Двойной оксид (Fe II Fe2 III )O4  оксид дижелеза(III)-железа(II) хотя и содержит в составе электроположительной составляющей атомы амфотерного элемента  железа, но в двух разных степенях окисления, вследствие чего при взаимодействии с кислотными гидроксидами образует не одну, а две разные соли.

Такие бинарные соединения, как AgF, KBr, Na2S, Ba(HS)2, NaCN, NH4Cl, и Pb(N3)2, построены, подобно солям, из реальных катионов и анионов, поэтому их называют солеобразными бинарными соединениями (или просто солями). Их можно рассматривать как продукты замещения атомов водорода в соединениях НF, НCl, НBr, Н2S, НCN и НN3. Последние в водном растворе обладают кислотной функцией, и поэтому их растворы называют кислотами, например НF(aqua)  фтороводородная кислота, Н2S(aqua)  сероводородная кислота. Однако они не принадлежат к типу кислотных гидроксидов, а их производные  к солям в рамках классификации неорганических веществ.

Химические свойства веществ выявляются в разнообразных химических реакциях.

Превращения веществ, сопровождающиеся изменением их состава и (или) строения, называются химическими реакциями. Часто встречается и такое определение: химической реакцией называется процесс превращения исходных веществ (реагентов) в конечные вещества (продукты).

Химические реакции записываются посредством химических уравнений и схем, содержащих формулы исходных веществ и продуктов реакции. В химических уравнениях, в отличие от схем, число атомов каждого элемента одинаково в левой и правой частях, что отражает закон сохранения массы.

В левой части уравнения пишутся формулы исходных веществ (реагентов), в правой части - веществ, получаемых в результате протекания химической реакции (продуктов реакции, конечных веществ). Знак равенства, связывающий левую и правую часть, указывает, что общее количество атомов веществ, участвующих в реакции, остается постоянным. Это достигается расстановкой перед формулами целочисленных стехиометрических коэффициентов, показывающих количественные соотношения между реагентами и продуктами реакции.

Химические уравнения могут содержать дополнительные сведения об особенностях протекания реакции. Если химическая реакция протекает под влиянием внешних воздействий (температура, давление, излучение и т.д.), это указывается соответствующим символом, как правило, над (или "под") знаком равенства.




Огромное число химических реакций может быть сгруппировано в несколько типов реакций, которым присущи вполне определенные признаки.

В качестве классификационных признаков могут быть выбраны следующие:

1. Число и состав исходных веществ и продуктов реакции.

2. Агрегатное состояние реагентов и продуктов реакции.

3. Число фаз, в которых находятся участники реакции.

4. Природа переносимых частиц.

5. Возможность протекания реакции в прямом и обратном направлении.

6. Знак теплового эффекта разделяет все реакции на: экзотермические реакции, протекающие с экзо-эффектом - выделение энергии в форме теплоты (Q>0, ∆H 0):

Такие реакции относят к термохимическим.

Рассмотрим более подробно каждый из типов реакций.

Обширный тип неорганических сложных веществ  бинарные соединения. К ним относятся, в первую очередь все двухэлементные соединения (кроме основных, кислотных и амфотерных оксидов), например H2O, KBr, H2S, Cs2(S2), N2O, NH3, HN3, CaC2, SiH4. Электроположительная и электроотрицательная составляющие формул этих соединений включают отдельные атомы или связанные группы атомов одного элемента.

Многоэлементные вещества, в формулах которых одна из составляющих содержит не связанные между собой атомы нескольких элементов, а также одноэлементные или многоэлементные группы атомов (кроме гидроксидов и солей), рассматривают как бинарные соединения, например CSO, IO2F3, SBrO2F, CrO(O2)2, PSI3, (CaTi)O3, (FeCu)S2, Hg(CN)2, (PF3)2O, VCl2(NH2). Так, CSO можно представить как соединение CS2, в котором один атом серы заменен на атом кислорода.

Названия бинарных соединений строятся по обычным номенклатурным правилам, например:

OF2  дифторид кислорода K2O2  пероксид калия
HgCl2  хлорид ртути(II) Na2S  сульфид натрия
Hg2Cl2  дихлорид диртути Mg3N2  нитрид магния
SBr2O  оксид-дибромид серы NH4Br  бромид аммония
N2O  оксид диазота Pb(N3)2  азид свинца(II)
NO2  диоксид азота CaC2  ацетиленид кальция

Для некоторых бинарных соединений используют специальные названия, список которых был приведен ранее.

Химические свойства бинарных соединений довольно разнообразны, поэтому их часто разделяют на группы по названию анионов, т.е. отдельно рассматривают галогениды, халькогениды, нитриды, карбиды, гидриды и т. д. Среди бинарных соединений встречаются и такие, которые имеют некоторые признаки других типов неорганических веществ. Так, соединения CO, NO, NO2, и (Fe II Fe2 III )O4, названия которых строятся с применением слова оксид, к типу оксидов (кислотных, основных, амфотерных) отнесены быть не могут. Монооксид углерода СО, монооксид азота NO и диоксид азота NO2 не имеют соответствующих кислотных гидроксидов (хотя эти оксиды образованы неметаллами С и N), не образуют они и солей, в состав анионов которых входили бы атомы С II , N II и N IV . Двойной оксид (Fe II Fe2 III )O4  оксид дижелеза(III)-железа(II) хотя и содержит в составе электроположительной составляющей атомы амфотерного элемента  железа, но в двух разных степенях окисления, вследствие чего при взаимодействии с кислотными гидроксидами образует не одну, а две разные соли.

Такие бинарные соединения, как AgF, KBr, Na2S, Ba(HS)2, NaCN, NH4Cl, и Pb(N3)2, построены, подобно солям, из реальных катионов и анионов, поэтому их называют солеобразными бинарными соединениями (или просто солями). Их можно рассматривать как продукты замещения атомов водорода в соединениях НF, НCl, НBr, Н2S, НCN и НN3. Последние в водном растворе обладают кислотной функцией, и поэтому их растворы называют кислотами, например НF(aqua)  фтороводородная кислота, Н2S(aqua)  сероводородная кислота. Однако они не принадлежат к типу кислотных гидроксидов, а их производные  к солям в рамках классификации неорганических веществ.

Химические свойства веществ выявляются в разнообразных химических реакциях.

Превращения веществ, сопровождающиеся изменением их состава и (или) строения, называются химическими реакциями. Часто встречается и такое определение: химической реакцией называется процесс превращения исходных веществ (реагентов) в конечные вещества (продукты).

Химические реакции записываются посредством химических уравнений и схем, содержащих формулы исходных веществ и продуктов реакции. В химических уравнениях, в отличие от схем, число атомов каждого элемента одинаково в левой и правой частях, что отражает закон сохранения массы.

В левой части уравнения пишутся формулы исходных веществ (реагентов), в правой части - веществ, получаемых в результате протекания химической реакции (продуктов реакции, конечных веществ). Знак равенства, связывающий левую и правую часть, указывает, что общее количество атомов веществ, участвующих в реакции, остается постоянным. Это достигается расстановкой перед формулами целочисленных стехиометрических коэффициентов, показывающих количественные соотношения между реагентами и продуктами реакции.

Химические уравнения могут содержать дополнительные сведения об особенностях протекания реакции. Если химическая реакция протекает под влиянием внешних воздействий (температура, давление, излучение и т.д.), это указывается соответствующим символом, как правило, над (или "под") знаком равенства.

Огромное число химических реакций может быть сгруппировано в несколько типов реакций, которым присущи вполне определенные признаки.

В качестве классификационных признаков могут быть выбраны следующие:

1. Число и состав исходных веществ и продуктов реакции.

2. Агрегатное состояние реагентов и продуктов реакции.

3. Число фаз, в которых находятся участники реакции.

4. Природа переносимых частиц.

5. Возможность протекания реакции в прямом и обратном направлении.

6. Знак теплового эффекта разделяет все реакции на: экзотермические реакции, протекающие с экзо-эффектом - выделение энергии в форме теплоты (Q>0, ∆H 0):

Читайте также: