Доклад лобачевский открытие неевклидовой геометрии

Обновлено: 13.05.2024

Любая теория современной науки считается единственно верной, пока не создана следующая. Это своеобразная аксиома развития науки.

Участь эта не обошла и геометрию. Традиционная Евклидова геометрия переросла в неевклидову, геометрию Лобачевского. Именно этому разделу математики, его истории и особенностям и посвящен этот проект.

История геометрии.

Считается, что геометрия началась в так называемой Ионийской школе. Её основателем считается Фалес Милетский (640-540 (546?) гг. до н. э.). Он считался одним из семи мудрецов Греции, первым математиком, астрономом и философом. Он доказал, что углы при основании равнобедренного треугольника равны, что вертикальные углы равны, что диаметр делит окружность пополам и ещё множество теорем. Предсказание затмения солнца в 585 году также приписывается ему.

Огромный импульс развития этой школе дал Пифагор (569-470 гг. до н. э.). В основном о его личных качествах пишут то же самое, что и о Фалесе. Но к этому ещё можно добавить титул чемпиона по боксу на олимпийских играх – звание, среди математиков редкое.

1. Разделить угол на три части (задача о трисекции угла).

2. Построить квадрат, равный по площади данному кругу (задача о квадратуре круга).

3. Построить куб, равный по объему данному (задача об удвоении куба).

Нерешаемость этих задач была доказана только в 19 веке, но перед этим они успели вызвать настоящую бурю: например, задача №2 вызвала появление интегрального исчисления.

Метод доказательства от противного – тоже его заслуга. Он же сформулировал пять постулатов геометрии:

1. Через два точки можно провести одну и только одну прямую.

2. Прямая продолжается бесконечно.

3. Из любого центра можно провести окружность любым радиусом.

4. Все прямые углы равны между собой.

Пятый постулат является своеобразным философским камнем геометрии и будет подробнее описан в шестой части.

Биография Николая Ивановича

Лобачевского.

1729 – 1856

Лобачевский пользовался уважением и любовью студентов и коллег. Когда упразднили должность директора университета, то его кандидатуру на пост главного ректора утвердили без возражений. Не высказался даже его главный соперник – Симонов.

в 1842 году, во время большого пожара в Казани он героически спас древние книги, до этого, во время эпидемии холеры, превратил университет в мини-госпиталь – из-за чего умерло гораздо меньше студентов, чем в других ВУЗ’ах.

Когда негде было разместить второй класс Казанской гимназии, он предложил свой дом, обещав потом построить для гимназии дворец. Понятно, что в 1845 году он получил должность управляющего Казанским учебным округом, а после стал член-кореспондентом Гуттенгенского университета.

Но жизнь нанесла ещё один удар: он начал слепнуть. Он начал играть со своей женой в страшную игру, пытаясь убедить её, что ещё хорошо видит. Она закатывала истерики, уговаривала лечиться, но все тщетно – Лобачевский ослеп. Но, тем не менее, он продолжал преподавать и пользоваться безграничной любовью и уважением учеников. Знаменателен случай, когда молодого студента, засмеявшегося над споткнувшимся Лобачевским, однокурсники заставили уйти из университета. Лобачевский об этом даже не узнал.

Ему поставлен памятник – и поэт В. Фирсов написал о нем:

Высокий лоб, нахмуренные брови,

В холодной бронзе – отраженный луг…

Но даже неподвижный и суровый,

Он, как живой, - спокоен и могуч.

Когда – то здесь, на площади широкой,

Задумчивый, неторопливый, строгий,

Он шел на лекции – великий и живой.

Пусть новых линий не начертят руки,

Он здесь стоит, взнесенный высоко,

Как утверждение бессмертья своего,

Как вечный символ торжества науки.
Другие авторы.

Тога Гаусс написал Фаркашу Больяи то, что тот сам говорил сыну: время для этих выкладок ещё не пришло. Януш же посчитал, что Гаусс решил присвоить его труд. Но Гаусс не публиковал его – ведь он был королем математики того периода, и боялся, что его сочтут свихнувшимся.

Гаусс в то время хотел уехать – куда-нибудь далеко, где никто не помешает. Он думал о Петербурге или Казани. Но из-за бюрократии российских чиновников поездка расстроилась.

Через шесть лет Гаусс все ещё думает о Лобачевском. Но он понимает, что слишком стар, чтобы защищать новые идеи. А Лобачевский погибал без поддержки.

За год до этого, зимой 1848 года, к Гауссу пришел студент. Его звали Бернард Риман. Но Гаусс оттолкнул его. Тогда Риман, сжав зубы, уехал в Берлин. Но мир тесен, и, защитив докторскую диссертацию, он решает стать профессором. Удивительно, но тему пробной лекции утверждает и принимает именно Гаусс.

Риман создал геометрию, где прямые замкнуты, где нет параллельных прямых, а сумма углов треугольника больше 180 о . Она похожа на геометрию сферы Гаусса.

Краткое описание геометрии Лобачевского.

Иногда говорят, что в геометрии Лобачевского параллельные прямые пересекаются в бесконечности. Но это не совсем так. Есть только немного другое свойство параллельности: через одну точку вне прямой можно провести бесконечно много прямых, параллельных данной. Это видно на рисунке 1. Причем параллельность сохраняется только в сторону уменьшения расстояния между прямыми. Этот, казалось бы, простой факт, меняет всю геометрию. Как, например, в геометрии Евклида доказывается, что сумма углов треугольника равна 180 о ? Классическое доказательство приведено на рисунке 2. Используется свойство углов при накрест лежащих прямых, и выходит, что Ð1+Ð2+Ð3=180 о . Но так как в геометрии Лобачевского параллельность сохраняется только в одном направлении, то для нахождения суммы углов треугольника*, то нужно провести две прямые, параллельные данной в разные стороны. Что получается, видно на рисунке 3. Понятно, что теперь сумма углов треугольника меньше 180 о . Эта разница была названа Лобачевским дефектом треугольника.

Одними из важных объектов на плоскости Лобачевского являются пучки прямых. Но чтобы описать эти пучки, сначала надо уяснить, что в плоскости Лобачевского есть три типа расположения прямых: прямые или параллельны, или пересекаются, или являются расходящимися.
_______

* Здесь и далее подразумевается геометрия Лобачевского, если нет оговорки на геометрию Евклида.

Так вот, первый вид пучков образован прямыми, имеющими общую точку – центр пучка (рис. 4а). Пучок расходящихся прямых – это перпендикуляры к одной прямой – оси пучка (рис. 4б). Из этого определения выходит интересное и, казалось бы, абсурдное утверждение, что два перпендикуляра к одной прямой непараллельны, и отличие от геометрии Евклида.

И, наконец, пучок, образуемый прямыми, параллельными данной прямой в заданном направлении (рис. 4в).

Следующими объектами геометрии Лобачевского являются кривые. Для их построения Лобачевским было введено понятие соответственных точек. В пучке первого рода это точки на прямых, равноудаленные от центра (рис. 5а). В пучке второго рода это точки прямых, лежащие по одну сторону от оси и отстоящие от нее на одинаковые расстояния (рис. 5б). Наконец, в пучке третьего рода они расположены симметрично относительно биссектрисы полосы между двумя прямыми, на которых лежа эти точки (рис. 5в).

Соединив соответствующие точки первого пучка, мы получим окружность. В случае второго пучка мы получаем линию равных расстояний, а в третьем случае – так называемую предельную линию.

Примеры таких построений – на рисунке 6.

Из определения предельных линий выходит, что она бесконечна. Поэтому в теоремах используется понятие предельной дуги, или дуги предельной линии.

Для концентрических предельных дуг существуют несколько правил: во-первых, равным хордам соответствуют равные дуги, большей хорде – большая дуга; отрезки осей, заключенные между дугами, равны, и отношение двух предельных дуг, заключенных между одинаковыми осями, зависит только от расстояния. Причем это отношение при S1 >S2 равно , где х – расстояние, а к – некотрая константа. Сам Лобачевский дает её определение так: к – это расстояние между двумя предельными дугами, заключенными между двумя осями, отношение которых равно е . Физический смысл этой константы заключается в отображении кривизны пространства Лобачевского.

Лобачевским была создана и стереометрия. Прямые в пространстве могут или скрещиваться, или лежать в одной плоскости. Скрещивающиеся прямые имеют смысл двух прямых, имеющих общий перпендикуляр, определяющий кратчайшее расстояние между ними. У параллельных прямых есть два основных свойства: во-первых, если через две параллельные прямые провести две пересекающиеся плоскости, то прямая пересечения плоскостей будет параллельна двум другим; во-вторых, две прямые, параллельные третей, параллельны одна другой в том же направлении – даже если третья прямая не лежит в плоскости первых двух.

Для анализа расположения прямой и плоскости, на плоскость опускается проекция. Если прямая и плоскость параллельны, то прямая и её проекция на плоскость тоже параллельны, и наоборот. Так же определяется и расположение двух плоскостей – с тем лишь отличием, что, если нельзя провести плоскость, перпендикулярную двум выбранным плоскостям и проходящую через выбранную прямую и её проекцию, то плоскости обязательно пересекутся.

Аналогию пучкам в пространстве составляют связки. Связки также делятся на три рода: первые образуются прямыми и плоскостями, проходящими через одну точку – центр связки; вторые образованны прямыми и плоскостями, перпендикулярными некой плоскости; и, наконец, третьи образованы прямыми и плоскостями, параллельными данной плоскости в одном направлении. Точно так же определяются соответствующие точки. В случае связки первого рода они формируют сферу, второго – поверхность равных расстояний, третьего – предельную поверхность. Предельная поверхность обладает удивительным свойством: на ней справедлива геометрия Евклида. Этот факт свидетельствует о том, что неевклидова геометрия не опровергает евклидову, а включает её в себя как органичную часть.

В процессе нахождения тригенометрических формул, Лобачевский проецировал прямоугольный треугольник с предельной плоскости на плоскость, касательную к ней. Пользуясь формулами и , вывод которых приведен в приложении, он получил тригинометрические формулы своего пространства. Соотношения в прямоугольном треугольнике при этом остаются одинаковыми, но cos , sin и tg определяются по-другому: , , , где с – сторона против прямого угла, а – против a , в – противb .

Несмотря на все кажущиеся странности, геометрия Лобачевского является настоящей геометрией нашего мира, и Евклидова является только её составной частью. Но в пределах ежедневных измерений Евклидова геометрия дает исчезающе малые ошибки, и мы пользуемся именно ею.

5 постулат.

Конечно, ещё сам Евклид пытался вывести этот сложный постулат из более простых. После него этой проблемой занимались почти все известные математики, но чаще всего это заканчивалось тем, что постулат выводился только при принятии каких-то дополнительных предположений. У менее удачливых математиков не получалось вообще ничего.

Самую известную попытку доказать пятый постулат методом от противного предпринял итальянский монах Джироламо Саккерти в 1733 году. Но отрицание пятого постулата – это и есть главное отличие геометрии Лобачевского от геометрии Евклида. Он, как и другой математик И. Г. Ламберт в 1766 году, вплотную подошел к неевклидовой геометрии, но не нашел её реальной.

Гаусс, изучая поверхности, обнаружил, что на поверхностях отрицательной кривизны сумма углов треугольника меньше 180 о . Он был в шаге от опровержения пятого постулата.

Попыток было много – и именно недоказуемость этого предположения привела к открытию неевклидовой геометрии.

Геометрия Лобачевского в реальном мире.

Если геометрия Евклида является только частью геометрии Лобачевского, то выходит, что наш мир – не мир Евклида, как принято считать? Почему же мы не замечаем разницы?

Как пример можно привести тот факт, что видимый звездный свод это ни что иное, как предельная плоскость. Астрономам после признания достижений Лобачевского пришлось пересчитывать все расстояния между звездами – и ошибки достигали 1/6.

Седых Елена Валерьевна

ВложениеРазмер
Неевклидова геометрия 775.58 КБ

Предварительный просмотр:

МКОУ ВАШУТИНСКАЯ ОСНОВНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА

История возникновения и значение неевклидовой геометрии в современной науке

Работу по геометрии выполнила:

ученица 9 класса

Седых Елена Валерьевна

2.История создания новой геометрии………………………………. 4

3. Неевклидова геометрия…………………………………………… 8

4.Отзывы и доказательства …………………………………………. 11

4. Значение Неевклидовой геометрии……………………………… 15

6.Используемая литература…………………………………………. 18

Тот путь, на который впервые стал Лобачевский, в значительной степени определил лицо современной науки, произвёл настоящую революцию в математике.

Открытие неевклидовой геометрии произвело переворот не только в геометрии и даже не только в математике, но можно сказать, в развитии человеческого мышления вообще. И то , что евклидова геометрия не является единственно возможной, сделанное в начале прошлого века Гауссом, Лобачевским и Больяи, оказало влияние на мировоззрение человечества. Однако мало кому известно, что начиная с конца прошлого века неевклидова геометрия, наряду с евклидовой, является одним из рабочих инструментов математики, несмотря на то что "пространство, в котором мы живем", в доступных нашему пониманию пределах является скорее евклидовым, чем неевклидовым [ 2].

Характер математических теорий таков, что различным образом представляя основные понятия этих теорий, в геометрии, например, это точки, прямые, движения и т.д., мы можем применять их к объектам различного рода. Поэтому, и геометрия может применяться не только к пространству, в котором мы живем, но и к другим пространствам, возникающим в математических и физических теориях. Геометрии этих пространств оказываются различными; в частности, они могут не быть евклидовыми.

Цель работы : установить, что послужило созданию неевклидовой геометрии. Гипотеза : развитие науки было на таком этапе, что невозможно было не прийти к созданию неевклидовой геометрии.

I.История создания новой геометрии

Рисунок 1. Евклид

Одновременно и независимо к аналогичным выводам пришёл Янош Бойяи (рис.2), а Карл Фридрих Гаусс (рис.3) пришёл к таким выводам ещё раньше.

Рисунок 2. Янош Бойяи

Однако труды Бойяи не привлекли внимания, и он вскоре оставил эту тему, а Гаусс вообще воздерживался от публикаций, и о его взглядах можно судить лишь по нескольким письмам и дневниковым записям.

Рисунок 3 . Карл Фридрих Гаусс

Из Академии наук пришел уничтожающий отзыв, появляются статьи, где Лобачевского называют провинциальным шарлатаном, невежественным самодовольным ничтожеством. Авторы этих отзывов опирались на то, что все, что изложено господином Лобачевским (рис.4) в своих трудах не имеет места в природе и, поэтому, совершенно для разума непонятно и абсурдно. Лобачевского никто не поддержал, но у него хватило мужества отстаивать свои идеи до конца.

Рисунок 4. Лобачевский Николай Иванович

Пятый постулат Евклида стал своего рода толчком к созданию другой геометрии, или продолжением геометрии Евклида. Одновременно учёные многих стран пришли к одним и тем же выводам. Однако одних учёных не поняли, как Лобачевского, другие боялись опубликовать свои труды.

Создателями неевклидовой геометрии стали такие яркие учёные, как сам Евклид, Гаусс, Бойяи, Лобачевский. У некоторых учёных открытия в неевклидовой геометрии происходили одновременно, независимо друг от друга.

Лобачевский считал аксиому параллельности Евклида произвольным ограничением. С его точки зрения, это требование слишком жёсткое, ограничивающее возможности теории, описывающей свойства пространства, и поэтому в создании неевклидовой геометрии он использовал плоскостные постулаты Евклида как частный, предельный случай и отказался от V постулата, приняв независимость аксиомы о параллельных прямых Евклида от остальных аксиом.

Через точку С, лежащую вне прямой АВ, можно, предположил Лобачевский, провести хотя бы две прямые а и b, которые не пересекутся с прямой АВ (рис.5). Точно так же не пересекают прямую АВ и прямые m, n, p, проходящие через точку С. [4].

Рисунок 5. Предложение, противоположное V постулату Евклида.

Рисунок 6. Треугольник в геометрии Лобачевского.

В плоскости Лобачевского не существует никакого подобия. Ведь все теоремы о подобии выводятся только с помощью аксиомы Евклида о параллельности. Н.И. Лобачевский установил, что на предельной поверхности, называемой орисферой, внутренняя геометрия является евклидовой.

Разработанная Лобачевским новая геометрия не включает в себя евклидову геометрию, однако евклидова геометрия может быть из неё получена предельным переходом (при стремлении кривизны пространства к нулю). В самой геометрии Лобачевского кривизна отрицательна. Уже в первой публикации Лобачевский детально разработал тригонометрию неевклидова пространства, дифференциальную геометрию (включая вычисление длин, площадей и объёмов) и смежные аналитические вопросы.

В пространстве Лобачевского были выделены криволинейные геометрические образы, подчинённые геометрии Евклида. Этот замечательный результат Лобачевский использовал для вывода тригонометрических соотношений между элементами прямолинейных треугольников в его пространстве. Но итоговые соотношения гораздо сложнее евклидовых. Эти соотношения имеют не только тригонометрические функции углов, не просто длины сторон, а некоторые функции от них [ 4] .

Сделав свое знаменитое открытие, Н. И. Лобачевский не опроверг евклидову геометрию, а лишь раздвинул границы науки, существовавшей в Древнем мире. Любые факты планиметрии Лобачевского не противоречат геометрии Евклида. Однако созданная геометрия существенно отличается от прежней. Лобачевский, очевидно, хотел подчеркнуть противоречие V постулату: на плоскости через точку, лежащую вне данной прямой, проходит более одной прямой, не пересекающей данную. И тем самым заменил евклидов постулат более общей аксиомой параллельности и сохранил все рассуждения геометрии Евклида.

III. Отзывы и доказательства

В последние годы жизни Лобачевский безуспешно пытался доказать непротиворечивость своей геометрии.

Чтобы получить такое доказательство, надо было построить модель геометрии. В 1868 году (через 12 лет после смерти Лобачевского) итальянский ученый Э. Бельтрами исследовал вогнутую поверхность называемую псевдосферой и доказал, что на этой поверхности действует геометрия Лобачевского (рис.7). [ 5].

В 1868г. Итальянский математик Э. Бельтрами исследовал вогнутую поверхность, называемую псевдосферой, и доказал, что на этой поверхности действует геометрия Лобачевского.

Рисунок 7. Псевдосфера

А через 2 года немецкий математик Клейн предлагает другую модель плоскости Лобачевского (рис.8).

Рисунок 8. Модель Клейна.

Рисунок 9 . Модель Пуанкаре.

В конце прошлого века в работах Пуанкаре и Клейна была установлена прямая связь геометрии Лобачевского с теорией функций комплексной переменной и с теорией чисел (точнее, арифметикой неопределенных квадратичных форм). С тех пор аппарат геометрии Лобачевского стал неотъемлемым компонентом этих разделов математики. В последние 15 лет значение геометрии Лобачевского еще более возросло благодаря работам американского математика Тёрстона (лауреата Филдсовской медали 1983 г.), установившего ее связь с топологией трехмерных многообразий (рис.10). Десятки работ ежегодно публикуются в этой области. В связи с этим можно говорить о конце романтического периода в истории геометрии Лобачевского, когда основное внимание исследователей было обращено на ее осмысление с точки зрения оснований геометрии вообще. Современные исследования все больше требуют делового владения геометрией Лобачевского [ 2].

Рисунок 10. Вильям Паул Тёрстон

Важное замечание, касающееся чертежей, изображающих поведение прямых на плоскости Лобачевского. Как показывают опыты, наше физическое пространство по свойствам или евклидово, или очень мало от него отличается. Оперируя с чертежом, вынуждены ограничиться его малым размером, а отклонение от евклидовости, если оно существует, будет наблюдаться только при очень больших протяжениях. Поэтому для наглядности обычно принято изображать прямые, слегка их искривляя, чтобы отчётливее выразить характер их сближения или расхождения на плоскости Лобачевского. Однако Лобачевский такие вольности себе не разрешал[ 4].

Сколько времени нужно было учёным, чтобы проверить на различных моделях: псевдосфере Клейна, модель Пуанкаре, трёхмерные многообразия математика Тёрстона, что геометрия Лобачевского действует? Какие сомнения возникали у самого Лобачевского в правильности его идей?! Но именно элементы геометрии Лобачевского стали основой таких разделов математики, как теория чисел и теория функций комплексной переменной и многих других.

IV. Значение Неевклидовой геометрии

Открытие новой геометрии стало началом многочисленных исследований выдающихся математиков 19 века. Геометрия послужила толчком к развитию науки, а значит и пониманию мира, который на окружает.

А в начале 20-говека было обнаружено, что геометрия Лобачевского совершенно необходима в современной физике. Например, в теории относительности Эйнштейна, в расчетах современных синхрофазотронов, в космонавтике.

Создателями неевклидовой геометрии стали такие яркие учёные, как сам Евклид, Гаусс, Бойяи, Лобачевский. Евклид делал попытки доказать пятый постулат, но у него не получалось. У некоторых учёных открытия в неевклидовой геометрии происходили одновременно, независимо друг от друга.

Н. И. Лобачевский раздвинул границы науки, существовавшей на тот момент. Любые факты планиметрии Лобачевского не противоречат геометрии Евклида. Однако созданная геометрия существенно отличается от прежней. Лобачевский, очевидно, хотел подчеркнуть противоречие V постулату: на плоскости через точку, лежащую вне данной прямой, проходит более одной прямой, не пересекающей данную. И тем самым заменил евклидов постулат более общей аксиомой параллельности и сохранил все рассуждения геометрии Евклида.

Много времени понадобилось учёным, чтобы проверить на различных моделях: псевдосфере Клейна, модель Пуанкаре, трёхмерные многообразия математика Тёрстона, что геометрия Лобачевского действует? Какие сомнения возникали у самого Лобачевского в правильности его идей?! Но именно элементы геометрии Лобачевского стали основой таких разделов математики, как теория чисел и теория функций комплексной переменной и многих других.

Открытие новой геометрии стало началом многочисленных исследований выдающихся математиков 19 века. Геометрия послужила толчком к развитию науки, а значит и пониманию мира, который на окружает.

А в начале 20-говека было обнаружено, что геометрия Лобачевского совершенно необходима в современной физике. Например, в теории относительности Эйнштейна, в расчетах современных синхрофазотронов, в космонавтике.

Фото: https://eponym.ru

195 лет назад (11 (23) февраля 1826 г.) на заседании физико-математического факультета Императорского Казанского университета Николай Иванович Лобачевский впервые представил общественности неевклидову геометрию.

Николай Лобачевский заменил пятый постулат Евклида на противоположное утверждение: если из точки, не лежащей на прямой, выпустить все лучи, пересекающие эту прямую, то слева и справа эти лучи будут ограничены двумя предельным лучами, которые прямую уже не пересекут, но будут становиться к ней все ближе и ближе, а угол между этими предельными лучами будет строго меньше 180 градусов; то есть через точку, не лежащую на данной прямой, можно провести не одну прямую, параллельную данной (как у Евклида), а сколько угодно, причем эти прямые будут вести себя иначе, чем в трактовке Евклида.

Геометрия Лобачевского стала толчком к переосмыслению природы пространства. Можно сказать, что работа ученого подготовила условия для создания общей теории относительности, ведь раньше у нас была только одна геометрия и одно понимание пространства, но это в корне изменилось благодаря нашему соотечественнику.

Спустя три года после выступления в Казанском университете Лобачевский опубликовал статью о своей геометрии в университетском журнале. Как уже отмечалось выше, поначалу многие отнеслись к работе ученого критически; потребовались годы, чтобы неевклидова геометрия отвоевала себе место под Солнцем.

Неевклидова геометрия в каком-то смысле разделила науку на до и после, но эта работа отнюдь не единственный вклад Николая Лобачевского в развитие научной мысли. Независимо от бельгийского математика Жерминаля Данделена Лобачевский разработал метод приближенного решения уравнений, уточнил понятие непрерывной функции, написал работы о тригонометрических рядах, предложил признак сходимости числовых рядов и опубликовал немало других важных трудов.

Подготовлено по материалам:

● Н. И. Лобачевский, Геометрические исследования по теории параллельных линий. Перевод, комментарии, вступительные статьи и примечания профессора В. Ф. Кагана. М.-Л., изд-во Академии Наук СССР, 1945.

Открытие неевклидовой геометрии Н.И. Лобачевским

Сущность открытия Менделеева заключалась в том, что с ростом атомной массы химических элементов их свойства меняются не монотонно, а периодически. После определённого количества разных по свойствам элементов, расположенных по возрастанию атомного веса, свойства начинают повторяться. Отличием работы Менделеева от работ его предшественников было то, что основ для классификации элементов у Менделеева была не одна, а две — атомная масса и химическое сходство. Для того, чтобы периодичность полностью соблюдалась, Менделеев исправил атомные массы некоторых элементов, несколько элементов разместил в своей системе вопреки принятым в то время представлениям об их сходстве с другими, оставил в таблице пустые клетки, где должны были разместиться пока не открытые элементы.

В 1871 г. на основе этих работ Менделеев сформулировал Периодический закон, форма которого со временем была несколько усовершенствована.

Периодическая система элементов оказала большое влияние на последующее развитие химии. Она не только была первой естественной классификацией химических элементов, показавшей, что они образуют стройную систему и находятся в тесной связи друг с другом, но и явилась могучим орудием для дальнейших исследований. В то время, когда Менделеев на основе открытого им периодического закона составлял свою таблицу, многие элементы были еще неизвестны. Менделеев был не только убеждён, что должны существовать неизвестные еще элементы, которые заполнят эти места, но и заранее предсказал свойства таких элементов, основываясь на их положении среди других элементов периодической системы. В течение следующих 15 лет предсказания Менделеева блестяще подтвердились; все три ожидаемых элемента были открыты (Ga, Sc, Ge), что было величайшим триумфом периодического закона.

РУССКОЕ ХИМИЧЕСКОЕ ОБЩЕСТВО

Русское химическое общество – научная организация, основанная при Санкт-Петербургском университете в 1868 г. и представлявшая собой добровольное объединение российских химиков.

О необходимости создания Общества было заявлено на 1-м Съезде русских естествоиспытателей и врачей, состоявшемся в Санкт-Петербурге в конце декабря 1867 – начале января 1868 г. На Съезде было оглашено решение участников Химической секции:

К этому времени уже были учреждены химические общества в нескольких европейских странах: Лондонское химическое общество (1841), Химическое общество Франции (1857), Немецкое химическое общество (1867); Американское химическое общество было основано в 1876 г.

Устав Русского химического общества, составленный в основном Д. И. Менделеевым, был утверждён Министерством народного просвещения 26 октября 1868 г., а первое заседание Общества состоялось 6 ноября 1868 г. Первоначально в его состав вошли 35 химиков из Петербурга, Казани, Москвы, Варшавы, Киева, Харькова и Одессы. Первым Президентом РХО стал Н. Н. Зинин, секретарём – Н. А. Меншуткин. Члены общества платили членские взносы (10 руб. в год), приём новых членов осуществлялся только по рекомендации трёх действующих. В первый год своего существования РХО выросло с 35 до 60 членов и продолжало плавно расти в последующие годы (129 – в 1879 г., 237 – в 1889 г., 293 – в 1899 г., 364 – в 1909 г., 565 – в 1917 г.).

На страницах ЖРХО впервые были напечатаны многие труды классиков русской химии. Можно особо отметить работы Д. И. Менделеева по созданию и развитию периодической системы элементов и А. М. Бутлерова, связанные с разработкой его теории строения органических соединений; исследования Н. А. Меншуткина, Д. П. Коновалова, Н. С. Курнакова, Л. А. Чугаева в области неорганической и физической химии; В. В. Марковникова, Е. Е. Вагнера, А. М. Зайцева, С. Н. Реформатского, А. Е. Фаворского, Н. Д. Зелинского, С. В. Лебедева и А. Е. Арбузова в области органической химии. За период с 1869 по 1930 г. в ЖРХО было опубликовано 5067 оригинальных химических исследований, печатались также рефераты и обзорные статьи по отдельным вопросам химии, переводы наиболее интересных работ из иностранных журналов.

РФХО стало учредителем Менделеевских съездов по общей и прикладной химии; три первых съезда прошли в С.-Петербурге в 1907, 1911 и 1922 гг. В 1919 г. издание ЖРФХО было приостановлено и возобновлено лишь в 1924 г.

Читайте также: