Доклад алан тьюринг и машина тьюринга

Обновлено: 02.07.2024

Внимание Алана давно привлекала новая проблема, находящаяся в самом сердце математики, но что более важно – проблема, которая нашла отклик и в его сердце. Решение этой проблемы не требовало знаний, приобретенных по учебной программе, и затрагивало только всеобщие знания о природе вещей. Но такая, на первый взгляд, крайне заурядная проблема привела его к идее, впечатлившей многих. В 1935 году Алан начал размышлять о машинах.

Но пишущая машинка обладала слишком ограниченным набором функций, чтобы служить моделью. Несомненно, она оперировала символами, но могла лишь записывать их, а также требовала присутствия машиниста, отвечающего за выбор символов и изменения конфигураций и позиций устройства, по одному за раз. Так какой же, задавался вопросом Алан Тьюринг, была бы машина наиболее общего вида, которая могла оперировать символами? Чтобы быть машиной, она должна обладать свойством пишущей машинки: иметь заданное количество конфигураций и четко определенное действие, закрепленное за каждой из них. И при этом она должна была иметь возможность выполнять намного больше. Таким образом, он представил в своем воображении машины, которые по сути представляли собой более мощные пишущие машинки.

Для простоты описания он представил машины, имеющие лишь одну рабочую строку. Это было лишь технической особенностью устройства, которая позволяла не учитывать наличие полей и контроля линии письма. Между тем, оставалось важным, чтобы количество поступаемой бумаги было неограниченным в обе стороны. В представлении Алана каретка его супер-пишущей машинки могла перемещаться на неограниченное количество позиций вправо и влево. Для большей определенности он представил бумагу в виде ленты, разделенной на ячейки таким образом, чтобы в каждую ячейку мог записан один символ. Так машины Тьюринга обладали конечным количеством действий, при этом сохраняя возможность работать на неограниченном пространстве.

– записать новый (заданный) символ в пустую ячейку, или оставить уже записанный символ в неизменном виде, или стереть символ и оставить ячейку пустой;

– остаться в прежней конфигурации или сменить ее на другую (заданную) конфигурацию;

– переместиться на ячейку влево, или вправо, или остаться в текущей позиции.

Из этого следовало, что одна машина могла воспроизводить действия, выполняемые любой другой машиной. Такое устройство Алан и назвал универсальной машиной. Она должна была считывать дескриптивные числа, зашифровывать их в таблицы, а затем производить действия этих таблиц. Универсальная машина могла выполнять любые действия, которые производила любая другая таблица… Такая машина могла выполнять любые действия, и этого было достаточно, чтобы на время крепко задуматься. Более того, такая машина имела совершенно определенный вид, и Алан разработал соответствующую таблицу для универсальной машины.

И самое главное – Алану удалось доказать, что математика никогда не будет исчерпана никаким конечным множеством операций.

Помимо подобных изменений символов простые операции должны включать в себя изменения распределения считанных ячеек. Новые считываемые ячейки должны в тот же момент распознаваться компьютером. Думаю, что разумно будет предположить, что такими могут быть лишь те ячейки, расстояние которых от наиболее близко расположенной к только что мгновенно считанной ячейке не превышает определенное установленное число ячеек. Также предположим, что каждая из новых считанных ячеек находится в пределах L – ячеек последней считанной ячейки.

В машине Тьюринга Алану удалось создать свой случай детерминизма в виде автоматической машины, производящей операции в рамках логической системы мышления, которую он считал подходящей для изучения человеческого разума.

Алан доказал, что не существует никакой сверхъестественной машины, которая смогла бы решить все математические проблемы, но в ходе своего доказательства он открыл нечто столь же удивительное – идею универсальной машины, которая могла воспроизвести работу любой другой машины. Также ему удалось доказать, что любое действие, выполняемое человеком за машиной, могло быть произведено самой машиной без вмешательства человека. Таким образом, существовала единая машина, которая путем считывания помещенного на ленту описания работы других машин, могла производить тот же результат, что и умственная деятельность человека. Одна машина могла заменить операциониста! Электрический разум существует!

Между тем смерть Георга Пятого ознаменовала собой переход от протеста против старого порядка к страху перед тем, что могло ожидать впереди. Германия уже победила новое Просвещение и поставила железное клеймо на идеалистах. В марте 1936 года был снова оккупирован Райнленд, и это означало только одно: будущее теперь зависело от политики усиления военной мощи и подготовки к войне. Кто тогда мог увидеть во всем этом связь с судьбой кембриджского математика? И все же связь была, поскольку однажды Гитлер потеряет Райнленд, и именно тогда универсальная машина сможет найти в мире свое практическое применение. Но между идеей машины Тьюринга и ее воплощением произойдет страшное, в результате чего жертвами станут миллионы людей. И жертв не станет меньше даже после свержения власти Гитлера.

…Алан представил свою работу для публикации Лондонскому математическому сообществу 28 мая 1936 года. Однако в Англии не нашлось ни одного человека, который смог бы отрецензировать работу Тьюринга для публикации в журнале. Ни один из корифеев науки не удосужился обмолвиться хоть словом. В случае же основного читателя журнала Лондонского математического общества Proceedings существовало сразу несколько причин, почему работа Алана не могла заинтересовать его в полной мере. Математическая логика оставалась отчасти периферийной темой для исследований, в которой сами математики обычно видели или попытку доработать то, что и так всем известно, или попытку создать новые проблемы на пустом месте. Начало работы казалось увлекательным, но после (типичным для Тьюринга образом) текст заводил читателя в непролазные дебри рядов непонятных готических символов, объясняющих устройство таблиц его универсальной машины. И в последнюю очередь этим могли заинтересоваться специалисты прикладной математики, которые обычно прибегают к практическому вычислению в таких областях, как астрофизика и гидроаэромеханика, где уравнения не приводят к решениям в явном виде.

Но в проекте Универсальной машины Тьюринга не было ничего, что бы указывало на ее практическое предложение. В частности, не было информации о ее операционной скорости. Таблицы вычислимых чисел могли быть использованы людьми, посылающими друг другу открытки, без теоретической аргументации. Но коль скоро речь шла о практическом применении универсальной машины, то она должна была выполнять миллионы шагов в рациональном режиме. Эту потребность в скорости могли обеспечить только электронные компоненты.

И речь здесь не о том, как мир воспринял его, да и мир не был уж совсем несправедлив. Изобретение Алана Тьюринга должно было занять свое место в историческом контексте, в котором он не был ни первым в числе тех, кому приходила в голову идея создания универсальных машин, ни единственным, кто додумал в 1945 г. электронную версию универсальной машины.

И не успел! Американцы опередили Алана, создав ЭДВАК – Электронный дискретный переменный компьютер. Автором был давний знакомый Алана – Джон фон Нейман.

Так что победу у британского новаторства на самом финише вырвала американская публикация – и это в то время, когда все следили за западом. Американцы победили, и Алан оказался вторым. На этот раз, правда, приоритет американцев обернулся плюсом для его планов – ведь он задал им политический и экономический импульс, который одним умозрительным идеям Тьюринга иначе не видать было бы никогда.

На настольных счетных машинах цифры от 0 до 9 становились видны на регистрах и клавиатуре, и у оператора могло возникать ощущение, будто каким-то образом цифры хранятся в самой машине. В действительности, в них не было ничего, кроме колес и рычагов управления, однако иллюзия присутствия цифр в машине была сильна.

И он на самом деле смог предугадать развитие новой отрасли промышленности и занятости:

Первым значился компьютер, интерпретирующий специальный, предметно-ориентированный язык для описания электрических проблем:

Гост

ГОСТ

Машина Тьюринга — это абстрактный исполнитель или абстрактная вычислительная машина.

Введение

Машина Тьюринга является одним из наиболее выдающихся научных изобретений двадцатого века. Она представляла несложную и удобную абстрактную модель вычислительного процесса, которая представлена в обобщённом формате и позволяет реализовать практически все компьютерные задачи. Простое описание и выполненный математический анализ позволяют считать её фундаментом теоретической информатики.

Эта научная работа послужила стимулом к более углублённому изучению цифрового исчисления и компьютерных устройств, в том числе осознание мысли, что есть проблематика в сфере вычислений, которую нельзя решить на обычных электронных вычислительных машинах пользователей

Машина Тьюринга

Машина Тьюринга была вычислительным модулем, который состоит из сканера для чтения и записи информации с бумажной ленты, пропускаемой через него. Лента поделена на квадратики, несущие один знак, а именно нуль или единицу. Механизм предназначен для ввода и вывода информации и одновременно служит рабочей памятью для сохранения итогов промежуточных вычислительных шагов. Машина имеет в своём составе два компонента:

  1. Лента без ограничений, то есть бесконечная в обоих направлениях лента, разделённая на комплект ячеек.
  2. Автоматический модуль, то есть головка сканера, которая считывает и записывает информацию под управлением программы. Она способна располагаться в любой момент времени лишь в одном из многих состояний.

Готовые работы на аналогичную тему

Машина осуществляет связь двух конечных рядов информационных данных, а именно алфавит знаков на входе $A = (a_0, a_1, …, a_m)$ и алфавит состояний $Q = (q_0, q_1, . q_p)$. Пассивным считается состояние $q_0$. Предполагается, что машина прекращает выполнение операций, когда считывает именно его. Исходным состоянием является состояние $q_1$, и устройство запускается в работу, когда считывает это стартовое состояние. Слово на ленте, которое является входной информацией, расположено последовательно по одной букве в позиции. При этом, впереди него и за ним расположены нулевые квадраты.

Принцип работы машины Тьюринга

Машина Тьюринга принципиально отличается от компьютерных модулей, у неё в качестве запоминающего устройства выступает бесконечная лента, а у цифровых устройств память представляет полосу заданной длины. Любой тип заданий может решить лишь одна сформированная машина Тьюринга. Задания другого класса могут быть решены написанием другого алгоритма. Устройство управления находится в определённом состоянии и способно перемещаться в обе стороны вдоль ленты. Оно может записывать в ячейки и считывать из них алфавитные символы. При перемещении определяется пустой компонент, заполняющий места, которые не содержать входных данных. Алгоритм машины Тьюринга формирует условия перемещений управляющего механизма. Он может задать головке, выполняющей запись и чтение данных, следующие команды:

  1. Записать в текущую ячейку нужный знак.
  2. Выполнить смену текущего состояния.
  3. Переместиться в заданную сторону вдоль ленты.

Машина Тьюринга подобно другим системам, предназначенным для вычислений, обладает определёнными особенностями, которые похожи на свойства алгоритмов:

  1. Свойство дискретности. Цифровое устройство выполняет переход к очередному этапу n+1 лишь после полного завершения предыдущего. Каждый завершенный шаг определяет, каким будет следующий.
  2. Свойство понятности. Машина осуществляет лишь одну операцию для выбранной ячейки. Она записывает алфавитный символ и выполняет одно перемещение в указанную сторону.
  3. Свойство детерминированности. Всем позициям в машине сопоставляется только один вариант осуществления задаваемой схемы, и на всех шагах операции и их очерёдность осуществления строго определены.
  4. Свойство результативности. Окончательный итог на каждом шаге вычисляет машина Тьюринга. Программа работает согласно заданному алгоритму и за не бесконечное количество выполненных этапов доходит до состояния $q_0$.
  5. Свойство массовости. Каждой машине сопоставлен набор допустимых слов, которые входят в алфавит.

Функции машины Тьюринга

Функции машины Тьюринга. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Функции машины Тьюринга. Автор24 — интернет-биржа студенческих работ

Программа для машины Тьюринга

Программа для машины Тьюринга формируется как таблицы, в которых в первой строчке и столбце находятся знаки внешнего алфавита и набор допустимых внутренних состояний автомата, то есть внутренний алфавит. Данные в таблице, по сути, это команды, которые должна исполнять машина Тьюринга. Разрешение задачи выполняется по следующим правилам. Символ, принятый сканером из ячейки, над которой он располагается в текущий момент, и определённое внутреннее состояние сканера автомата определяют, какую команду требуется исполнить. А именно, это команда, расположенная в таблице, и находящаяся в точке пересечения знаков внутреннего и внешнего алфавита.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Кто такой Алан Тьюринг: один из создателей современной информатики и искусственного интеллекта

Во вторник, 4 декабря, в мире отмечают Международный день информатики. Сейчас нам тяжело представить свою жизнь без интернета и новых технологий, однако в свое время к развитию этой отрасли приложили руки немало выдающихся людей…

Детство и юность Алана Тьюринга

Алан Тьюринг родился 23 июня 1912 года в Уилмслоу (Великобритания). Он происходит из семьи аристократов: отец Turing – Джулиус Мэтисон – заведовал британским колониальным ведомством в Индии, а мать – Этель Сара Стоуни – была дочерью главного инженера Мадраских железных дорог. В детстве парень редко видел своих родителей, ведь те работали в Индии.

Алан Тьюрінг

В возрасте 6 лет Алан пошел в школу святого Михаила в Гастингсе. В 7 лет он начал обучение в Шернборнской публичной школе. Уже в школе парень проявлял выдающиеся способности по математике, при этом был одним из худших учеников в классе по гуманитарным предметам.

В 1929 году Тьюринг пытался поступить в Кембриджский университет вместе со своим лучшим другом Кристофером Моркомом, но безуспешно. Из-за нелюбви к гуманитарным наукам, Тьюринг не добрал баллов на экзамене и поэтому после школы поступил в Королевский колледж Кембриджа, хотя намеревался пойти в Тринити-колледж. За часть своей стипендии он купил три книги, одной из которых была "Математические основы квантовой механики" Джона фон Неймана.

Алан Тьюрінг

Алан Тьюринг в юношеские годы

Тьюрингу понравилась идея, что мир на субатомном уровне не подчиняется строгим законам, а лишь статистическим вероятностям. Он считал что именно это позволяет людям проявлять свободу воли и отличает их от машин.

До начала Второй мировой войны

В 1936 году вышла работа Тьюринга "О вычисляемых числах", в тексте которой Алан ввел понятие универсальной машины (позже названной "Машиной Тьюринга"). "Машина Тьюринга" вычисляла все, что только возможно. К слову, концепция современного персонального компьютера базируется на проекте, разработанном Тьюрингом.

Затем Тьюринг сосредоточился на изучении математики и криптологии на базе Института перспективных исследований в городе Принстоне, штат Нью-Джерси. После защиты докторской диссертации в Принстонском университете в 1938 году молодой ученый вернулся в Кембридж, где устроился на работу на неполный рабочий день в Центр правительственной связи – британскую правительственную организацию, которая работала над взломом шифров.

Вторая мировая война

Во время Второй мировой войны Тьюринг стал ведущим участником разгадывания шифров немцев. Он работал в Bletchley Park, на станции военного времени GCCS, где сделал пять больших открытий в области криптоанализа, включая разработку электромеханического устройства, используемого в целях расшифровки сигналов шифровальной машины Германии "Enigma". Работу, выпущенную Аланом Тьюрингом, и посвященную дешифровке "Энигмы" , его коллеги назвали "Книгой Профи".

Алан Тьюрінг

Дешифровальная " Машина Тьюринга"

Вклад Тьюринга в процесс взлома кодов этим не ограничивается: Алан также написал две статьи о математических подходах к дешифровке кода, которые считаются стратегически важными активами Кодекса и школы Cypher (позже известной как штаб-квартира правительства). Центр правительственной связи только в апреле 2012 года опубликовал эти разработки в Национальном архиве Соединенного Королевства Великобритании.

После завершения войны

До конца войны Тьюринг переехал в Лондон, где работал в Национальной физической лаборатории. Там Тьюринг руководил проектированием автоматического вычислительного механизма и, в конечном итоге, разработал новаторский план компьютера с соответствующими программными продуктами.

Тьюринг некоторое время еще занимал высокие должности в отделе математике и в вычислительной лаборатории университета в Манчестере. Впервые он занялся изучением проблемы искусственного интеллекта в статье 1950 года "Вычислительная техника и разведка" и предложил эксперимент, известный под названием "Тест Тьюринга" – попытка создать стандарт разработки разведывательной информации для технической отрасли. За последние десятилетия тест повлиял на дискуссии по поводу искусственного интеллекта.

В 1946 году Тьюринг разработал проект первого компьютера с хранимой в памяти программой . Ученый предвидел огромный потенциал своей идеи, но прототип был создан без его участия из-за конфликта с руководством Национальной физической лаборатории. Тьюринг считается отцом современных компьютеров, — так ли это на самом деле, можно узнать в разборе BBC.


Тьюринг считал, что к 2000 году машины с памятью в 125 мегабайт будут способны обмануть человека в 30% случаев. Оценка получилось довольно точной. В 2012 году программа, изображавшая мальчика из Одессы Женю Густмана, смогла провести судей в тестах, ежегодно проводимых Университетом Рединга, в 29,2% случаев. В 2014 году результаты были еще лучше. Однако не нужно их переоценивать: профессиональные эксперты быстро узнают такие системы по специфическим слабостям.

Для неподготовленного пользователя все гораздо хуже. В прошлом году было два нашумевших эксперимента. В первом чат-бот клянчил по одному или два доллара и за сутки насобирал порядка 10 000, а во втором боты выпрашивали у девушек интимные фотографии и в 3% случаев имели успех.

Позже Тьюринга заинтересовали закономерности природных паттернов (например, полоски зебр и пятна леопардов) — и он занялся проблемой морфогенеза . Ученый разработал модель взаимодействия двух условных веществ-морфогенов, одно из которых является активатором роста определенной ткани, другое — ингибитором: взаимодействуя друг с другом, они создают сложные структуры, форма которых не случайна, а зависит от свойств этих самых морфогенов (например, от того, с какой скоростью каждое из них распространяется в тканях). Он описал шесть основных паттернов — в 2014 году ученые Универстета Брандейса смогли воспроизвести их на синтетических клеточных структурах. А еще раньше ученые показали, что именно этот механизм лежит в основе эмбриогенеза пальцев: белки, активирующие и подавляющие развитие костной ткани, формируют на конце конечности паттерн из пяти лучей. При нехватке одного из морфогенов у животного могут, например, сформироваться лишние пальцы — структура станет иной, подчиняясь математическим закономерностям, которые описал Тьюринг.

Тьюринг покончил с собой в 1954 году после химической кастрации (примененной в качестве наказания за гомосексуальность). В 2013 году королева Елизавета II помиловала его посмертно.

Читайте также: