Цифровые двойники в высокотехнологичной промышленности краткий доклад сентябрь 2019 года

Обновлено: 02.07.2024

Затраты на развитие в России новых производственных технологий в течение ближайших пяти лет составят 145 млрд руб., подсчитали авторы соответствующей карты. В перечень запланированных мероприятий включено создание отечественных PLM- и MES-систем, разработка Национальной платформы цифровых двойников и Национальной базы математических моделей высокого уровня адекватности Digital Brainware.

Что такое новые производственные технологии

Разработка и внедрение субтехнологий, входящих в СЦТ НПТ, является необходимым условием для присутствия отечественных компаний на глобальных высокотехнологичных рынках, для которых характеры смешение центра тяжести в конкурентной борьбе за этап разработки высокотехнологичной продукции, повышение уровня ее наукоемкости, сокращение сроков вывода новой продукции на рынок, жесткие ограничения по издержкам, высокие требования к потребительским характеристикам.

Цифровой двойник

Авторы документа отмечают, что среди множества передовых технологий, технология цифровой двойник (Digital Twin) является технологией-интегратором практически всех сквозных цифровых технологий и субтехнологий, выступает технологией-драйвером, обеспечивает технологические прорывы и позволяет высокотехнологичным компаниям переходить на новый уровень технологического и устойчивого развития на пути к промышленному лидерству на глобальных рынках.

mmoney1600.jpg

Затраты на развитие в России новых производственных технологий в течение ближайших пяти лет составят 145 млрд рублей

В сравнении с традиционными подходами, разработка изделий и продукции на основе технологии цифрового двойника может обеспечивать снижение временных, финансовых и иных ресурсных затрат до 10 раз и более.

Важнейшим и обязательным этапом разработки и применения полномасштабных цифровых двойников является формирование путем каскадирования и декомпозиции многоуровневой матрицы целевых показателей конкурентоспособного продукта (изделия) и ресурсных ограничений (временных, финансовых, технологических, производственных, экологических и т.д.). Общее число характеристик матрицы может составлять 50 тыс. и более.

Многоуровневая матрица целевых показателей и ресурсных ограничений предназначена для осуществления балансировки огромного количества конфликтующих параметров и характеристик объекта в целом, его компонентов и деталей в отдельности. Возможно не только отслеживать их взаимное влияние на различных этапах жизненного цикла, но и в кратчайшие сроки вносить необходимые изменения и уточнения. Например, появляется возможность гибко реагировать на действия конкурентов, что обеспечивает непрерывный характер разработки и представляет собой важнейшую особенность новой парадигмы цифрового проектирования и моделирования на основе цифровых двойников.

Digital Brainware

Речь идет о разработке и валидации математических моделей высокого уровня адекватности материалов (MultiScale и MultiStage-подходы), машин (конструкций, приборов, установок, сооружений), физико-механических и химических процессов, технологических и производственных процессов (Multidisciplinary-подход).

Список существующих отечественных и международных решений для каждого элемента технологической карты

Элемент технологической клрты Отечественное решение Стадия готовности Зарубежное решение Стадия готовности
Цифровое проектирование, математическое моделирование и управление жизненным циклом изделия пли продукции (Smart design)
Компьютерное проектирование (Computer-Aided Design, CAD) Компас 3D УГТ 9 CATTA УГТ 9
T-FLEX CAD УГТ 9 NX УГТ 9
СПЖЦ. CAD УГТ 3
Математическое моделирование. компьютерный (Computer-Aided Engineering, CAE) Имитационное моделирование Суперкомпьютер ный инжиниринг (High Performance Technical Computing, НРТС) Fydesis УГТ 9 Ansvs УГТ 9
СПЖЦ. CAE УГТЗ

Источник: CNews Analytics

Важным требованием является обеспечение функциональной совместимости разрабатываемых отечественных решений с широко распространенными зарубежными решениями, так как в настоящее время на предприятиях реального сектора экономики активно используются импортные решения (Siemens, Dassailt Systemes, ANSYS, SAP). Экспорт отечественных решений также не возможен без функциональной совместимости с зарубежными программными системам. Учета данных требований в рамках мероприятий по стандартизации является логичным вектором развития новых производственных технологий.

Цифровое проектирование, математическое моделирование и управление жизненным циклом

Перечень сквозных компаний и организаций в рамках определенных рынков внедрения сквозных цифровых технологий

По прогнозам составителей дорожной карты, количество высокотехнологических предприятий, применяющий технологию цифровых двойников, увеличится с трех в 2019 г. до 100 в 2024 г., а количество реализованных проектов на высокотехнологичных предприятиях из приоритетных отраслей промышленности, для которых была применена технология разработки цифровых двойников – с трех до 250. За этот же период сокращение времени разработки высокотехнологичных продуктов увеличится с 10% до 25%.

Доля показателей матрицы целевых показателей и ограничений, обеспечивающих достижение целевых характеристик разрабатываемого изделия или продукции, определяемых и обосновываемых результатами виртуальных испытаний, увеличится с 0-15% до 50-100%. Разработанные и внедренные технологии создания цифровых двойников продуктов (изделий) на основе десятков тысяч целевых показателей к 2024 г. будут обеспечивать при экспертном сопровождении прохождение с первого раза физических и натурных испытаний (сейчас – с пятого), определение критических зон и характеристик для мониторинга на всем жизненном цикле.

Разработка отечественной PLM-системы

Будет разработана отечественная PLM-система тяжелого класса, поддерживающая все стадии изделий (включая CAD, CAM, CAE-подсистемы) - от создания концепта и проектирования до изготовления - на базе отечественной платформы полного жизненного цикла изделий. PLM-система обеспечит автоматическую оценку технологической реализуемости производства на ранних этапах проектирования изделия или продукции.

Также будет разработана платформа управления цифровым профилем изделий, обеспечивающая полную прослеживаемость на всем жизненном цикле изделия: начиная от момента проектирования отдельных деталей и узлов, включая контроль на стадии производства, и заканчивая эксплуатацией готового изделия.

К 2024 г. 25 высокотехнологических предприятий будут использовать данную систему. Будет реализовано 50 проектов на высокотехнологических предприятиях, в которых будет применена PLM-система. У данной системы будет 10 тыс. активных сертифицированных пользователей.

100 типовых изделий в пяти приоритетных отраслях промышленности будут подключены к системе цифрового профиля изделия. Автоматизированная оценка технологичности будет доступна для ранних этапов, а время разработки высокотехнологичных продуктов сократиться на 15%.

Также в рамках обозначенной субтехнологии для пяти приоритетных отраслей будет разработана Национальная база математических моделей высокого уровня адекватности Digital Brainware на основе архивов физических и натурных экспериментов и обеспечена преемственность с накопленным научно-технологическим опытом, основанном на дорогостоящих и зачастую уникальных экспериментах. База будет пополняться математическими моделями высокого уровня адекватности на основе новых серий физических и натурных экспериментов, в том числе направленных на применение новых материалов. 25% от общего числа испытательных стендов будет входить в состав Национальной базы математических моделей высокого уровня адекватности.

К 2024 г. цифровая платформа разработки цифровых двойников будет способна учитывать 150 тыс. целевых показателей и ресурсных ограничений (сейчас только 40 тыс.), будет использовать смежные сквозные цифровые технологии искусственного интеллекта, больших данных, распределенных реестров, обеспечивать управление интеллектуальной собственностью, экспертное сопровождение и прохождение с первого раза физических и натурных испытаний.

Цифровая платформа будет внедрена в пяти приоритетных отраслях и в 50 высокотехнологичных компаниях. Также будет сформирована национальная сетецентрическая экосистема из 25 зеркальных инжиниринговых центров, объединяющая 2,5 тыс. экспертов – сертифицированных пользователей (сейчас число пользователей составляет 250).

Платформа цифровой сертификации обеспечит экспертное сопровождение разработки и применения цифровых моделей и виртуальных испытательных стендов для ускоренной сертификации материалов и изделий. 50 материалов и изделий пройдут ускоренную сертификацию на основании виртуальных испытаний, а данную платформу для вывода материалов и изделий на рынок будет использовать 10 компаний.

Платформенные решения для правовой охраны и управления правами на цифровые модели и объекты к 2024 г. обеспечат охрану в режиме авторского права 100% от общего числа элементов, созданных цифровым двойником (сейчас – 15%), 25% в режим патентного права и 30% в режиме лицензирования.

Будет разработана платформа полного жизненного цикла, обеспечивающая сервисы для разработки специализированного прикладного инженерного ПО на базе отечественной платформы и геометрического ядра. С помощью данной платформы будет реализовано 100 прикладных решений и подготовлено 100 сертифицированных специалистов.


Будут разработаны платформенные решения для эксплуатационного мониторинга: постпродажное облуживание изделий и предиктивная аналитика. С их помощью будет автоматизирован процесс послепродажного обслуживания 100 типовых изделий в пяти приоритетных отраслях промышленности.

Smart Manufacturing

Особое внимание уделяется разработке, развитию, внедрению и сопровождению отечественных защищенной MES-системы (Manufacturing Execution System, ПО для координации, синхронизации, анализа и оптимизации выпуска продукции), обеспечивающей децентрализованное планирование на базе умного взаимодействия киберфизических устройств и автоматизированную оптимизацию производственных расписаний на уровне холдингов на основе данных платформенных решений для производства для производства и промышленного интернета. Также внимание уделяется защищенной ERP-системе, использующей сквозные цифровые технологии искусственного интеллекта, больших данных и распределенных реестров.


Мировой рынок автоматизации и процессов управления в 2017 г. составил $160 млрд. Ежегодный рост составляет 8% и к 2024 г. рынок достигнет $320 млрд. На производственные операции с поддержкой интернета вещей в 2016 г. было потрачено $102 млрд. К 2025 г. это значение вырастит до $470 млрд.

Разрабатываемые решения обеспечат подготовку и наладку производства на основе интеграции данных из PLM-системы с минимальным участием человека – к 2024 г. участие человека сократится до 65%.

Отечественные MES-системы, комплементарные с технологиями искусственного интеллекта, больших данных, интернета вещей и оптимизирующих процесс планирования производства с учетом быстрых переналадок и партий запуска, будут внедрены не менее чем на 1 тыс. предприятии и иметь не менее чем 10 тыс. сертифицированных пользователей.

На базе отечественных платформ будут разработаны: система управления производством, в том числе системы управления непрерывным производством; система управления кооперационным производством, позволяющая в режиме реально времени вести планирование и учет по всей цели кооперации; система управления производственно-техническим потенциалом на уровне холдингов и госкорпораций; ERP-система; универсальная интеграционная шина данных.

Такие решения будет внедрены на не менее чем 500 высокотехнологических предприятиях. Количество сертифицированных пользователей внедренных решений будет не менее 10 тыс., также 10 тыс. функциональных элементов ERP-системы будут внедрены на высокотехнологичных предприятиях.

Платформенные решения для промышленного интернета будут внедрены на не менее чем 15 высокотехнологических предприятиях и будут функционировать со скоростью более 10 млрд сигналов в секунду на локальных серверах. Также будут применяться технологии искусственного интеллекта.

В пяти приоритетных отраслях промышленности оснащение системами класса MDC, обеспечивающими получение данных с оборудования в режиме реального времени, достигнет 70%.

Будет разработана и внедрена не менее чем на пяти предприятиях платформа для сбора и анализа данных производственного оборудования и технологических процессов для целей оптимизации с использованием алгоритмов и методов машинного обучения.

Технологии гибридных и гибких производственных линий будут функционировать на основе отечественных систем управления и обеспечивать стабильность повторяемости позиционирования не менее 0,1 мм при количество управляемых осей не менее семи.

В части автоматизации процессов производства на предприятиях. 14,4 тыс. средних и крупных предприятий обрабатывающих отраслей промышленности пройдут оценку уровня цифровой трансформации и подключены к сервисам ГИСП.

Также будет разработано и использоваться не менее чем 60 лидерами отрасли комплексное платформенное решения для обработки, хранения и анализа данных геологоразведки с целью создания цифрового месторождения.

Запланирована разработка программных решений, автоматизирующих процессы технического обслуживания и ремонта. С их помощью 100 высокотехнологичных компаний в пяти приоритетных отраслях промышленности смогут в режиме реального времени контролировать и производить ремонт по техническому состоянию.

Манипуляторы и технологии манипулирования

Численность сотрудников робототехнических компаний-интеграторов за указанный период увеличится с 200 до 1 тыс. человек. Рынок промышленных робототехнических систем вырастет с 8 млрд руб. до 30 млрд руб., а доля отечественных разработчиков промышленной робототехники – с 5% до 30%. Количество роботов, задействованных в производстве на 10 работников, увеличится с 4 до 40.

В сфере обработки материалов соотношение выпускаемых в стране промышленных роботов к потребляемым российским рынком вырастет с 1% до 40%, а в целом в реальном секторе экономики данное соотношение составит 30%. Годовой объем поставок промышленных роботов в России увеличится с менее чем 1 тыс. до 4,6 тыс.

Миллиарды на развитие новых производственных технологий

Дорожная карта предполагает перечень затрат на общую сумму 77,9 млрд руб., из них федеральный бюджет должен будет потратить 33,1 млрд руб., внебюджетные источники – 44,8 млрд руб. Кроме того, отраслевые проекты по развитию новых производственных технологий оцениваются в 51,2 млрд руб., из которых федеральный бюджет должен будет выделить 28,5 млрд руб., внебюджетные источники – 22,7 млрд руб.

Таким образом, общая сумма затрат на развитие новых производственных технологий в период до 2024 г. составляет 145 млрд руб. Из этой суммы федеральному бюджету предлагается выделить 68,9 млрд руб., внебюджетным источникам – 76,4 млрд руб.

По мерам поддержки затраты распределятся следующим образом. Грантовая поддержка малых предприятий обойдется в 3,56 млрд руб. (федеральный бюджет – 2,5 млрд руб., внебюджетные источники – 1 млрд руб.), поддержка программы деятельности лидирующих информационных центров – 1,2 млрд руб. (по 600 млн руб. из бюджета и внебюджетных источников), поддержка отраслевых решений – 10,3 млрд руб. (по 5,2 млрд руб. из бюджета и внебюджетных источников), поддержка разработки и внедрения промышленных решений – 21,1 млрд руб. (федеральный бюджет – 9,7 млрд руб., внебюджетные источники – 11,4 млрд руб.), поддержка региональных проектов – 8,8 млрд руб. (бюджет – 4,2 млрд руб., внеюбджетные источники – 4,6 млрд руб.), поддержка компаний-лидеров – 18,8 млрд руб. (по 9,4 млрд руб. из бюджета и внебюджетных источников), поддержка путем субсидирования процентной ставки по кредиту -16,1 млрд руб. (бюджет – 1,4 млрд руб., внебюджетные источники – 16 млрд руб.).

Фото: Unsplash

В 2018 году компания Gartner в своем ежегодном исследовании технологических циклов впервые назвала цифровые двойники в числе лидеров. С тех пор технология только набирает обороты. Разбираемся, как она устроена

Что такое цифровой двойник

Цифровой двойник — это цифровая (виртуальная) модель любых объектов, систем, процессов или людей. Она точно воспроизводит форму и действия оригинала и синхронизирована с ним.

Цифровой двойник нужен, чтобы смоделировать, что будет происходить с оригиналом в тех или иных условиях. Это помогает, во-первых, сэкономить время и средства (например, если речь идет о сложном и дорогостоящем оборудовании), а во-вторых — избежать вреда для людей и окружающей среды.

  1. Физический продукт в реальном пространстве.
  2. Виртуальный продукт в виртуальном пространстве.
  3. Данные и информация, которые объединяют виртуальный и физический продукт.

Так выглядел центр по созданию цифровых двойников в NASA

Мощный толчок в развитии цифровых двойников произошел благодаря развитию искусственного интеллекта и интернета вещей. Согласно исследованию Gartner Hype Cycle, описывающему циклы зрелости технологий, это произошло в 2015 году. В 2016-м цифровые двойники и сами вошли в Gartner Hype Cycle, а к 2018 году оказались на пике.

Gartner Hype Cycle-2018

Какими бывают цифровые двойники

  • прототип (DTP) — представляет собой виртуальный аналог реального объекта, который содержит все данные для производства оригинала;
  • экземпляр (DTI) — содержит данные обо всех характеристиках и эксплуатации физического объекта, включая трехмерную модель, и действует параллельно с оригиналом;
  • агрегированный двойник (DTA) — вычислительная система из цифровых двойников и реальных объектов, которыми можно управлять из единого центра и обмениваться данными внутри.

Оптимальной погрешностью между работой цифрового двойника и его физического прототипа считают 5%.

Какие задачи решают цифровые двойники

  1. Провести тестовый запуск процесса или производственной цепочки быстро и без существенных вложений.
  2. Обнаружить проблему или уязвимость до того, как будет запущено производство или объект поступит в эксплуатацию.
  3. Повысить эффективность процессов или систем, отследив все сбои еще до старта.
  4. Снизить риски — в том числе финансовые, а также связанные с безопасностью для жизни и здоровья персонала.
  5. Повысить конкурентоспособность и прибыльность бизнеса.
  6. Строить долгосрочные прогнозы и планировать развитие компании или продукта на годы вперед.
  7. Повысить лояльность клиентов за счет точного прогнозирования спроса и потребительских качеств продукта.

Анастасия Пердеро, менеджер проекта Internet of Energy Центра энергетики Московской школы управления Сколково:

Где применяют цифровых двойников

  • Добыча и переработка полезных ископаемых

Цифровые двойники помогают снизить риски при добыче и переработке нефти и газа. Это позволяет сохранить жизни сотрудников и избежать ущерба для окружающей среды, а также сэкономить огромные суммы.

На одном из европейских нефтеперерабатывающих предприятий система предикативной (прогнозной) аналитики Schneider Electric позволила предсказать сбой большого компрессора за 25 дней до того, как он случился. Это сэкономило компании несколько миллионов долларов.

Технология цифровых двойников позволяет создавать отдельные детали и воспроизводить целые производственные цепочки, проводя виртуальные испытания и предупреждая сбои в работе оборудования.

Корпорация Siemens использует цифровых двойников для разработки двигателей, систем коммуникаций и даже скоростных поездов

Цифровые двойники применяют, чтобы оптимизировать работу электростанций, избежать сбоев в подаче электричества и рационально подойти к энергопотреблению.

Благодаря цифровым двойникам компания GE сэкономила более $1,5 млрд для своих потребителей.

Можно смоделировать как отдельное устройство или сервис, так и целую сеть, рассчитав предельные нагрузки и продумав защиту от киберугроз.

Сервис по созданию цифровых двойников на платформе Azure от Microsoft

С помощью цифровых двойников можно построить модель будущего здания или целого квартала и спрогнозировать, как оно впишется в среду, выдержит климатические условия и нагрузки на несущие конструкции.

Виртуальные 3D-модели предметов интерьера или декора помогают представить, как будет выглядеть объект, нужно ли что-то изменить в его форме, цвете и деталях.

Цифровые двойники позволяют спрогнозировать загрузку торговых залов, перемещение клиентов и сотрудников, оптимальный уровень освещенности и температуру.

С помощью цифровых двойников можно оптимизировать маршруты транспорта, работу технических служб и пассажиропотоки.

Виртуальная система обработки багажа для крупного аэропорта позволила заранее просчитать, что понадобится дополнительная линия транспортировки для перераспределения потоков при внештатных ситуациях.

Цифровые модели помогают изучить физические объекты и процессы в виртуальной среде, часто — с использованием виртуальной, дополненной и смешанной реальности.

С помощью цифровых двойников разрабатывают, тестируют и запускают космические корабли и целые программы.

Цифровые двойники пациентов помогают сканировать жизненные показатели в режиме онлайн, подбирать наиболее эффективное лечение и проводить операции.

Можно отработать тактику командной игры или провести индивидуальную тренировку на цифровом двойнике.

Существуют цифровые двойники целых городов — например, Сингапура или российского Кронштадта. На них отслеживают транспортные потоки, работу коммуникаций, застройку, экологическую обстановку и энергопотребление, чтобы вовремя вносить важные изменения.

Благодаря цифровым двойникам можно просчитать климатические условия и урожай, сделав земледелие более эффективным.

Как выглядит процесс создания цифрового двойника

Двойники можно создавать разными способами:

  • графическая 3D-модель;
  • модель на базе интернета вещей;
  • интегрированные математические модели — такие как CAE-системы (Computer-aided engineering, решения для инженерного анализа, расчетов и симуляций) для инженерных расчетов;
  • различные технологии визуализации — включая голограммы, AR и VR.

Этапы создания двойника выглядят следующим образом.

Исследование объекта

Этот этап предшествует разработке только в том случае, если у цифрового двойника есть реальный прототип — например, работающее предприятие или система коммуникаций. Тогда разработчики составляют детальную карту прототипа, воспроизводят все процессы и характеристики. При этом важно изучить объект в разных условиях.

Моделирование цифровой копии объекта

Этот этап может быть первым, если реального прототипа еще нет и создание цифрового двойника ему предшествует. Например, в строительстве или дизайне, когда вначале создается цифровая 3D-модель, а уже потом — оригинал здания или другого объекта.

Для построения комплексной модели используются математические методы вычисления и анализа:

    (FEA — Finite Element Analysis), позволяющий рассчитать эксплуатационную нагрузку. Его применяют, допустим, для расчета механики деформируемого твердого тела, теплообмена, гидродинамики и электродинамики.
  • FMEA-модели (Failure Mode and Effects Analysis, анализ видов и последствий отказов) необходимы для анализа надежности систем и выявления наиболее критических шагов производственных процессов.
  • CAD-модели (computer-aided design/drafting, средства автоматизированного проектирования) используются, чтобы рассчитать внешние характеристики и структуру объектов, материалов и процессов.

Воплощение модели

Затем рассчитанную ранее архитектуру цифрового двойника переносят на специальные платформы — такие как Siemens или Dassault Systemes. Они объединяют математические модели, данные и интерфейс для управления цифровым двойником, превращая его в динамическую систему. Этот этап можно сравнить с трансформацией программного кода в программу или приложение с визуальным интерфейсом, который понятен любому пользователю.

Тестирование основных процессов работы на цифровом двойнике

Главная цель этого этапа — спрогнозировать, как будет вести себя объект или система в обычном режиме и при внештатных ситуациях, чтобы избежать поломок и перегрузки после запуска. Для этого к процессу подключают технических аналитиков, которые собирают большой массив данных в ходе испытаний, чтобы просчитать алгоритмы для любых возможных условий и ситуаций.

Запуск и наладка

Если предыдущий этап провели корректно, в процессе работы реального прототипа можно избежать до 90% сбоев и поломок. Однако часть ситуаций все же не удается спрогнозировать, и тогда их отслеживают уже на этапе запуска и наладки цифрового двойника.

Корректировка и развитие оригинального объекта или системы

Далее инженеры продолжают работать с цифровым двойником как с реальным физическим объектом до тех пор, пока не будут отлажены все системы и процессы. По результатам этой работы в оригинальный объект вносят изменения, чтобы добиться его максимальной эффективности.

Перспективы цифровых двойников

По данным Gartner, 12% компаний, которые используют интернет вещей, также применяют и цифровые двойники, а 62% планируют это сделать. GE Digital в 2019 году называла цифру в 1,2 млн цифровых двойников в мире. По другим прогнозам, в ближайшие пару лет рынок цифровых двойников достигнет $16 млрд.

В промышленности технология уже сегодня помогает повысить эффективность минимум на 10%, а в нефтяной отрасли — сэкономить от 5% до 20% капитальных вложений. В ближайшие годы крупные компании перейдут к дистанционному мониторингу и управлению целыми производствами и всеми подразделениями через виртуальные системы.

То же самое произойдет и с городами: они обзаведутся цифровыми двойниками, объединяющими все важнейшие системы, районы и объекты городской инфраструктуры. Онлайн-мониторинг будет осуществляться при помощи IoT-датчиков, сканеров и дронов с машинным обучением, а сами виртуальные системы будут размещены в облаке. При этом доступ к двойникам будет и у федеральных властей. Это позволит, в частности, экстренно реагировать на чрезвычайные ситуации и предотвращать их даже в самых отдаленных регионах.

Цифровых двойников можно будет использовать и в повседневной жизни: например, чтобы следить за жизненными показателями или улучшить работу какого-либо устройства. С помощью интернета вещей мы сможем объединить все коммуникации и технику в доме в единую систему и управлять ими с помощью цифрового двойника дома.

Конференция привлекла внимание большого количества специалистов – участниками конференции стали 202 человека – представителей более 30 университетов страны. На открытии конференции с приветственными словами выступили представители Правительства РФ, выдающиеся ученые и эксперты.

Цифровые двойники

Цифровой двойник – это технология и процесс создания глобально конкурентоспособной продукции. Он интегрирует следующие основные компоненты:

Боровков

Обеспечение глобальной конкурентоспособности

Какой должна быть современная подготовка инженеров?

В отношении современной подготовки инженеров тезис о том, что новая промышленная революция – это другая технология мышления приобретает особенную актуальность и значимость.


Особое внимание при современной подготовке инженеров важно уделять междисциплинарности. С началом пандемии коронавируса нового типа Центр НТИ СПбПУ разработал математическую модель распространения инфекции, и, впоследствии наслоив экономику, социальную сферу, получил в результате уникальный опыт внедрения методов в нетрадиционные отрасли и сферы знаний и деятельности.

Кросс-отраслевые best-in-class решения

Центр НТИ СПбПУ работает с предприятиями из высокотехнологичных отраслей: автомобилестроение, двигателестроение, атомное и нефтегазовое энергомашиностроение, авиастроение и ракетно-космическая отрасль, железнодорожный транспорт, судостроение и кораблестроение, металлургия.

Модель 2+2+2

В настоящее время в системе CML-Bench™ представлено 175 000 проектных решений для сотен проектов из десятков отраслей, причём, и это чрезвычайно важно, в любой момент времени можно ознакомиться с принятыми ранее решениями, их обоснованием, а также с причинами отказа от тех или иных предложений. Иными словами, у каждого решения есть фамилия, имя, отчество, и можно посмотреть, например, какие решения принимались в конкретный день конкретного месяца.

Работа на удаленке


В заключении выступления Алексей Иванович поблагодарил всех участников конференции за интересные и содержательные доклады, опыт, которым поделились спикеры. Диалог о том, какой должна быть современная подготовка инженеров, безусловно, будет продолжен, и проведенная Центром компетенций НТИ СПбПУ конференция стала важным событием на пути совершенствования системы высшего образования, соответствующего современным запросам и вызовам.

Запись всего мероприятия размещена и доступна к просмотру на официальном YouTube-канале Центра НТИ СПбПУ.

Справочно:

Лекция вызвала живой интерес у аудитории: слушатели задавали уточняющие вопросы, поднимали темы, актуальные для развития Центра НТИ СПбПУ, подготовки инженерных кадров в Институте передовых производственных технологий СПбПУ и, в целом, в университете.

Цифровой двойник: экспериментируя с будущим

Что такое цифровой двойник?

Таким образом, важное свойство цифрового двойника заключается в том, что он должен быть постоянно обновляемым представлением реального физического продукта или процесса. Цифровой двойник – это динамическая, а не статическая модель реального объекта. При эксплуатации физического изделия информация с его датчиков, отчеты от пользователей и другие данные непрерывно передаются цифровому двойнику. Ответом из виртуального пространства в реальное становятся различные прогнозы и оценки, которые могут использоваться для улучшения работы и обслуживания реального объекта.

Вплоть до недавнего времени осуществить такое было сложно, но прорыв в развитии цифровых технологий (появление интернета вещей, сетей 5G, облачных вычислений) изменил ситуацию. Сегодня цифровые двойники – один из ведущих трендов технологического развития.

Цифровой двойник – ведущий тренд в промышленности

Считается, что драйвером развития рынка цифровых двойников в России является нефтегазовая промышленность. Использование цифровых двойников скважин помогает экономить компаниям до 20% капитальных затрат. Также технология востребована в двигателестроении, транспортной отрасли, машиностроении. К примеру, в 2017 году КАМАЗ заключил партнерское соглашение с Siemens с целью перехода к цифровизации и внедрения в производственные процессы решений Индустрии 4.0. В результате сотрудничества уже разработаны 3D-модели нескольких десятков станков. КАМАЗ использует их для моделирования сборки и других технологических процессов.

Aurus_Senat_GIMS_2019.jpg

Из других примеров в сфере машиностроения – создание Aurus Senat. Это первый российский автомобиль, который был изготовлен с использованием технологии цифрового двойника. Автомобиль был спроектирован всего за два года именно благодаря качественной виртуальной модели. Цифровой двойник позволил провести 50 тысяч краш-тестов. Их проведение в реальном мире потребовало бы огромных временных и материальных затрат.

Большое значение имеет внедрение цифровых двойников в двигателестроении. Вся современная продукция конструкторских бюро предприятий ОДК к настоящему времени уже полностью оцифрована. Цифровые двойники используются, в частности, при проектировании, производстве, эксплуатации двигателей SaM146, ПД-14, перспективного двигателя большой тяги ПД-35, морских газотурбинных двигателей, других изделий.

47920985b9931b75ff6c7682296ffb93.jpg

На этапе проектирования это позволяет быстро находить и исправлять ошибки в геометрии деталей, а в ходе эксплуатации виртуальная графическая среда помогает оперативно выявлять риски потенциальных неисправностей и аварий, а также сокращать затраты на обслуживание. Что бы ни приключилось с двигателем, все это заранее отразит цифровой двойник.

Цифровые двойники, бесспорно, стали очень полезным инструментом для промышленных компаний. И статистика это подтверждает. К 2021 году половина всех крупных промышленных компаний, по прогнозу консалтинговой компании Gartner, будет использовать цифровых двойников. Deloitte прогнозирует, что к 2023 году мировой рынок цифровых двойников достигнет 16 млрд долларов.

Эксперты предсказывают, что пользоваться цифровым двойником можно будет и в повседневной жизни. Например, автовладелец сможет просто навести мобильный телефон на машину и получить данные об уровне масла в двигателе, информацию о работе систем автомобиля или о сроках очередного техобслуживания.

1476269915_1.jpg

Технология цифровых двойников находит применение и в городской среде. Сегодня многие города обзаводятся своими цифровыми двойниками. Одними из первых были Сингапур, французский Ренн и индийский Джайпур. Виртуальная копия всех физических объектов города позволяет управлять им удаленно, а также решать городские проблемы. Например, в Сингапуре основная задача, которая решается с помощью цифровых двойников, – это управление водой. Для этого были оцифрованы все системы водоснабжения, контроля за количеством воды, счетчики и так далее.

Читайте также: