Числовые последовательности изучавшиеся архимедом доклад

Обновлено: 04.05.2024

Ниже разобраны несколько разных способов задания числовых последовательностей.

Числа, образующие последовательность, называются ее членами (или элементами). И каждое из этих чисел имеет свой порядковый номер.

Например, в последовательности \(3; 6; 12; 24; 48…\) тройка является первым членом (порядковый номер – один), шестерка – вторым (ее номер по порядку равен двум), двенадцать – третьим и т.д.

В математике последовательность обозначают маленькой латинской буквой, а каждый отдельный ее элемент – той же буквой с числовым индексом равным порядковому номеру этого элемента.

То есть, если последовательность \(3; 6; 12; 24; 48…\) обозначить как \(a_n\), то можно записать, что \(a_1=3\), \(a_2=6\), \(a_3=12\), \(a_4=24\) и так далее.

порядковый номер элемента

Отметим, что членами последовательности необязательно должны быть различные числа. Она может состоять из одних и тех же чисел, например, выглядеть вот так: \(1; \: 1; \: 1; \: 1…\) .

Способы задания числовых последовательностей

Все способы формирования числовых последовательностей можно разделить на три большие группы:

- I способ: словесный. Здесь все просто – в буквальном смысле словами описывается каким образом можно вычислить элементы искомой последовательности.

Пример: Напишите первые пять членов последовательности квадратов натуральных чисел .

Решение: Натуральными называют числа, возникающие естественным образом при счете количества предметов, то есть: \(1; \: 2; \: 3; \: 4; \: 5\) и т.д. Нашу же последовательность формируют квадраты этих чисел, то есть \(1^2;\: 2^2; \: 3^2; \: 4^2; \: 5^2…\) . Таким образом, имеем ответ: \(1; \: 4; \: 9; \: 16; \: 25…\)

Ответ: \(1; \: 4; \: 9; \: 16; \: 25…\)

Отметим, что последовательности в начале статьи заданы именно словесным способом.

- II способ: аналитический (формулой энного члена). Тут значение каждого элемента последовательности вычисляется по некоторой формуле, в которую подставляется порядковый номер этого элемента.

Пример: Последовательность задана формулой: \(b_n=\frac\). Вычислите первые пять членов этой последовательности.

Решение: Вычислим \(b_1\). Это первый член последовательности, то есть его порядковый номер \(n\) равен единице. Тогда его значение равно \(b_1=\frac =\frac=0\).
У второго члена \(n=2\), то есть его значение равно \(b_2=\frac =\frac\).
Третий (\(n=3\)): \(b_3=\frac =\frac\).
Четвертый (\(n=4\)): \(b_4=\frac =\frac\).
Пятый (\(n=5\)): \(b_5=\frac =\frac\) .
Готово. Можно писать ответ.

Обратите внимание, что при таком задании последовательности, значение каждого элемента зависит только от его порядкового номера. И поэтому, если нам нужно вычислить, например, пятнадцатый элемент, мы можем это сделать сразу, не вычисляя предыдущие четырнадцать.

Пример: Последовательность задана формулой: \(a_n=8+5n-n^2\). Вычислите \(a_9\).

Решение: Нужно вычислить значение девятого элемента, то есть порядковый номер \(n=9\). Подставляем в формулу: \(a_9=8+5·9-9^2=8+45-81=-28\).

III способ: рекуррентное соотношение. Звучит страшно, но суть проста – здесь дается начало последовательности (один или несколько первых элементов) и правило, по которому из предыдущего (или нескольких предыдущих) членов последовательности можно вычислить следующий.

Пример: Последовательность задана условиями: \(c_1=4\), \(c_=c_n+3\). Вычислите первые пять членов этой последовательности.

Решение: Первый член нам известен: \(c_1=4\).
Второй мы получим, подставив в формулу вместо \(n\) единицу: \(c_=c_1+3\)
\(c_2=c_1+3=4+3=7\)
Третий (\(n=2\)): \(c_=c_2+3 \)
\(c_3=c_2+3=7+3=10\).

Нужные пять элементов вычислены. Теперь можно записывать ответ.

В этом примере мы по сути получали следующий элемент из предыдущего путем прибавления к предыдущему тройки. Логично, ведь формула \(c_=c_n+3\) требовала именно этого. В ней \(c_n\) – это предыдущий элемент, а \(c_\) – следующий за ним (ведь его номер на единицу больше).

На практике могут встречаться более сложные формулы, в которых следующий элемент вычисляется из двух, трех или даже большего количества предыдущих.

Пример: У последовательности известны первые два элемента \(z_1=2;\) \(z_2=5\). Так же известна формула следующего элемента \(z_=3z_-z_n\). Вычислите значения третьего, четвертого и пятого членов.

Решение: Слева будем писать текущую последовательность, а справа вести вычисления очередного элемента.

Последовательность на данный момент:

Так как формула дана для элемента с номером \(n+2\), то чтобы найти \(z_3\) нужно подставлять вместо \(n\) единицу:
\(z_=3z_-z_1\)
\(z_3=3z_2-z_1=3·5-2=13\)

Важное отличие рекуррентного способа задания последовательности от аналитического – при рекуррентном мы не можем посчитать следующий элемент, не зная предыдущих. То есть, если нам нужно вычислить, например, пятнадцатый элемент, придется сначала вычислить все, что идут до него.

Как определить является ли число элементом последовательности?

Во всех предыдущих примерах мы находили значения элементов последовательности – чему равен третий, пятый или девятый член. Иначе говоря, выясняли какое именно число стоит в последовательности на таком-то месте.

Но в практике встречается также обратная задача – значение известно и надо выяснить, есть ли оно среди элементов некоторой последовательности? А если есть, то на каком месте?

Пример (ОГЭ): Какое из чисел ниже есть среди членов последовательности \(a_n=n^2-n\):

Решение: Из условия задачи понятно, что одно из этих чисел точно является элементом последовательности. Поэтому мы можем просто вычислять элементы по очереди, пока не найдем нужный:

\(a_2=2^2-2=2\) – тоже не то.

Нужный элемент найден.

Такой метод решения годится только если заранее известно, что элемент точно в последовательности есть. Потому что если его вдруг там нет – это можно проверять вечность, последовательность ведь бесконечна!

Поэтому в такой ситуации пользуются следующим алгоритмом:

Подставляют заданное число в формулу \(n\) -го члена вместо \(a_n\);

Решая полученное уравнение , находят неизвестное \(n\);

Если \(n\) – натуральное , то данное число - член последовательности.

Пример: Выяснить, является ли число \(3\) членом последовательности \(a_n=\) \(\frac\) ?

Если число \(3\) – член последовательности, то значит при некотором значении \(n\), формула \(\frac\) должна дать нам тройку. Найдем это \(n\) по алгоритму выше.
Подставляем тройку вместо \(a_n\).

Решаем это уравнение. Умножаем левую и правую части на знаменатель \((n+4)\).

Полева Ирина Александровна

Цель настоящего реферата – изучение основных понятий, связанных с числовыми последовательностями, их применение на практике.
Задачи:

  1. Изучить исторические аспекты развития учения о прогрессиях;
  2. Рассмотреть способы задания и свойства числовых последовательностей;
  3. Познакомиться с арифметической и геометрической прогрессиями.

В настоящее время числовые последовательности рассматриваются как частные случаи функции. Числовая последовательность есть функция натурального аргумента. Понятие числовой последовательности возникло и развилось задолго до создания учения о функции. Вот примеры бесконечных числовых последовательностей, известных еще в древности:

1, 2, 3, 4, 5, … - последовательность натуральных чисел.

2, 4, 6, 8, 10,… - последовательность чётных чисел.

1, 3, 5, 7, 9,… - последовательность нечётных чисел.

1, 4, 9, 16, 25,… - последовательность квадратов натуральных чисел.

2, 3, 5, 7, 11… - последовательность простых чисел.

1, ½, 1 /3, ¼, 1 /5,… - последовательность чисел обратных натуральным.

Прогрессии — частные виды числовых последовательностей — встречаются в памятниках II тысячелетия до н. э.

Существуют различные определения числовой последовательности.

Числовая последовательность – это последовательность элементов числового пространства (Википедия).

Числовая последовательность – это занумерованное числовое множество.

Функцию вида y = f (x), x называют функцией натурального аргумента или числовой последовательностью и обозначают y = f (n) или

, , , …, Для обозначения последовательности используется запись ( ).

Будем выписывать в порядке возрастания положительные чётные числа. Первое такое число равно 2, второе – 4, третье – 6, четвёртое – 8 и т.д., таким образом мы получим последовательность: 2; 4; 6; 8; 10 ….

Очевидно, что на пятом месте в этой последовательности будет число 10, на десятом число – 20, на сотом число – 200. вообще для любого натурального числа n можно указать соответствующее ему положительное чётное число; оно равно 2n.

Рассмотрим ещё одну последовательность. Будем выписывать в порядке убывания правильные дроби с числителем, равным 1:

Для любого натурального числа n мы можем указать соответствующую ему дробь; она равна . Так, на шестом месте должна стоять дробь , на тридцатом - , на тысячном – дробь .

Числа, образующие последовательность, называют соответственно первым, вторым, третьим, четвёртым и т.д. членами последовательности. Члены последовательности обычно обозначают буквами с индексами, указывающими порядковый номер члена. Например: , , и т.д. вообще член последовательности с номером n, или, как говорят, n-й член последовательности, обозначают . Саму же последовательность обозначают ( ). Последовательность может содержать, как бесконечное число членов, так и конечное. В этом случае её называют конечной. Например: последовательность двухзначных чисел.10; 11; 12; 13; …; 98; 99

Способы задания числовых последовательностей

Последовательности можно задавать несколькими способами.

Обычно последовательность целесообразнее задавать формулой ее общего n-го члена , которая позволяет найти любой член последовательности, зная его номер. В этом случае говорят, что последовательность задана аналитически. Например: последовательность положительных чётных членов =2n.

Задача: найти формулу общего члена последовательности ( :

6; 20; 56; 144; 352;…

Решение. Запишем каждый член последовательности в следующем виде:

Как видим, члены последовательности представляют собой произведение степени двойки, умноженной на последовательные нечетные числа, причем два возводится в степень, которая равна номеру рассматриваемого элемента. Таким образом, делаем вывод, что

Ответ: формула общего члена:

Другим способом задания последовательности является задание последовательности с помощью рекуррентного соотношения . Формулу, выражающую любой член последовательности, начиная с некоторого через предыдущие (один или несколько), называют рекуррентной (от латинского слова recurro – возвращаться).

В этом случае задается один или несколько первых элементов последовательности, а остальные определяются по некоторому правилу.

Примером рекуррентно заданной последовательности является последовательность чисел Фибоначчи - 1, 1, 2, 3, 5, 8, 13, . , в которой каждое последующее число, начиная с третьего, является суммой двух предыдущих: 2 = 1 + 1; 3 = 2 + 1 и так далее. Данную последовательность можно задать рекуррентно:

Задача: последовательность задана при помощи рекуррентного соотношения + , n N, = 4. Выписать несколько первых членов этой последовательности.

Решение. Найдем третий член заданной последовательности:

Аналогично находим далее, что

При рекуррентном задании последовательностей, получаются очень громоздкими выкладки, так как, чтобы найти элементы с большими номерами, необходимо найти все предыдущие члены указанной последовательности, например, для нахождения надо найти все предыдущие 499 членов.

Описательный способ задания числовой последовательности состоит в том, что объясняется, из каких элементов строится последовательность.

Так же числовую последовательность можно задать простым перечислением её членов.

Развитие учения о прогрессиях

В настоящее время мы рассматриваем прогрессии как частные случаи числовых последовательностей.

Теоретические сведения связанные с прогрессиями, впервые встречаются в дошедших до нас документах Древней Греции.

Прогрессии рассматривались как бы продолжением пропорций, вот почему эпитеты арифметическая и геометрическая были перенесены от пропорций к прогрессиям.

Такой взгляд на прогрессии сохранился и у многих математиков XVII и даже XVIIIв. Именно так следует объяснить тот факт, что символ встречающийся у Барроу, а затем и у других английских учёных того времени для обозначения непрерывной геометрической пропорции, стал обозначать в английских и французских учебниках XVIII века геометрическую прогрессию. По аналогии так стали обозначать и арифметическую прогрессию.

Для решения некоторых задач из геометрии и механики Архимед вывел формулу суммы квадратов натуральных чисел, хотя ею пользовались и до него.

Первые из дошедших до нас задач на прогрессии связаны с запросами хозяйственной жизни и общественной практики, как, например, распределение продуктов, деление наследства и т.д.

Из одной клинописной таблички можно заключить, что, наблюдая луну от новолуния до полнолуния, вавилоняне пришли к такому выводу: в первые пять дней после новолуния рост освещения лунного диска совершается по закону геометрической прогрессии со знаменателем 2. В другой более поздней табличке речь идёт о суммировании геометрической прогрессии:

1+2+ +…+ . решение и ответ S=512+(512-1), данные в табличке наводят на мысль, что автор пользовался формулой.

Sn= +( -1), однако о том, как он дошёл до нее никому не известно.

Суммированием геометрических прогрессий и составлением соответствующих, не всегда отвечающих практическим нуждам задач занимались многие любители математики на протяжении древних и средних веков.

Свойства числовых последовательностей

Числовая последовательность — частный случай числовой функции, а потому некоторые свойства функций (ограниченность, монотонность) рассматривают и для последовательностей.

Последовательность ( ) называется ограниченной сверху , если существует такое число M , что для любого номера n , M.

Последовательность ( ) называется ограниченной снизу , если существует такое число m , что для любого номера n , m.

Последовательность ( ) называется ограниченной , если она ограниченная сверху и ограниченная снизу, то есть существует такое число M 0 , что для любого номера n , M.

Последовательность ( ) называется неограниченной , если существует такое число M 0 , что существует такой номер n , что , M.

Задача: исследовать последовательность = на ограниченность.

Решение. Заданная последовательность является ограниченной, так как для любого натурального номера n выполняются неравенства:

То есть последовательность является ограниченной снизу нулем, и вместе с тем является ограниченной сверху единицей, а значит, является и ограниченной.

Ответ: последовательность ограничена - снизу нулем, а сверху единицей.

Возрастающие и убывающие последовательности

Последовательность ( ) называют возрастающей , если каждый ее член больше предыдущего:

Например, 1, 3, 5, 7. 2n -1. — возрастающая последовательность.

Последовательность ( ) называют убывающей , если каждый ее член меньше предыдущего:

Например, 1; - убывающая последовательность.

Возрастающие и убывающие последовательности объединяют общим термином — монотонные последовательности . Приведем еще несколько примеров.

1; - эта последовательность не является ни возрастающей, ни убывающей (немонотонная последовательность).

=2n. Речь идет о последовательности 2, 4, 8, 16, 32, . — возрастающая последовательность.

Вообще, если a > 1, то последовательность = возрастает;

если 0 = убывает.

Числовую последовательность, каждый член которой, начиная со второго, равен сумме предыдущего члена и одного и того же числа d, называют арифметической прогрессией , а число d – разностью арифметической прогрессии.

Таким образом, арифметическая прогрессия – это числовая последовательность заданная рекуррентно соотношениями

= = x, = = + d, (n = 2, 3, 4, …; a и d – заданные числа).

Пример 1. 1, 3, 5, 7, 9, 11, … – возрастающая арифметическая прогрессия, у которой = 1, d = 2.

Пример 2. 20, 17, 14, 11, 8, 5, 2, –1, –4,… – убывающая арифметическая прогрессия, у которой = 20, d = –3.

Пример 3. Рассмотрим последовательность натуральных чисел, которые при делении на четыре дают в остатке 1: 1; 5; 9; 13; 17; 21 …

Каждый её член, начиная со второго, получается прибавлением к предыдущему члену числа 4. Эта последовательность является примером арифметической прогрессии.

Нетрудно найти явное (формульное) выражение через n. Величина очередного элемента возрастает на d по сравнению с предыдущим, таким образом, величина n элемента возрастет на величину (n – 1)d по сравнению с первым членом арифметической прогрессии, т.е.

= + d (n – 1). Это формула n-го члена арифметической прогрессии.

- это формула суммы n членов арифметической прогрессии.

Арифметической прогрессия названа потому, что в ней каждый член, кроме первого, равен среднему арифметическому двух соседних с ним – предыдущего и последующего, действительно,

Числовую последовательность, все члены которой отличны от нуля и каждый член которой, начиная со второго, получается из предыдущего члена умножением на одно и то же число q, называют геометрической прогрессией , а число q – знаменателем геометрической прогрессии. Таким образом, геометрическая прогрессия – это числовая последовательность ( заданная рекуррентно соотношениями

= b, = q (n = 2, 3, 4…; b и q – заданные числа).

Пример 1. 2, 6, 18, 54, … – возрастающая геометрическая прогрессия

Пример 2. 2, –2, 2, –2, … – геометрическая прогрессия = 2, q = –1.

Одно из очевидных свойств геометрической прогрессии состоит в том, что если последовательность является геометрической прогрессией, то и последовательность квадратов, т.е. ; ;…-

является геометрической прогрессией, первый член которой равен , а знаменатель – .

Формула n-го члена геометрической прогрессии имеет вид:

Формула суммы n членов геометрической прогрессии:

Характеристическое свойство геометрической прогрессии: числовая последовательность является геометрической прогрессией тогда и только тогда, когда квадрат каждого ее члена, кроме первого (и последнего в случае конечной последовательности), равен произведению предыдущего и последующего членов,

Изучением числовых последовательностей занимались многие ученые на протяжении многих веков. Первые из дошедших до нас задач на прогрессии связаны с запросами хозяйственной жизни и общественной практики, как, например, распределение продуктов, деление наследства и т.д. Они являются одним из ключевых понятий математики. В своей работе я постаралась отразить основные понятия, связанные с числовыми последовательностями, способы их задания, свойства, рассмотрела некоторые из них. Отдельно были рассмотрены прогрессии (арифметическая и геометрическая), рассказано об основных понятиях связанных с ними.

Числовые последовательности для чайников: определение, формулы

Последовательности чисел

Мы сталкиваемся с последовательностями чисел каждый день. Вот только встреча с последовательностями на экзамене может быть не самой приятной.

Чтобы было иначе, читаем эту статью, а если что-то непонятно, смело обращаемся к нашим консультантам за помощью.

Одна из самых интересных и известных последовательностей – числа Фибоначчи. Эта последовательность имеет удивительные свойства и часто встречается в природе. Например, семечки у подсолнуха упорядочены в две спирали. Числа, обозначающие количество семечек в каждой из них, являются членами последовательности Фибоначчи.

Что такое числовая последовательность?

Последовательность – это набор элементов множества, который удовлетворяет следующим условиям:

  • для каждого натурального числа существует элемент данного множества;
  • это число является номером элемента и обозначает позицию данного элемента в последовательности;
  • для любого элемента последовательности можно указать следующий за ним элемент.

Числовая последовательность – это функция переменной n, которая принадлежит множеству натуральных чисел N.


Существованием функции, по которой можно вычислить любой член последовательности, она и отличается от случайного набора чисел.

На словах звучит громоздко и сложно. Но на то это и математика, чтобы записывать все буквами и числами. Обычно последовательность обозначают буквой x, хотя можно применять и другие.


Какие бывают последовательности

  • постоянную, или монотонную последовательность: 1, 1, 1, 1, 1.
  • возрастающую последовательность, в которой каждый следующий элемент больше предыдущего
  • убывающую последовательность, в которой каждый следующий элемент меньше предыдущего

Также последовательности делятся на сходящиеся и расходящиеся. Сходящаяся последовательность имеет конечный предел. А предел расходящейся последовательности равен бесконечности, либо последовательность вообще не имеет предела. Но о пределах немного позже.

Рассмотрим самые известные примеры последовательностей. Еще со школы всем знакомы арифметическая и геометрическая прогрессии.

Арифметическая прогрессия

Посмотрим на числа:


Что у них общего? Они все нечетные и каждое следующее можно получить из предыдущего, прибавляя к нему одно и то же число. Назовем его d. В данном случае d=2.

Описанная выше последовательность – арифметическая прогрессия. Приведем основные формулы для нее:


Элемент a с номером n называется общим членом последовательности. А число d – разностью афифметической прогрессии.



Сумма первых n членов прогрессии вычисляется по формуле:


Также африфметическая прогрессия обладает характреристическим свойством:


Геометрическая прогрессия

Геометрической прогрессией называется последовательность чисел, каждый член которой, начиная со второго, равен предыдущему члену, умноженному на одно и то же число q – знаменатель прогрессии. Элементы геометрической прогрессии задаются соотношением:


Основные формулы для геометрической прогрессии приведены ниже. Формула n-го члена прогрессии:


Сумма первых n членов прогрессии:


Характеристическое свойство геометрической прогрессии:


Способы задания последовательностей

Последовательность можно задать несколькими способами:

  1. Аналитически или, проще говоря, формулой.
  2. Реккурентно. Здесь известно несколько первых членов прогрессии и есть формула, которая позволяет вычислить последующие.
  3. Описательно, простым перечислением всех элементов последовательности.

Предел последовательности

Мы уже говорили о пределах функций и способах их вычисления. Из определения последовательности следует, что последовательность – это и есть некоторая функция. Так что, вычисление пределов последовательностей будет во многом схоже с вычислением пределов функций. Правда, со своими особенностями.

Предел последовательности – это такой объект, к которому стремятся члены последовательности с ростом порядкового номера n.

Скажем иначе. Это число, в окрестности которого лежат все члены последовательности, начиная с некоторого.

Переменная n в последовательностях всегда стремится к бесконечности, в сторону увеличения натуральных чисел.

Что нужно помнить, вычисляя пределы последовательностей

Кстати! Также полезно помнить, что для всех наших читателей сейчас действует скидка 10% на любой вид работы.

  1. Последовательность может иметь только один предел.
  2. Если последовательность имеет предел, то она ограничена. Обратное верно не всегда!
  3. Если члены некоторой последовательности zn заключены между соответствующими членами двух последовательностей xn, yn, сходящихся к одному пределу, то и эта последовательность сходится к тому же пределу.
  4. Предел постоянной последовательности равен ее постоянному.
  5. Если две последовательности x и y равны между собой, то пределы этих последовательностей также равны между собой, если они существуют.
  6. Если каждый член сходящейся последовательности не превосходит соответствующего члена другой сходящейся последовательности, то и предел первой не превосходит предела второй.
  7. Предел суммы (разности) двух последовательностей равен сумме (разности) их пределов. При условии, что обе последовательности имеют пределы.
  8. Предел произведения двух последовательностей, имеющих пределы, существует и равен произведению пределов последовательностей.
  9. Постоянный множитель можно выносить за знак предела.
  10. Предел частного двух последовательностей, имеющих пределы, равен частному пределов этих последовательностей, если предел знаменателя не равен нулю.

Для проверки своих решений при вычислении пределов не обязательно нести работу на проверку преподавателю. Достаточно воспользоваться онлайн калькулятором.

Тема последовательностей разрабатывалась многими математиками на протяжении веков. Охватить ее в одной статье просто невозможно. Здесь мы дали лишь поверхностное представление. Если у вас есть вопросы или нужна консультация – обращайтесь к специалистам студенческого сервиса, которые помогут быстро прийти к понимаю.

В настоящее время числовые последовательности рассматриваются как частные случаи функции. Числовая после­довательность есть функция натурального аргумента. (Так, на­пример, арифметическая прогрессия является линейной функцией натурального аргумента, а геометрическая прогрессия — показа­тельной функцией натурального аргумента.)

Понятие числовой последовательности возникло и развилось задолго до создания учения о функции. Вот примеры бесконечных числовых последовательностей, известных еще в древности:

1, 2, 3, 4, 5, … - последовательность натуральных чисел.

2, 4, 6, 8, 10,… - последовательность чётных чисел.

1, 3, 5, 7, 9,… - последовательность нечётных чисел.

1, 4, 9, 16, 25,… - последовательность квадратов натуральных чисел.

2, 3, 5, 7, 11… - последовательность простых чисел.

1, ½, 1 /3, ¼, 1 /5,… - последовательность чисел обратных натуральным.

Идея предела последовательности восходит к V—IV вв. до н. э. Прогрессии — частные виды числовых последовательностей — встречаются в памятниках II тысячелетия до н. э.

I . Числовые последовательности.

Понятие числовых последовательностей.

Числовая последовательность – это занумерованное числовое множество.

Будем выписывать в порядке возрастания положительные чётные числа. Первое такое число равно 2, второе – 4, третье – 6, четвёртое – 8 и т.д. таким образом мы получим последовательность:

Очевидно, что на пятом месте в этой последовательности будет число 10, на десятом число – 20, на сотом число – 200. вообще для любого натурального числа n можно указать соответствующее ему положительное чётное число; оно равно 2n.

Рассмотрим ещё одну последовательность. Будем выписывать в порядке убывания правильные дроби с числителем, равным 1:

Для любого натурального числа n мы можем указать соответствующую ему дробь; она равна . Так, на шестом месте должна стоять дробь , на тридцатом - , на тысячном – дробь .

Числа образующие последовательность, называют соответственно первым, вторым, третьим, четвёртым и т.д. членами последовательности. Члены последовательности обычно обозначают буквами с индексами, указывающими порядковый номер члена.

Например: , , и т.д. вообще член последовательности с номером n, или, как говорят, n-й член последовательности, обозначают . Саму же последовательность обозначают ( ).

Последовательность может содержать, как бесконечное число членов, так и конечное. В этом случае её называют конечной.

Например: последовательность двухзначных чисел.

10; 11; 12; 13; …; 98; 99

1.2 Способы задания числовых последовательностей.

Последовательности можно задавать несколькими способами. Чтобы задать последовательность, нужно указать способ, позволяющий найти член последовательности с любым номером.

Наиболее часто последовательность задают с помощью формулы n -го члена последовательности.

Например: последовательность положительных чётных членов =2n.

Последовательность правильных дробей: = .

Рассмотрим ещё один пример: пусть последовательность задана формулой: = . Подставляем вместо n натуральные числа 1, 2, 3, 4, 5, и т.д., получаем:

Рассмотрим ещё один способ задания последовательности.

Пример: Пусть первый член последовательности (а ) равен 10, а каждый следующий равен квадрату предыдущего, т.е. а =10, а = .

С помощью формулы а = можно по известному первому члену вычислить второй, затем третий и т.д.

Формулу выражающую любой член последовательности, начиная с некоторого, через предыдущие (один или несколько), называют рекуррентной (от латинского слова recurro – возвращаться).

Так же числовую последовательность можно задать простым перечислением её членов.

Развитие учения о прогрессиях.

В настоящее время мы рассматриваем прогрессии как частные случаи числовых последовательностей.

Возможно, что древние вавилоняне и другие народы той далёкой эпохи имели некоторые общие приёмы решения задач, которые дошли до нас. Однако об этих приёмах мало что известно.

Теоретические сведения связанные с прогрессиями, впервые встречаются в дошедших до нас документах Древней Греции.

Уже в V в. до н.э. греки знали следующие прогрессии и их суммы:

10,10 2 ,10 3 ,10 4 ,10 5 ,………….

И указывает на связь между ними, например:

, т.е. для умножения двух членов геометрической прогрессии достаточно сложить соответствующие члены арифметической прогрессии и взять полученную сумму в качестве показателя 10.

У греков теория геометрических прогрессий была связана с так называемой непрерывной геометрической пропорцией:

a : b = b : a , в котором числа a, b, c образуют геометрическую прогрессию со знаменателем .

Прогрессии рассматривались как бы продолжением пропорций, вот почему эпитеты арифметическая и геометрическая были перенесены от пропорций к прогрессиям.

Такой взгляд на прогрессии сохранился и у многих математиков XVII и даже XVIIIв. Именно так следует объяснить тот факт, что символ встречающийся у Барроу, а затем и у других английских учёных того времени для обозначения непрерывной геометрической пропорции, стал обозначать в английских и французских учебниках XVIII века геометрическую прогрессию. По аналогии так стали обозначать и арифметическую прогрессию.

Для решения некоторых задач из геометрии и механики Архимед вывел формулу суммы квадратов натуральных чисел, хотя её пользовались и до него.

1 2 + 2 2 +3 2 + . + n 2 = 1/6n(n+1)(2n+1)

3.1 Арифметическая прогрессия.

3.1.1 Арифметические прогрессии в древности.

В клинописных табличках вавилонян, как и в египетских па­пирусах, относящихся ко II тысячелетию до н.э., встречаются при­меры арифметических и геометрических прогрессий.

Вот одна вавилонская задача, в которой используется ариф­метическая прогрессия.

Итак, мины (мина равна 60 шекелям) серебра требуется разделить между 10 братьями так, чтобы доли братьев составляли арифметическую прогрессию. Требуется найти разность прогрес­сии, зная, что восьмой брат получает б шекелей.

Вавилонский автор, не имевший в своем распоряжении ни сов­ременной символики, ни готовых формул, вынужден придержи­ваться строго арифметических рассуждений. Идея его решения следующая. Он начинает с нахождения средней арифметической (средней доли), деля мины на 10 и получая мины, ее умножает затем на два. Итак, удвоенная средняя доля есть мины. Это и есть сумма долей третьего и восьмого братьев, имея в виду, что первого от третьего, как и восьмого от десятого отделяют 2 ступени (интервала). Третьего же от восьмого отделяют 5 ступеней, а разность между их долями составляет мины. Отсюда

и находится значение одной ступени, т. е. разность прогрессии,

от мины, или + мины.

А вот египетская задача из папируса Ахмеса.

При решении этой и других аналогичных задач египтяне, ви­димо, пользовались правилом, которое можно записать в совре­еной символике так:

Оно эквивалентно нашей формуле.

Происхождение этого правила не установлено: оно, вероятно, эмпирического характера.

Первые из дошедших до нас задач на прогрессии связаны с запросами хозяйственной жизни и общественной практики, как, например, распределение продуктов, деление наследства и т.д.

3.1.2 Понятие арифметической прогрессии.

Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему члену, сложенному с одним и тем же числом.

Рассмотрим последовательность натуральных чисел, которые при делении на четыре дают в остатке 1:

Каждый её член, начиная со второго, получается прибавлением к предыдущему члену числа 4. эта последовательность является примером арифметической прогрессии.

Иначе говоря, последовательность ( ) – арифметическая прогрессия, если для любого натурального n выполняется условие.

, где d некоторое число.

Из определения арифметической прогрессии следует, что разность между любым её членом, начиная со второго, и предыдущим членом равна d, т.е. при любом натуральном n верно равенство

Число d называют разностью арифметической прогрессии.

Чтобы задать арифметическую прогрессию достаточно указать её первый член и разность.

Например: если а =1 и d=1, то получим арифметическую прогрессию

члены которой – последовательные натуральные числа.

Если разность арифметической прогрессии – положительное число, то такая прогрессия является возрастающей; если это отрицательное число, то такая прогрессия называется убывающей. Если разность арифметической прогрессии равна нулю, то все её члены равны между собой и прогрессия является постоянной последовательностью.

Зная первый член и разность арифметической прогрессии, можно найти любой её член, вычисляя последовательно второй, третий, четвёртый и т.д. члены. Однако для нахождения члена прогрессии с большим номером такой способ не удобен. Постараемся отыскать способ, требующий меньшей вычислительной работы.

По определению арифметической прогрессии:

Точно так же находим, что а =а +5d, и вообще, чтобы найти а , нужно к а прибавить (n-1)d, т.е.

мы получим формулу n-го члена арифметической прогрессии.

Формулу n-го члена арифметической прогрессии можно записать иначе:

Отсюда ясно, что любая арифметическая прогрессия может быть задана формулой вида , где k и b – некоторые числа.

При любом n справедливо равенство , и по определению последовательность (а n ) является арифметической прогрессией, причём разность этой прогрессии равна k.

3.1.3 Формула суммы n -первых членов арифметической прогрессии.

Обозначим сумму n- первых членов арифметической прогрессии (а n ) через S n и запишем эту суму дважды, расположив в первом случае слагаемые в порядке возрастания их номеров, а во втором случае в порядке убывания:

Сумма каждой пары членов прогрессии, расположенных друг под другом, равна а 1 +а n . Действительно,

число таких пар равно n. Поэтому, сложив почленно равенства, получим:

Разделив обе части последнего равенства на 2, получим формулу суммы и первых членов арифметической прогрессии:

3.2 Геометрические прогрессии.

3.2.1 Геометрические прогрессии в древности.

В папирусе Ахмеса содержится задача, в которой требуется найти сумму n членов геометрической прогрессии, зная первый её член и знаменатель.

Из одной клинописной таблички можно заключить, что, наблюдая луну от новолуния до полнолуния, вавилоняне пришли к такому выводу: в первые пять дней после новолуния рост освещения лунного диска совершается по закону геометрической прогрессии со знаменателем 2. в другой более поздней табличке речь идёт о суммировании геометрической прогрессии:

1+2+2 2 +…+2 9 . решение и ответ S=512+(512-1), данные в табличке наводят на мысль, что автор пользовался формулой.

Однако о том, как он дошёл до нее никому не известно.

Издавна большой популярностью пользуется следующая задача легенда, которая относится к началу нашей эры.

В этой задачи речь идёт о суммировании геометрической прогрессии 1, 2, 2 2 , 2 3 , … 2 63 . Её сумма равна:

2 64 -1=18 446 744 073 709 551 615.

Такое количество зёрен пшеницы можно собрать лишь с урожая планеты, поверхность которой примерно в 2000 раз больше поверхности Земли.

Суммированием геометрических прогрессий и составлением соответствующих , не всегда отвечающих практическим нуждам задач занимались многие любители математики на протяжении древних и средних веков.

3.2.2 Понятие геометрической прогрессии.

Геометрической прогрессией называется последовательность отличных от нуля чисел. Каждый член которой, начиная со второго, равен предыдущему члену, умноженному на одно и то же число.

Рассмотрим последовательность, членами которой являются числа 2 с натуральными показателями:

2, 2 2 , 2 3 , 2 4 , 2 5 , ……

Каждый член этой последовательности начиная со второго, получается умножением предыдущего член ан а2. эта последовательность является примером геометрической прогрессии.

Иначе говоря, последовательность b n – геометрическая прогрессия, если для любого натурального n выполняются условия: b n не равно нулю и b n +1 =b n ·q, где q – некоторое число. Обозначим, например, через (b n ) последовательность натуральных степеней числа 2. в этом случае для любого натурального n верно равенство b n +1 = b n ·2; здесь q=2.

Из определения геометрической прогрессии следует, что отношение любого её члена, начиная со второго, к предыдущему члену равно q, т.е. при любом натуральном n верно равенство:

Число q называют знаменателем геометрической прогрессии . Понятно, что знаменатель геометрической прогрессии всегда отличен от нуля.

Чтобы задать геометрическую прогрессию, достаточно указать её первый член и знаменатель.

Если b 1 =1 и q=0,1, то получим геометрическую прогрессию

1; 0,1; 0,01; 0,001; 0,0001; 0,00001 … .

Зная первый член и знаменатель геометрической прогрессии, можно найти последовательно второй, третий и вообще любой её член:

b 3 = b 2 q = (b 1 q)q = b 1 q 2 ,

b 4 = b 3 q = (b 1 q 2 )q = b 1 q 3 ,

b 5 = b 4 q = (b 1 q 3 )q = b 1 q 4 .

Из этого следует: чтобы найти b n , мы должны b 1 умножить на q n -1 , т.е.

3.2.3 Формула суммы n -первых членов геометрической прогрессии.

Выведем формулу суммы n первых членов произвольной геометрической прогрессии.

Пусть дана геометрическая прогрессия (b n ). Обозначим сумму n первых членов её через S n . :

S n = b 1 + b 2 + b 3 + . + b n -1 + b n . (1)

Умножим обе части этого равенства на q:

S n q = b 1 q + b 2 q + b 3 q + . + b n -1 q + b n q.

Учитывая, что b 1 q = b 2 , b 2 q = b 3 , b 3 q = b 4 , . b n -1 q = b n , получим :

S n q = b 2 + b 3 + b 4 + . + b n + b n q. (2)

Вычтем почленно из равенства (2) равенство (1) и приведём подобные члены:

S n q – S n = (b 2 + b 3 + . + b n + b n q) – (b 1 + b 2 +. + b n -1 + b n ) = b n q – b 1 ,

S n (q – 1) = b n q – b 1 .

Отсюда следует, что при q не равном 1:

S n = (b n q – b 1 )/(q-1).

Мы получили формулу n первых членов геометрической прогрессии, в которой q не равно 1, если q равно 1, то все члены прогрессии равны первому её члену.

При решении задач удобно пользоваться формулой суммы n первых членов геометрической прогрессии, записанной в другом виде:

S n = (b 1 (q n – 1))/(q-1).

Изучением числовых последовательностей занимались многие ученые на протяжении многих веков. Они являются одним из ключевых понятий математики. В своей работе я постаралась отразить основные понятия связанные с числовыми последовательностями, способы их задания, рассмотрела некоторые из них. Отдельно были рассмотрены прогрессии (арифметическая и геометрическая), рассказано о истории их возникновения, о основных понятиях связанных с ними.

Список используемой литературы.

Читайте также: