Азот как необходимый биогенный элемент доклад

Обновлено: 08.07.2024

Азот входит в состав:

  • белков, пептидов и аминокислот, которые являются составной частью протоплазмы и ядра растительных клеток;
  • нуклеиновых кислот (ДНК и РНК) — носителей наследственных свойств живых организмов и участвующих в обмене веществ;
  • молекул хлорофилла;
  • ферментов;
  • фосфатидов;
  • гормонов;
  • большинство витаминов.

Азотное питание растений

Все ферменты — белковые вещества, поэтому при недостаточном снабжении растений азотом синтез ферментов замедляется, что приводит к нарушениям в процессах биосинтеза, обмена веществ, в итоге, к снижению урожая.

Регулирование азотного питания растений, можно влиять на урожайность сельскохозяйственных культур с учетом других факторов жизни. Максимальный урожай достигается при достаточном обеспечении растений всеми условиями их роста. Академик Д.Н. Прянишников писал, что вся история земледелия в Западной Европе говорит о том, что главным условием, определяющим среднюю высоту урожаев в разные эпохи, была степень обеспеченности сельскохозяйственных растений азотом.

Оптимальное азотное питание способствует синтезу белковых веществ, растения образуют мощные стебли и листья с интенсивной зеленой окраской. Мощный ассимиляционный аппарат позволяет накапливать большее количество продуктов фотосинтеза, повышая урожайность и, как правило, его качество.

Одностороннее избыточное питание азотом, особенно во второй половине вегетационного периода, приводит к задержке созревания растений; образуется большая вегетативная масса, урожай репродуктивных органов но не успевает сформироваться.

Недостаток азота приводит к сильному замедлению роста растений. Прежде всего сказывается на развитии вегетативной массы: листья становятся мелкими, светло-зелеными, раньше желтеют, стебли тонкие, слабо ветвятся. Снижается формирование репродуктивных органов, урожай резко снижается. Азотное голодание у злаковых культур приводит к ослаблению кущения, уменьшается количество зерен в колосе, снижается белковость зерна.

Содержание азота в растениях

По химическому составу, на долю азота в растениях приходится 0,5-5,0% воздушно-сухой массы, основное количество приходится на семенах. Содержание белка четко коррелирует с количеством азота в растениях. В вегетативных органах содержание азота ниже: в соломе бобовых 1,0-1,4%, в соломе злаковых 0,45-0,65%. Еще меньше азота накапливается в корне-, клубнеплодах и овощных культурах: картофель (клубни) 0,32%, сахарная свекла (корни) 0,24%, капуста 0,33% сырого вещества.

Содержание азота в растениях зависит от возраста, почвенно-климатических условий, питательного режима, в частности обеспеченности питательными элементами.

Таблица. Содержание белка и азота в семенах различных культур, % 1 Ягодин Б.А., Жуков Ю.П., Кобзаренко В.И. Агрохимия/Под ред. Б.А. Ягодина. — М.: Колос, 2002. — 584 с.: ил.

Культура Белок Азот
Соя 29 5,8
Горох 20 4,5
Пшеница 14 2,5
Рис 7 1,2

Содержание азота в молодых вегетативных органах выше. По мере старения азотистые вещества мигрируют в появляющиеся листья и побеги.

Таблица. Содержание азота в вегетативной массе зерновых культур по фазам развития, % на воздушно-сухое вещество 2 Ягодин Б.А., Жуков Ю.П., Кобзаренко В.И. Агрохимия/Под ред. Б.А. Ягодина. — М.: Колос, 2002. — 584 с.: ил.

Поступление и трансформация азота в белковые вещества

В основном азот поступает в растения в нитратной и аммонийно форме, но также способны усваивать некоторые растворимые органические соединения, например, мочевину, аминокислоты, аспарагин.

Из поступающих из почвы в растения соединений азота только аммиак непосредственно используется для синтеза аминокислот. Нитраты и нитриты включаются в синтез аминокислот только после восстановления в тканях растений.

Редукция нитратов до аммиака начинается уже в корнях с помощью флавиновых металлоферментов:

Превращение азота в растениях

При избытке, часть нитратов поступает в неизменном виде в листья, где восстанавливается по той же схеме.

Образование аминокислот (аминирование) происходит в результате взаимодействия аммиака с кетокислотами: пировиноградной, щавелевоуксусной, кетоглутаровой и др., образующиеся в процессе окисления углеводов. Аминирование регулируется ферментами. Так, при взаимодействии пировиноградной кислоты с аммиаком образуется аланин:


Аналогично взаимодействие аммиака с щавелевоуксусной кислотой приводит к образованию аспарагиновой кислоты (СООН-СН2-СНNН2-СООН), с кетоглутаровой кислотой — глутаминовая кислота (СООН-СН2-СН2-СНNН2-СООН).

В аминокислоты азот входит в виде аминогруппы (—NH2). Процессы образования аминокислот происходит в корнях и в надземной части растений.

Опыты с использованием меченых атомов показывают, что уже через несколько минут после подкормки растений аммиачными удобрениями, в тканях могут обнаруживаться аминокислоты, синтезированные из внесенного в подкормку аммиака. При этом первой образующейся аминокислотой является аланин, затем аспарагиновая и глутаминовая кислоты.

Нитратный азот может накапливаться в растениях в больших количествах, без причинения им вреда. Аммиак в свободном виде в тканях содержится в незначительных количествах. Его накопление, особенно при недостатке углеводов, приводит к аммиачному отравлению растений.

Однако растения имеют способность связывать избыток свободного аммиака: его часть вступает во взаимодействие с синтезированными аспарагиновой и глутаминовой аминокислотами, образуя соответствующие амиды — аспарагин и глутамин:

Образование аспарагина

Образование глутамина

Образование аспарагина и глутамина позволяет растениям защитить себя от аммиачного отравления и создать резерв аммиака, кроме того, амиды участвуют в синтезе белков.

В 1937 г. биохимиками А.Е. Браунштейном и М.Г. Крицманом была открыта реакция переаминирования, заключающаяся в переносе аминогруппы с аминокислоты на кетокислоту с образованием других амино- и кетокислот. Реакция катализируется ферментами трансаминазами или аминоферазами.

Так, присоединение к пировиноградной кислоте аминной группы от глутаминовой кислоты, приводит к образованию аланина и кетоглутаровой кислоты:


Благодаря переаминированию синтезируется значительное число аминокислот. В растениях наиболее легко переаминируются глутаминовая и аспарагиновая кислоты.

Аминокислоты являются составными частями полипептидов и белков. В построении белковых молекул участвуют 20 аминокислот, аспарагин и глутамин в различных соотношениях и пространственной ориентации, что обуславливает огромное разнообразие белков. В настоящее время известно более 90 аминокислот, около 70 из них присутствуют в растениях в свободном виде и не входят в состав белков.

Растения синтезируют аминокислоты, которые не могут образовываться в организме человека и высших животных, но являются незаменимыми для их жизни. К ним относятся: лизин, гистидин, фенилаланин, триптофан, валин, лейцин, изолейцин, треонин и метионин.

На долю небелкового органического азота в растениях приходится 20-26% от общего количества. В неблагоприятных условиях, например, при дефиците калия или недостаточном освещении, количество небелковых азотистых соединений возрастает.

В тканях растений белки находятся в динамичном равновесии с небелковыми азотистыми соединениями. Одновременно с синтезом белков и аминокислот протекает процесс их распада: отщепление аминогруппы от аминокислоты с образованием кетокислот и аммиака. Этот процес называется дезаминированием. Высвобождающаяся кетокислота используется растениями для синтеза углеводов, жиров и иных веществ; аммиак повторно вступает в реакцию аминирования других кетокислот, образуя новые аминокислоты, при его избытке — аспарагин и глутамин.

Таким образом, весь цикл превращений азотистых соединений в растениях начинается (аминирование) и заканчивается (дезаминирование) аммиаком.

За все время вегетации растения синтезируется большое количество белковых соединений, причем в разные периоды роста обмен азотистых веществ происходит по-разному.

При прорастании семян, клубней, луковиц наблюдается распад запасных белков. Продукты распада расходуются на синтез аминокислот, амидов и белков в тканях проростков до выхода их на поверхность почвы. В Затем, по мере формирования корневой системы и листового аппарата, синтез белков протекает за счет минерального азота, поглощаемого из почвы.

В молодых растениях преобладает синтез белков. В процессе старения растений начинает преобладать распад белков. Продукты распада из стареющих органов мигрируют в молодые, интенсивно растущие органы, где используются для синтеза новых белков в точках роста. По мере созревания растений и формирования репродуктивных органов, белковых веществ распадаются в вегетативных частей, продукты распада перемещаются в репродуктивные органы, где используются для образования запасных белков. К этому моменту поступление азота в растения из почвы существенно замедляется или полностью прекращается.

Особенности аммонийного и нитратного питания растений

В конце XIX в. в агрономической науке ведущую роль занимала теория нитратного питания растений, роль аммиака как источника минерального питания отрицалась.

Причинами этому послужили:

  • опыты в водных культурах: отмечалось хорошее развитие растений на фоне нитратных солей, на фоне аммонийных солей развитие было плохим;
  • открытие процесса нитрификации в почве; что стало основанием считать: при внесении в почву аммонийных удобрений они переходят в нитратную форму, которая усваивается растениями;
  • внесение чилийской селитры (NaNO3) заметно повышало урожайность культур.

Однако в конце века П.С. Коссович в опытах со стерильными культурами показал, что растения могут также усваивать аммиачный азот без окисления в нитратную форму. К такому же выводы пришел и французский исследователь Мазе в 1900 г. После этого были изучены условия и особенности питания аммонийными и нитратными формами азота. Фундаментальные исследования по этому вопросу провел Д.Н. Прянишников. Он показал, что эффективность использования различных форм азота зависит от реакция среды: в нейтральной реакции лучше поглощается аммонийный азот, при кислой — нитратный.

В начальные фазы роста существенное значение имеют биологические особенности. При прорастании семян с небольшим запасом углеводов, например, у сахарной свеклы, а, следовательно, органических кетокислот, избыточное поступление аммония в растения оказывает негативное действие. Аммонийный азот не успевает использоваться для синтеза аминокислот, накапливается в тканях растения и вызывает их отравление. В данном случае используют нитратные формы азотных удобрений, так как они также накапливаться в тканях растений, но не причиняют вреда. Семена и посевной материал с большим запасом углеводов, например, картофель, используют аммонийный азот для синтеза аминокислот без ограничений. Поэтому для таких культур аммонийная и нитратная формы в начальные стадии роста равноценны.

На поглощение нитратного и аммонийного азота влияет обеспеченность другими элементами питания. Повышенное содержание в почве калия, кальция и магния способствует поглощению аммония. При нитратном питании значение имеет обеспеченность растений фосфором и молибденом. Дефицит молибдена приводит к задержке восстановления нитратов до аммиака и способствует накоплению нитратов в тканях растений.

Учитывая, что аммонийная форма азота при поступлении в растения может сразу использоваться для синтеза аминокислот, тогда как нитратная только после восстановления до аммиака, аммоний более энергетически экономной формой.

Нажмите, чтобы узнать подробности

В жизни человека важную роль играет азот. Например, азот входит в состав земной атмосферы в молекулярном виде, на него приходится 76% атмосферы по массе. В связанном состоянии элемент встречается в почве и воде в виде химических соединений. В живых организмах (растениях и животных) азот представлен в составе органических соединений, входит в аминокислоты в количестве от 15% до 18%. Так же азот используют: в металлургии, в лазерной резке металла, медицине и так далее. Целью работы является изучение полезных свойств азота.

Проектно – исследовательская работа

Выполнил учащийся 9В класса

Ф.И.О. Провоторов Василий Евгеньевич

Руководитель: Манаенкова Зоя Алексеевна

2. История открытия химического элемента азота…………………………………4

3. Физические свойства азота………………………………………………………..5

4. Химические свойства, строение молекулы………………………………………6

5. Способы получения азота (лабораторные и в промышленности)………………7

8. Библиографический список……………………………………………………. 10

В жизни человека важную роль играет азот. Например, азот входит в состав земной атмосферы в молекулярном виде, на него приходится 76% атмосферы по массе. В связанном состоянии элемент встречается в почве и воде в виде химических соединений. В живых организмах (растениях и животных) азот представлен в составе органических соединений, входит в аминокислоты в количестве от 15% до 18%. Так же азот используют: в металлургии, в лазерной резке металла, медицине и так далее. Целью работы является изучение полезных свойств азота.

Познакомиться с историей открытия такого химического элемента как азот.

Узнать о физических и химических свойствах азота и строении его молекулы.

Познакомится со способами получения азота

Исследовать полезное воздействие азотистых удобрений на рост растений.

Сделать вывод о пользе азота

Узнать больше информации об азоте

Изучить влияние азота на рост растений.

История открытия химического элемента азота

В 1772 году Генри Кавендиш провёл опыт: он многократно пропускал воздух над раскалённым углём, затем обрабатывал его щёлочью, в результате получался остаток, который Кавендиш назвал удушливым (или мефитическим) воздухом. С позиций современной химии ясно, что в реакции с раскалённым углём кислород воздуха связывался в углекислый газ, который затем поглощался щёлочью. При этом остаток газа представлял собой по большей части азот. Таким образом, Кавендиш выделил азот, но не сумел понять, что это новое простое вещество (химический элемент), и описал его как мефитический воздух (от английского mephitic — ‘вредный’). В том же году Кавендиш сообщил об этом опыте Джозефу Пристли.

Интересен тот факт, что он сумел связать азот с кислородом при помощи разрядов электрического тока, а после поглощения оксидов азота в остатке получил небольшое количество газа, абсолютно инертного, хотя, как и в случае с азотом, не смог понять, что выделил новый химический элемент — инертный газ – аргон.

Джозеф Пристли в это время проводил серию экспериментов, в которых также связывал кислород воздуха и удалял полученный углекислый газ, то есть также получал азот, однако, будучи сторонником господствующей в те времена теории флогистона, также неверно истолковал полученные результаты — он решил, что выделил флогистированный воздух (то есть насыщенный флогистоном).

Физические свойства

При нормальных условиях азот — это бесцветный газ, не имеет запаха, мало растворим в воде (2,3 мл/100 г при 0 °C, 1,5 мл/100 г при 20 °C, 1,1 мл/100 г при 40 °C, 0,5 мл/100 г при 80 °C). Плотность азота составляет 1,2506 кг/м³ (при нормальных условиях).

В жидком состоянии (температура кипения -195,8 °C) — бесцветная, подвижная, как вода, жидкость. Плотность жидкого азота 808 кг/м³. При контакте с воздухом поглощает из него кислород.

При -209,86 °C азот переходит в твёрдое состояние в виде снегоподобной массы или больших белоснежных кристаллов. При контакте с воздухом поглощает из него кислород, при этом плавится, образуя раствор кислорода в азоте.




Химические свойства, строение молекулы

Азот в свободном состоянии существует в форме двухатомных молекул N2(см приложение 1). Атом азота имеет 7 электронов, 7 протонов, 7 нейтронов. Атомная масса составляет 14,0067 (г/моль). Плотность атома 0,001251 (г/см 3 ). Температура плавления -209,9 o С, а кипения -195,8 o С . Валентность (способность атома образовывать химические соединения) бывает III, IV, V. Азот - элемент 2 периода VА группы периодической системы Менделеева. Степени окисления от -3 до +5, заряд иона N 3- .

Диссоциация молекул азота при нормальных условиях практически не происходит. Молекула азота неполярная и слабо поляризуется, силы взаимодействия между молекулами очень слабые, поэтому в обычных условиях азот газообразен.

Даже при 3000 °C степень термической диссоциации N2 составляет всего 0,1 %, и лишь при температуре около 5000 °C достигает нескольких процентов (при нормальном давлении). В высоких слоях атмосферы происходит фотохимическая диссоциация молекул N2. В лабораторных условиях можно получить атомарный азот, пропуская газообразный N2 при сильном разрежении через поле высокочастотного электрического разряда. Атомарный азот намного активнее молекулярного: в частности, при обычной температуре он реагирует с серой, фосфором, мышьяком и с рядом металлов, например, с ртутью.

Вследствие большой прочности молекулы азота некоторые его соединения эндотермичны (многие галогениды, азиды, оксиды), соединения азота термически малоустойчивы и довольно легко разлагаются при нагревании. Именно поэтому азот на Земле находится по большей части в свободном состоянии.

Ввиду своей значительной инертности азот при обычных условиях реагирует только с литием: >>при нагревании он реагирует с некоторыми другими металлами и неметаллами, также образуя нитриды.

>>>>Наибольшее практическое значение имеет нитрид водорода (аммиак) NH3, получаемый взаимодействием водорода с азотом (см приложение 2).

В электрическом разряде реагирует с кислородом, образуя оксид азота(II) NO.

Описано несколько десятков комплексов с молекулярным азотом в науке.

Способы получения азота

Реакция внутримолекулярного окисления-восстановления при нагревании смеси растворов нитрита натрия и хлорида аммония при 80 °С:

Образующийся азот может быть загрязнен примесями оксида азота (II) и азотной кислоты, для удаления которых газ пропускают через подкисленный раствор бихромата калия.

Твердый нитрит аммония разлагается с взрывом:

Реакции окисления аммиака:

Реакции взаимодействия металлов с азотной кислотой:

Термическое разложение азида лития:

Чистый азот в промышленности наряду с кислородом и другими газами получают фракционной перегонкой жидкого воздуха. Этот процесс включает три стадии. На первой стадии из воздуха удаляют частицы пыли, пары воды и углекислый газ. Затем воздух сжижают, охлаждая его и сжимая до высоких давлений. На третьей стадии фракционной перегонкой жидкого воздуха разделяют азот, кислород и аргон. Первым отгоняется азот, затем кислород.

Практическая часть

Для начала опыта я приобрёл:

1 кг карбамида (мочевины)

семена перца (красного, декоративного)

одноразовые стаканчики (тара)

Перцы предпочитают легкую рыхлую землю, имеющую пористую структуру. Грунт такого типа обеспечивает доступ влаги и воздуха. Для развития растений важно содержание в почве микроэлементов (азот, калий, фосфор, железо) и полезной микрофлоры. Поэтому я приобрёл грунт со всеми выше описанными микроэлементами.

Я взял два одноразовых пластиковых стакана, засыпал их грунтом, посадил семена перца. На первый стаканчик я приклеил надпись с номером 1, а на второй с номером 2. Таким образом, имею два стакана, засаженные семенами перца, №1 и №2. Растения в ёмкостях содержатся в одинаковых условиях ухода: в комнате, которая периодически проветривается, есть солнечный свет, растения поливаются с одинаковым интервалом отстоянной водой комнатной температуры и раствором при подкормках. Но в стакан №1 я не вносил удобрения, а в стакане №2 производил регулярные подкормки азотным удобрением, карбамидом (мочевиной).

Когда появляются первые всходы, то выполняется их обработка мочевиной. Для этого требуется водный раствор, содержащий мочевину (2,25 гр/л) Пульверизатором распыляют раствор на листья, а с помощью лейки в почву. Первая подкормка выполняется при появлении у перцев второго листа. Через 2 недели выполняется вторая подкормка, когда перцы выпустят по третьему листу.

Мочевины на овощные культуры (малую рассаду) приблизительно 15 г/10 л. Составив пропорцию (см приложение 3), я подсчитал, что на 1.5 л нужно 2,25 г карбамида.

Итак, я засыпал грунтом и посадил в оба стаканчика по семечку перца, полил.

Взвесил образцы: вес первого - 76,8 г вес второго – 76,82 г Приблизительно равный вес подтверждает одинаковые условия взращивания. Итак, я засыпал грунтом и посадил в оба стаканчика по семечку перца, полил. Семена начали прорастать, и я поливал стаканчик № 1 отстоянной водой комнатной температуры, а стаканчик № 2 поливал той же водой и удобрял после первой недели и после второй. Результаты первой недели можно увидеть на фотографиях. Вес первого стаканчика составил 77,04 г, а второго 78 г. Вес после второй недели стаканчика №1 78,23 г а стаканчика №2 80,05 г.

Растение во втором стаканчике взошло быстрее, ведь польза азотного удобрения состоит в том, что удобряемое растение быстрее растёт и быстрее даёт плоды, ведь азот активизирует все важные обменные процессы, такие как синтез хлорофилла или усвоение витаминов, а так же влияет на метаболизм и является строительным материалом для формирования нуклеиновых кислот и других соединений.




В данной работе я познакомился с таким химическим элементом как азот, узнал о его физических и химических свойствах, узнал об истории его открытия.

По полученной информации я решил на опыте раскрыть полезное воздействие на рост растений азота, входящего в состав азотистых удобрений, и результат оправдал мои ожидания.

Из всей проделанной работы я узнал о способах получения азота, как в лаборатории, так и в промышленности, а так же раскрыл полезное свойство азота в удобрении.

Библиографический список

О. С. Габриелян, “Химия 8 класс”, 2007 год, ООО “Дрофа”. 127018, Москва, Сущевский вал, 49.

А. А. Журин, “Химия 9 класс”, 2017 год, Акционерное общество “Издательство “Просвещение”. 127521, Москва, 3-й проезд Марьиной рощи, 41.

Азот – один из элементов-органогенов (т.е. из которых в основном состоят все органы и ткани), массовая доля которого в организме человека составляет до 2,5%. Азот является составной частью таких веществ, как аминокислоты (а, следовательно, пептидов и белков), нуклеотиды, гемоглобин, некоторых гормонов и медиаторов.

Биологическая роль азота

Чистый (элементарный) азот сам по себе не обладает какой-либо биологической ролью. Биологическая роль азота обусловлена его соединениями. Так в составе аминокислот он образует пептиды и белки (наиболее важный компонент всех живых организмов); в составе нуклеотидов образует ДНК и РНК (посредством которых передается вся информация внутри клетки и по наследству); в составе гемоглобина участвует в транспорте кислорода от легких по органам и тканей.

Такое соединения как оксид азота (II) и его источники (например, нитроглицерин – лекарственное средство для снижения давления) воздействуют на гладкую мускулатуру кровеносных сосудов, обеспечивая ее расслабление и расширение сосудов в целом (приводит к снижению давления).

Пищевые источники азота

Не смотря на доступность азота для живых организмов (составляет почти 80% атмосферы нашей планеты), человеческий организм не способен усваивать азот в такой (элементарной) форме. В организм человека азот в основном поступает в составе белков, пептидов и аминокислот (растительных и животных), а также в составе таких азотсодержащих соединений, как: нуклеотиды, пурины, и др.

Дефицит азота

Как явление никогда не наблюдают дефицит азота. Поскольку организму в элементарной форме он не нужен, дефицита, соответственно, никогда и не возникает. В отличие от самого азота, дефицит веществ его содержащих (прежде всего белков) явление достаточно частое.

Причины дефицита азота

  • Нерациональная диета, содержащая недостаточное количество белка или неполноценного по аминокислотному составу белка (белковое голодание);
  • Нарушение переваривания белков в желудочно-кишечном тракте;
  • Нарушение всасывания аминокислот в кишечнике;
  • Дистрофия и цирроз печени;
  • Наследственные нарушения обмена веществ;
  • Усиленное расщепление белков тканей;
  • Нарушение регуляции азотистого обмена.

Последствия дефицита азота

  • Многочисленные расстройства, отражающие нарушения обмена белков, аминокислот, азотсодержащих соединений и связанных с азотом биоэлементов (дистрофия, отеки, различные иммунодефициты, апатия, гиподинамия, задержка умственного и физического развития и пр.).

Избыток азота

Как и дефицит, избыток азота как явление не наблюдается никогда – можно говорить только об избытке веществ, его содержащих. Наиболее опасно, когда азот поступает в значительных количествах в организм человека в составе токсичных веществ, например, нитратов и нитритов.

Азот является одним из важнейших биогенных элементов, необходимых для всех живых организмов. Он входит в состав белков нуклеиновых кислот (генетического материала живых организмов) и аминокислот.

Растения способны усваивать азот, лишь связанный с кислородом или водородом, т.е. переведенный в формы – аммиака NH3, ионы аммония NH4 + или нитрат-ионы NO3 – . Соли, содержащие нитрат-ионы, называются нитратами.

Интенсивное применение азотных и калийных удобрений (например, NH4NO3, NaNO3, KNO3) привело к появлению проблемы нитратов. Избыточное внесение азотных удобрений ведет к аккумуляции этих соединений в растениях. Также происходит загрязнение водоемов и грунтовых вод остатками удобрений.

Наука располагает достоверными данными о накоплении нитратов в овощах, выращенных на полях, получавших низкие нормы минеральных удобрений или вообще их не получавших. Аккумуляции нитратов способствуют теплые и влажные условия выращивания растений, нарушение режимов освещения, а также повреждение и неправильное хранение готовой продукции. Внесение высоких норм навоза также приводит к нитратному загрязнению растений и грунтовых вод.

Разные виды и сорта растений обладают различной способностью к накоплению нитратов. Накопителями нитратов являются семейства тыквенных, капустных. Наибольшее их количество содержится в листовых овощах: петрушке, укропе, сельдерее. Наименьшее количество – в томатах, баклажанах, чесноке, зеленом горошке, винограде, яблоках. Зимние сорта капусты накапливают значительно меньше нитратов, чем летние.

Наибольшее количество нитратов содержится в корнях, стеблях, черешках и жилках листьев. Так у капусты наружные листья содержат в 2 раза больше нитратов, чем внутренние. В жилке листа и кочерыжке содержание нитратов в 2-3 раза больше, чем в листовой части. У кабачков и огурцов содержание нитратов убывает от плодоножки к верхушке.

Допустимые нормы нитратов (по данным ВОЗ) составляют 5 мг (по нитрат-иону) в сутки на 1 кг массы здорового человека, т.е. при массе 50-60 кг – 220 – 300 мг, а при 60-70 кг – 300-350 мг.

При использовании экологически чистых продуктов человек в сутки потребляет около 100 – 200 мг нитратов. Если продукция выращена на “переудобренных” нитратами почвах, то доза получения нитратов превышает норму в 2-5 раз.

Предельно допустимые концентрации (ПДК) нитратов в различных видах и сортах растений приведены в табл. 1.

Допустимое содержание нитратов в растительном сырье

Растительное сырье ПДК нитратов, мг/кг продукта
Арбузы
Виноград
Продолжение таблицы 1
Капуста ранняя
Капуста поздняя
Картофель
Морковь ранняя
Морковь поздняя
Огурцы в открытом грунте
Огурцы в закрытом грунте
Томаты
Свекла
Тыква
Груши, яблоки
Кабачки
Лук репчатый
Лук перо
Овощи листовые (салат, петрушка, укроп)
Перец сладкий
Дыня

В организме избыточные нитраты не успевают выводиться или расходоваться на синтез биомолекул (белков, аминокислот), а превращаются в нитриты NO2 – . Именно нитриты представляют угрозу здоровью человека. Восстанавливают нитраты в нитриты различные микроорганизмы, заселяющие преимущественно кишечник. Степень восстановления нитратов зависит от количества нитратов в продуктах и условий жизнедеятельности микроорганизмов. Для развития кишечной микрофлоры благоприятна слабощелочная и нейтральная среда. Поэтому наиболее чувствительны к нитратам люди с пониженной кислотностью желудка: дети до года и больные гастритом и диспепсией. У таких людей микрофлора толстого кишечника может проникать в желудок, и тогда резко увеличивается процент восстановления нитратов по сравнению со здоровыми людьми. К избытку нитратов в воде и пище наиболее чувствительны дети, особенно первого года жизни. Противонитратные механизмы у ребенка формируются только к одному году.

Нитриты, всасываясь в кровь, способствуют понижению содержания гемоглобина и нарушению его транспортной функции. Также они окисляют фермент клеточного дыхания, что вызывает нарушение усвоения кислорода клетками. В результате развивается гипоксия, которая вызывает накопление кислых продуктов промежуточного обмена веществ – кетоновых тел (альдегиды, ацетон, бета-оксимасляная кислота и др.), вызывающих развитие дистрофических изменений во внутренних органах и системах.

Кроме того, нитриты в организме взаимодействуют с аминокислотами и другими азотсодержащими веществами, образуя нитрозоамины и гидроксиламины, обладающие иммунодепрессивным, канцерогенным, тератогенным и другими биологическими действиями.

Нитриты обладают также сосудорасширяющим действием, вызывают падение артериального давления и ослабляют сердечную деятельность.

Содержание нитратов можно уменьшить вымачиванием, кипячением продуктов, удалением тех частей, которые содержат большое количество нитратов.

Читайте также: