В чем особенность взрыва как процесса горения кратко

Обновлено: 17.05.2024

В наиболее общей формулировке горение представляет собой быстро протекающую физико-химическую реакцию с выделением тепла и света. В природе и в технике чаще всего наблюдаются процессы горения, связанные с окислением горючих веществ кислородом воздуха. Однако многие вещества вступают между собой в реакцию горения и при отсутствии кислорода. Так, водород и некоторые металлы горят в газообразном хлоре, медь — в парах серы, алюминий в броме и т. п.

Наряду с реакциями горения, протекающими в результате химического соединения различных веществ, происходят реакции горения, связанные с разложением газов, жидкостей и твердых веществ (ацетилен, нитроглицерин, нитроклетчатка, азид свинца и др.).

Разновидностью горения является взрыв и детонация, когда реакция соединения или разложения веществ протекает со скоростью сотен и даже тысяч метров в секунду.

Различают твердые, жидкие и газообразные (парообразные) горючие вещества. Твердые и жидкие вещества могут находиться в воздухе во взвешенном состоянии (в виде пыли или тумана).

Горение возможно лишь при определенных условиях: наличие горючего вещества и вещества, поддерживающего процесс горения, и достаточный их нагрев. Начавшееся горение может продолжаться только при условии, если количество тепла, выделяющегося при горении, превышает теплоотдачу в окружающую среду. К горению относят также взрыв и детонацию.

Продуктами горения при полном сгорании веществ являются негорючие газы и вода. При неполном сгорании в продуктах горения содержатся окись углерода и другие горючие соединения.

Следует отметить, что тяжелые несчастные случаи при пожарах нередко происходят из-за чрезмерной задымленности и наличия окиси углерода в зоне пожара.

В процессе горения выделяется большое количество тепла, которое определяется теплотой сгорания горючих веществ. Отдача тепла в окружающую среду во время пожара происходит конвекцией и главным образом излучением. Температура горения зависит в основном от теплоты сгорания горючих веществ и от количества образующихся продуктов горения.

Горючие вещества могут воспламеняться при непосредственном контакте с высоконагретыми телами или с открытым пламенем, при нагревании излучением, а также при протекании в горючем веществе экзотермических реакций.

Окислительный процесс горения включает фазы предварительного нагрева, окисления, самовоспламенения и последующего горения. На рисунке 1 приведена кривая изменения температур процесса горения во времени. При нагревании горючего вещества с начальной температурой tн до темпратуры начала окисления tо наблюдается медленное повышение температуры, поскольку подводимое извне тепло расходуется на плавление, испарение или разложение горючих веществ. После нагрева горючего вещества до tо нарастание температуры горения во времени происходит быстрее в связи с выделением тепла при начавшейся реакции окисления.

Рисунок 1. - Изменение температуры во времени при нагревании горючих веществ

Рисунок 1. – Изменение температуры во времени при нагревании горючих веществ

Однако температура tо еще недостаточна для дальнейшего саморазогревания, так как теплоотдача в окружающую среду превышает образование тепла при начавшейся реакции окисления. По достижении температуры самовоспламенения tc наступает равновесие между приходом тепла к горючему веществу и теплоотдачей в окружающую среду. В результате происходит дальнейший быстрый подъем температуры. При температуре tп появляется пламя и начинается устойчивый процесс горения tг.

Кривая зависимости температуры от времени при пожаре приведена на рисунке 2.

Рисунок 2. - Зависимость температуры от времени при пожаре

Рисунок 2. – Зависимость температуры от времени при пожаре

Горение является весьма сложным физико-химическим процессом. По современным представлениям, в процессе горения возникают малоустойчивые, но весьма активные промежуточные продукты в виде свободных атомов, перекисей, радикалов. Реакционная способность кислорода значительно увеличивается при нагревании.

Температура самовоспламенения горючих веществ колеблется в широких пределах не только для различных веществ, но и для одного и того же вещества. Эта температура зависит от многих переменных факторов: концентрации смеси, давления, объема сосуда (для газо- паро- и пылевоздушных смесей), измельченное™ (для твердых горючих веществ). В таблице 1 приведены пределы колебания температуры самовоспламенения некоторых горючих веществ.

Таблица1. Температура самовоспламенения некоторых горючих веществ

Таблица 1. Температура самовоспламенения некоторых горючих веществ

Взрывы смесей горючих газов, паров и пыли с воздухом могут происходить только при условии предварительного смешивания их горючих составляющих с кислородом воздуха. Для различных газов, паров и пыли существуют определенные границы взрывоопасных концентраций, являющиеся нижним и верхним пределами взрывоопасной смеси. При содержании горючих составляющих в смеси менее нижнего предела смесь не взрывается и не горит, а при содержании горючих веществ более верхнего предела смесь не взрывается, но горит и, следовательно, является пожароопасной.

Чем меньше нижний предел взрывной концентрации, тем опаснее горючее вещество. Взрывоопасность смесей определяется также интервалом между нижним и верхним пределами смеси. Чем больше этот интервал, тем опаснее взрывная смесь. Так, у ацетилена (С2Н2) нижний предел взрываемости смеси с воздухом (в объемных процентах) равен 2,6%, а верхний 82%. У метана (СН4) эти значения соответственно составляют 5,3 и 14%. Следовательно, взрывоопасность ацетилена значительно больше взрывоопасности метана.

Температура при взрыве смесей газов и паров колеблется в широких пределах и составляет 1500—3000 °С, а развиваемое при взрыве давление обычно не превышает 1,1 мн/м 2 (11 атм). Однако при увеличении содержания кислорода в смеси и при сжатии смеси во время взрыва (например, в газопроводах -большой длины) давление взрыва может сильно возрасти и даже перейти в детонацию, когда скорость распространения пламени достигает 1000—4000 м/сек, а давление составляет 8 Мн/м 2 (80 атм) и более.

Пожарная опасность твердых горючих веществ

Пожарная опасность твердых веществ определяется их составом и в значительной степени зависит от удельной поверхности этих веществ. Так, бумага в рулонах горит очень медленно, между тем как горение развернутой бумаги происходит весьма быстро. .При повышении влажности твердых веществ значительно уменьшается их воспламеняемость и скорость горения. Скорость горения твердых веществ зависит также от количества летучих продуктов, выделяющихся при разложении веществ во время горения; с увеличением летучих составляющих возрастает и скорость горения.

При горении твердых веществ наблюдаются процессы пламенного и беспламенного горения. При беспламенном горении окисление горючего вещества происходит в поверхностном слое. Одним из основных горючих газов при гашении веществ, содержащих углерод, является окись углерода.

Щелочные металлы начинают гореть после их расплавления (некоторые из них образуют пламя при взаимодействии с водой). Горение алюминия, магния и кальция сопровождается образованием значительного количества белого дыма, состоящего из окислов этих металлов. Процесс горения щелочных металлов значительно интенсифицируется при их измельчении. Так, стружка магния и магниевых сплавов (например, электрон) горит весьма интенсивно. Пыль этих металлов в состоянии аэрогеля (в виде отложений) горит медленно, однако, будучи приведена во взвешенное состояние, она взрывается.

Горение древесины — сложный процесс. При повышении температуры древесины до 110—130 °С выделяется вода, а затем начинается разложение древесины. Продукты разложения в пределах 130—200 °С состоят из паров воды и углекислого газа. При дальнейшем повышении температуры в составе выделяющихся газов появляется окись углерода, водород, метан и другие горючие газы. При 230—250 °С продукты разложения древесины воспламеняются от постороннего источника тепла, после чего древесина продолжает гореть. При 300 °С из древесины выделяется максимальное количество горючих газов.

Фаза пламенного горения древесины постепенно, по мере образования на ее поверхности слоя угля, уменьшается и наступает фаза беспламенного горения этого угля. После выгорания слоя угля вновь интенсивно выделяются горючие газы и появляется пламя. Затем образуется новый слой угля и наступает фаза беспламенного горения и т. д.

По окончании ряда циклов пламенного и беспламенного горения, когда вся древесина разложилась, происходит горение остатков древесного угля без выделения пламени.
Следует отметить, что при длительном нагревании древесины в последней возникают процессы разложения и окисления, что может снизить температуру воспламенения древесины до 110—130 °С.

Пожарная опасность жидких горючих веществ

Пожарная опасность горючих жидкостей определяется температурой вспышки паров испаряющейся жидкости при (внесении источника тепла. Температура вспышки представляет собой наименьшую температуру, при которой пары горючего вещества создают над его поверхностью паровоздушную смесь, воспламеняющуюся при внесении источника тепла (например, открытого огня).

За время вспышки поверхность горючей жидкости не прогревается до температуры, достаточной для интенсивного испарения жидкости, и дальнейшее горение прекращается. Если температура жидкости в момент вспышки окажется достаточной для того, чтобы вслед за вспышкой последовало горение, то такую температуру называют температурой воспламенения горючей жидкости.

Чем ниже температура вспышки горючей жидкости, тем больше пожарная опасность По существующей классификации все горючие жидкости разделяются на два класса. К I классу относятся жидкости с температурой вспышки менее 45°С (например, бензин, спирт, эфир, керосин и др.), а ко II классу—жидкости с температурой вспышки более 45 0 С (например, масла, мазуты и др.). Огнеопасные жидкости I класса относят к легковоспламеняющимся жидкостям, а жидкости II класса — к горючим.

Следует отметить, что пожарная опасность ряда твердых веществ (например, нафталин, фосфор, камфора и др., которые испаряются при нормальной температуре) также характеризуется температурой вспышки.

У легковоспламеняющихся жидкостей небольшая (1—2°С) разница между температурой вспышки паров и температурой воспламенения. У горючих жидкостей эта разница достигает 30 0 С и более.

Пожарная опасность жидкостей увеличивается с понижением температуры вспышки, температуры воспламенения и самовоспламенения, а также с увеличением скорости испарения и уменьшением нижнего предела концентрации взрывоопасной смеси паров жидкости с воздухом.

Пожарная опасность пыли

Пыль горючих веществ в состоянии аэрогеля (в виде отложений пыли) может тлеть и гореть, а находясь в форме аэрозоля, т. е. будучи взвешенной в воздухе, она способна взрываться, образуя взрывоопасные пылевоздушные смеси. Горению пыли в значительной мере способствует адсорбция пылью кислорода воздуха. Взрывоопасность пыли повышается с уменьшением частиц пыли вследствие увеличения ее удельной поверхности. Температура самовоспламенения горючей пыли обычно колеблется в пределах 700—900°С, но некоторые виды пыли имеют относительно низкую температуру самовоспламенения (например, сажа взрывается при 360 °С).

Аналогично горючим газам и парам у пыли существует нижний и верхний пределы взрывоопасной концентрации. Нижний предел взрывной концентрации (источник тепла — раскаленное тело) для серной пыли составляет 7, сахарной 10,3, алюминиевой 7 и каменноугольной 17,2 г/м 3 .

Пределы взрывоопасной концентрации пыли зависят от влажности, дисперсности, температуры и мощности источника тепла и других факторов. Развиваемое при взрывах пыли давление обычно не превышает 0,4—0,6 мн/м 2 (4—6 атм).

Самовозгорание

Некоторые вещества обладают способностью адсорбировать газы и кислород воздуха, вследствие чего увеличивается скорость окислительных реакций и повышается температура этих веществ. Если при этом создаются условия, когда приход тепла будет больше отдачи в окружающую среду, то в результате непрерывного повышения температуры такие вещества могут гореть. Процесс, при котором горение (веществ происходит в результате самонагревания, называется самовозгоранием. Ясно, что вещества, у которых процесс самовозгорания начинается при низкой температуре, представляют повышенную пожарную опасность.

Вещества, способные к самовозгоранию, разделяют на несколько групп. К I группе относятся вещества растительного происхождения, например влажное зерно, сено, опилки. Причиной повышения температуры для них являются биологические процессы; в дальнейшем повышение температуры происходит вследствие окисления, что приводит к самовозгоранию таких веществ.

Ко II группе относят каменные и бурые углы (кроме тощих углей) и торф. Самовозгоранию торфа способствуют протекающие в нем биологические процессы. Торф самовозгорается при относительно невысокой температуре (120- 140°С).

К III группе относятся масла и жиры, причем повышенную пожарную опасность представляют масла растительного происхождения (льняное масло и др.), так как они содержат непредельные органические соединения, которые могут окисляться и полимеризоваться. Животные и минеральные масла представляют значительно меньшую пожарную опасность.

Опасность самовозгорания резко возрастает в тех случаях, когда масла попадают на обтирочные материалы и на спецодежду. Образующаяся на поверхности этих материалов пленка масла адсорбирует кислород воздуха, вследствие чего происходит повышение температуры, возможно воспламенение материалов. В практике металлургических заводов известны случаи пожаров из-за самовозгорания замасленных обтирочных материалов и спецодежды.

К IV группе относятся химические вещества и некоторые соединения. К этой группе относятся вещества, способные к самовозгоранию при их контакте с воздухом, например фосфористый водород, кремниевый водород, белый фосфор, арсины, пыль алюминия и цинка, свежеприготовленные древесный уголь и сажа, металлоорганические соединения. Сульфиды железа FeS и Fe2S3 обладают пирофорными свойствами. При соприкосновении этих сульфидов с воздухом температура их повышается настолько высоко, что является источником воспламенения горючих веществ.

Ряд веществ воспламеняется при соприкосновении с водой, например щелочные металлы, карбиды кальция и щелочных металлов и др. Воспламенение возникает от того, что в результате взаимодействия этих веществ с водой образуются горючие газы, которые воспламеняются вследствие экзотермичности реакций. В сжатом кислороде самовозгораются масла и жиры.

Горение — это самораспространяющаяся химическая реакция окисления, протекающая в узкой зоне фронта пламени и сопровождающаяся выделением большого количества тепла и обычно свечением. Для возникновения горения требуется наличие трех факторов: горючего вещества, окислителя (обычно кислорода) и источника возгорания (инициирующего импульса). Окислителями могут быть также хлор, фтор, бром, йод, оксиды азота и др.

В зависимости от свойств горючей смеси горение может быть гомогенным (одинаковое состояние исходных веществ) и гетерогенным (горение твердых и жидких веществ). По скорости распространения пламени горение дифференцируется на нормальное, взрывное и детонационное.

Нормальное горение — это горение, при котором распространение пламени происходит в направлении, перпендикулярном фронту пламени, при отсутствии газодинамических эффектов, связанных с градиентом давления или турбулентностью. Скорость нормального горения зависит не только от кинетики реакции, но и от коэффициентов теплопроводности и диффузии.

Скорость распространения пламени (до нескольких метров в секунду) во много раз меньше скорости звука. Это объясняется тем, что скорость передачи энергии посредством теплопроводности (тепловое горение) невелика по сравнению со скоростью распространения в нем упругих колебаний. Для некоторых систем реакция горения может самоускоряться не только вследствие разогрева, но и в результате накопления активных промежуточных продуктов химической реакции (цепное горение).

Скорость взрывного горения для газо-, паро- и пылевоздушных смесей может достигать сотен метров в секунду. Это объясняется переходом теплопередачи на более эффективный конвективный режим в результате перемешивания горячих продуктов горения с исходной смесью. Как правило, ускорение горения происходит при распространении его снизу вверх, при искажении формы фронта пламени в результате взаимодействия с препятствиями или трения о стенки трубопроводов, а также турбулизации газового потока.

Детонация — это распространение горения ударной волной, представляющей собой мгновенный скачок давления, распространяющейся в среде со сверхзвуковой скоростью. Детонационное горение происходит с равномерной, вполне определенной для каждой горючей смеси скоростью в диапазоне 1000-3000 м/с. В механизме такого распространения пламени теплопередача и диффузия не играют существенной роли. Сжатие исходной смеси в ударной волне приводит к мгновенному изменению состояния газа, увеличивая его плотность и температуру.

Следом за ударной волной движется зона быстрой реакции в смеси, нагретой ударной волной. Повышение давления в этой зоне, вызванное быстрым разогревом вещества в собственном объеме, поддерживает устойчивое состояние ударной волны. Возникает детонационная волна , распространяющаяся без изменения структуры на весь объем смеси.

Для возникновения процесса горения (воспламенения) необходимо создать определенные начальные условия в горючей среде. Различают два способа воспламенения: самовоспламенение и вынужденное воспламенение, или зажигание.

Самовоспламенение происходит в результате экзотермической химической реакции вследствие нагрева всей горючей смеси до температуры, при которой она воспламеняется самостоятельно, без внешнего воздействия. Для твердых веществ применяется также термин самовозгорание. Оно может быть тепловым, микробиологическим и химическим.

Вынужденное воспламенение происходит в результате зажигания холодной горючей смеси в какой-либо точке каким-либо высокотемпературным источником тепла — пламенем, накаленным телом, электрической искрой и т.д.

пожарная опасность жидкостей определяется температурой вспышки, в зависимости от которой они подразделяются на легковоспламеняющиеся (ЛЖВ) с температурой вспышки паров не выше 61 °С (бензин, этиловый спирт, ацетон, керосин и др.) и горючие (ГЖ) - с температурой вспышки паров выше 61 °С (минеральные и растительные масла). Особо опасными считаются ЛВЖ с температурой вспышки не более 28 °С.

Кроме того, пожароопасность жидкостей характеризуется концентрационными пределами распространения пламени воспламенения смесей их паров с воздухом (нижним и верхним), температурой самовоспламенения, скоростями распространения пламени и выгорания;

пожарная опасность газовоздушных смесей характеризуется в первую очередь концентрационными пределами распространения пламени, а также температурой самовоспламенения, минимальной энергией зажигания, скоростью распространения пламени, максимальным давлением взрыва и скоростью его нарастания;

пожарная опасность горючих пылей, находящихся во взвешенном состоянии (аэровзвесей), характеризуются нижним концентрационным пределом воспламенения (в производственных условиях реальность образования больших концентраций пыли невелика), минимальной энергией зажигания, максимальным давлением взрыва и скоростью его нарастания, а также минимальным взрывоопасным содержанием кислорода в смеси;

пожарная опасность твердых веществ и материалов оценивается по температурам их воспламенения и самовоспламенения. Пористые, волокнистые и сыпучие материалы (в том числе осевшие горючие пыли) дополнительно характеризуются температурами самонагревания и тления, температурными условиями теплового самовозгорания, минимальной энергией зажигания, способностью гореть и взрываться при взаимодействии с водой, кислородом воздуха и другими веществами.

Данные о способности веществ взрываться и гореть при взаимном контакте следует использовать при определении категорий помещений по взрывопожарной и пожарной опасности в соответствии с требованиями норм технологического проектирования; при выборе безопасных условий проведения технологических процессов и условий совместного хранения и транспортирования веществ и материалов; выборе или назначении средств пожаротушения.

Значение нормальной скорости распространения пламени учитывается в расчетах скорости нарастания давления взрыва газо- и паровоздушных смесей в оборудовании и помещениях, критического (гасящего) диаметра при разработке и создании огнепреградителей, площади легкосбрасываемых конструкций, предохранительных мембран и других разгерметизирующих устройств; разработке мероприятий по обеспечению пожаровзрывобезопасности технологических процессов.

Значение скорости выгорания следует применять при расчетных определениях продолжительности горения жидкости в резервуарах, интенсивности тепловыделения и температурного режима пожара, интенсивности подачи огнетушащих веществ.

Значения минимальной флегматизирующей концентрации флегматизатора 1 Флегматизатор — жидкое или пластическое вещество, с помощью которого достигается увеличение стойкости взрывчатого вещества по отношению к внешним воздействиям (удару, трению, искре, и т.п.). , минимального взрывоопасного содержания кислорода, максимального давления взрыва и скорости его нарастания следует применять при разработке мероприятий по обеспечению пожаровзрывобезопасности технологических процессов.

Показатели пожарной опасности веществ определяются по стандартным методикам и являются основным критерием при оценке пожарной опасности производств и производственных помещений.

Горение - сложный химический процесс, основой которого является окислительная реакция, протекающая в условиях прогрессивного самоускорения, связанного с накоплением в системе тепла.

Отличительные признаки горения - выделение тепла, саморазогрев и свечение веществ при их химическом превращении.

Физическое состояние веществ и физические процессы оказывают большое влияние на скорость и последовательность протекания реакции при окислении веществ, а также на состав продуктов сгорания.

Например: при недостаточном подводе кислорода в зону горения процесс будет протекать медленно, а состав продуктов горения будет отличаться большим содержанием продуктов неполного сгорания, т.е. таких продуктов, которые способны к дальнейшему горению.

При неполном сгорании углеродосодержащих веществ в воздухе образуются двуокись углерода и окись углерода, кроме того в продуктах горения содержатся несгоревшие мелкие частицы углерода, образующие дым.

Газообразный окислитель поступает в зону горения в результате конвекции и диффузии. Исключение составляют случаи, когда окислитель содержится в горючей смеси в количестве, необходимом для реализации процесса горения.

При воздействии внешнего импульса или источника зажигания вещества, содержащие окислитель, практически мгновенно разлагаются и окислитель вступает в реакцию с горючим веществом, которая с большой скоростью распространяется по всему его объему. Реакция сопровождается с выделением большого количества тепла. Горение приобретает форму взрыва.

Окислителем могут служить другие вещества. Например: сера, галогены, сложные кислородосодержащие вещества - перекиси, нитросоединения, азотная кислота, перхлораты.

Однако наиболее часто горение протекает с участием кислорода воздуха (21% О2 в воздухе) О2 входит в состав воды и многих минералов. Например, горение твердых веществ в виде аэрозоля может при горении взрываться, а в виде аэрогеля (сплошного массива) может гореть спокойно или тлеть.

Горение различают: тепловое и автокаталитическое.

Тепловое связано с экзотермической реакцией, когда скорость выделения тепла превышает скорость теплопотерь и создаются условия для прогрессивного самоускорения реакции саморазогрева системы и пространственного распространения горения.

Автокаталитический (или цепное) горение происходит при сравнительно низких температурах, например: белый фосфор (горит на воздухе при

Таким образом, чтобы горение возникло, необходима система: горючее вещество, окислитель, источник зажигания или импульс ускоряющий реакцию окисления.

Горючее вещество может быть в газообразном, жидком, твердом состоянии.

Горение газов и паров в воздухе протекает полностью в газовой фазе и носит объемный характер. Горение сопровождается пламенем или взрывом.

Пламя это светящееся пространство, в котором сгорают газы и пары.

Горение в виде взрыва - это горение за короткий промежуток времени.

Горение жидкости - это пламенное горение ее паров и продуктов разложения.

Горение твердых веществ отличается большим разнообразием происходящих процессов. - Это связано с разнообразием химических и физических свойств и состояний (дисперсностью, пористостью, влажностью, однородностью) и состоянием окружающей среды.

Взрыв пыли (торфа, древесины, муки, сахара).

Горение может возникнуть в двух различных формах:

1. Возгорание (воспламенение)

2. Самовозгорание (самовоспламенение)

Возгорание веществ возможно при воздействии теплового импульса от источника зажигания. Величина его должна быть достаточной, чтобы разогреть вещество до температуры, при которой происходит дальнейший саморазогрев и возникает устойчивое горение после удаления источника зажигания.

Температура при возгорании многих органических твердых веществ является температурой воспламенения паро и газообразных продуктов их термического разложения (например у древесины).




Самовозгорание (самовоспламенение) - процесс возникновения горения при отсутствии источника зажигания. Оно наблюдается при резком увеличении скорости экзотермической реакции в объеме вещества, когда скорость выделения тепла больше скорости рассеивания.

1). Тепловое (масла, жиры). Масла машин, трансформаторов. Окисление происходит при температуре на воздухе и самовозгореться не способны.

Отработанные минеральные масла подвергавшие нагреву до температур склонных к самовозгоранию (т.к. предельные углеводороды переходят в непредельные).

Склонны к самовозгоранию растительные масла.

самовозгорание торфа из-за жизнедеятельности микроорганизмов.

Сено, клевер, листва - сульфиды железа.

3). Химическое: щелочные металлы натрий, калий, при определенных условиях хлор, фтор, бром, йод.

Источники зажигания могут быть для различных веществ разные: открытый огонь; тепловое проявление (химическое, микробиологическое происхождение, силы трения); механические (искры от ударов искрообразующих металлов); электрические (большие переходные сопротивления, короткое замыкание, электросварка); природные (молния, грозовые разряды); носить химическую природу (химические свойства веществ).

Производственные источники зажигания характеризуются воспламеняющей способностью.

В условиях производства существует значительное количество различных источников зажигания, как постоянно действующие (они предусмотрены технологическим регламентом) и потенциально возможные при нарушении технологического процесса.

Условиями необходимыми для предотвращения пожара являются: 1. Исключение окислителя в горючем веществе. 2. Исключение источника зажигания. 3. Исключение горючего вещества.

Горение - сложный химический процесс, основой которого является окислительная реакция, протекающая в условиях прогрессивного самоускорения, связанного с накоплением в системе тепла.

Отличительные признаки горения - выделение тепла, саморазогрев и свечение веществ при их химическом превращении.

Физическое состояние веществ и физические процессы оказывают большое влияние на скорость и последовательность протекания реакции при окислении веществ, а также на состав продуктов сгорания.

Например: при недостаточном подводе кислорода в зону горения процесс будет протекать медленно, а состав продуктов горения будет отличаться большим содержанием продуктов неполного сгорания, т.е. таких продуктов, которые способны к дальнейшему горению.

При неполном сгорании углеродосодержащих веществ в воздухе образуются двуокись углерода и окись углерода, кроме того в продуктах горения содержатся несгоревшие мелкие частицы углерода, образующие дым.

Газообразный окислитель поступает в зону горения в результате конвекции и диффузии. Исключение составляют случаи, когда окислитель содержится в горючей смеси в количестве, необходимом для реализации процесса горения.

При воздействии внешнего импульса или источника зажигания вещества, содержащие окислитель, практически мгновенно разлагаются и окислитель вступает в реакцию с горючим веществом, которая с большой скоростью распространяется по всему его объему. Реакция сопровождается с выделением большого количества тепла. Горение приобретает форму взрыва.

Окислителем могут служить другие вещества. Например: сера, галогены, сложные кислородосодержащие вещества - перекиси, нитросоединения, азотная кислота, перхлораты.

Однако наиболее часто горение протекает с участием кислорода воздуха (21% О2 в воздухе) О2 входит в состав воды и многих минералов. Например, горение твердых веществ в виде аэрозоля может при горении взрываться, а в виде аэрогеля (сплошного массива) может гореть спокойно или тлеть.

Горение различают: тепловое и автокаталитическое.

Тепловое связано с экзотермической реакцией, когда скорость выделения тепла превышает скорость теплопотерь и создаются условия для прогрессивного самоускорения реакции саморазогрева системы и пространственного распространения горения.

Автокаталитический (или цепное) горение происходит при сравнительно низких температурах, например: белый фосфор (горит на воздухе при

Горение и взрыв газов (и аэрозолей) — это с точки зрения химии одинаковые процессы превращения смеси горючих газов и окислителя в продукты сгорания, а с точки зрения физики — принципиально различные процессы, имеющие существенно различные внешние проявления.

Под взрывом в физике понимают широкий круг явлений, связанных с выделением большого количества энергии в ограниченном объёме за очень короткий промежуток времени. Кроме взрывов обычных, конденсированных химических и ядерных взрывчатых веществ, к взрывным явлениям относятся также мощные электрические разряды, когда в разрядном промежутке выделяется большое количество тепла, под воздействием которого среда превращается в ионизированный газ с высоким давлением; взрыв металлических проволочек при протекании через них мощного электрического тока, достаточного для быстрого превращения проводника в пар; внезапное разрушение оболочки, удерживающей газ под высоким давлением; столкновение двух твердых космических тел, движущихся навстречу одно другому со скоростью, измеряемой десятками километров в секунду, когда в результате столкновения телá полностью превращаются в пар с давлением в несколько миллионов атмосфер, и т. д. Общим признаком для всех этих разнообразных по своей физической природе явлений взрыва служит образование в локальной области зоны повышенного давления с последующим распространением по окружающей эту область среде со сверхзвуковой скоростью взрывной/ударной волны, представляющей собой прямой скачок давления, плотности, температуры и скорости среды.

Итак, если в некотором сосуде воспламенилась горючая газовая смесь, но сосуд выдержал образовавшееся вследствие этого давление, то — это не взрыв, а простое сгорание газов. С другой стороны, если сосуд разорвался, то — это взрыв, и при этом не имеет значения быстро или очень медленно происходило в нём сгорание газа; более того, — это взрыв, если в сосуде и вовсе не было горючей смеси, а он разорвался, например, вследствие превышения давления воздуха или даже без превышения расчетного давления, а вследствие потери прочности сосуда в результате коррозии его стенок.

Для того чтобы любое физическое явление можно было назвать взрывом, необходимо и достаточно, чтобы по окружающей среде распространялась ударная волна. А ударная волна может распространяться только со сверхзвуковой скоростью, иначе это не ударная, а акустическая волна, которая распространяется со скоростью звука. И никаких промежуточных явлений в сплошной среде в этом смысле не существует.

Другое дело — детонация. Несмотря на общую химическую природу с дефлаграцией (реакция горения), она сама распространяется вследствие распространения ударной волны по горючей газообразной смеси и представляет собой комплекс ударной волны и волны химической реакции в ней.

Известно, что при некоторых условиях дефлаграция может переходить в детонацию. Условия, способствующие такому переходу, — это обычно наличие длинных вытянутых полостей, например, труб, галерей, горных выработок и проч., особенно если они содержат препятствия, служащие турбулизаторами газового потока. Если горение начинается как дефлаграция, а заканчивается как детонация, то кажется логичным предположить наличие некоторого промежуточного по своей физической природе переходного режима, который некоторые авторы и называют взрывным горением. Однако и это не так. Переход дефлаграционного горения в длинной трубе в детонацию можно представить следующим образом. Вследствие турбулизации и соответствующего увеличения поверхности пламени скорость его распространения увеличивается, и оно толкает впереди себя горючий газ с большей скоростью, что в свою очередь ещё больше увеличивает турбулентность горючей смеси впереди фронта пламени. Процесс распространения пламени становится самоускоряющимся с усиливающимся поджатием горючей смеси. Поджатие горючей смеси в виде волны давления и повышенной температуры (температура в акустической волне повышается по закону адиабаты Пуассона, а не по адиабате Гюгонио, как это происходит при ударном сжатии) распространяется вперед со скоростью звука. А всякое новое дополнительное возмущение со стороны ускоряющегося фронта турбулентного пламени распространяется по уже нагретому поджатием газу с большей скоростью (скорость звука в газе пропорциональна Т1/2, где Т — абсолютная температура газа), и поэтому оно вскоре догоняет фронт предыдущего возмущения и суммируется с ним. А обогнать фронт предыдущего возмущения оно не может, так как местная скорость звука в холодном горючем газе, расположенном в невозмущённом газе, значительно ниже. Таким образом, на переднем фронте первого акустического возмущения происходит сложение всех последующих возмущений, амплитуда давления на фронте акустической волны увеличивается, а сам фронт из первоначально пологого становится все более крутым и в конечном итоге из акустического превращается в ударный. При дальнейшем росте амплитуды ударного фронта температура в нём по адиабате Гюгонио достигает температуры самовоспламенения горючей смеси, что и означает возникновение детонации. Детонация — это ударная волна, в которой происходит самовоспламенение горючей смеси.

Рассматривая описанный механизм возникновения детонации, важно отметить, что его нельзя понимать как непрерывный переход от дефлаграции в результате постоянного ускорения фронта пламени: детонация возникает скачкообразно впереди дефлаграционного пламени, даже на существенном расстоянии от него, когда там создаются соответствующие критические условия. В дальнейшем детонационная волна, представляющая собой единый комплекс ударной волны и волны химической реакции, распространяется стационарно с постоянной скоростью по невозмущенному горючему газу, независимо от породившего её дефлаграционного пламени, которое при подходе к продуктам детонации вскоре вообще перестает существовать.

Таким образом, ударная волна, волна химической реакции и волна разрежения в продуктах сгорания движутся с одинаковой скоростью и вместе представляют собой единый комплекс, обусловливающий распределение давления в зоне детонации в виде острого короткого пика. Строго говоря, зона химической реакции отстоит на некотором расстоянии от фронта ударной волны, так как процесс самовоспламенения возникает не сразу же после ударного сжатия горючей смеси, а по истечении определённого периода индукции и имеет некоторую протяжённость, поскольку химическая реакция происходит хотя и быстро, но не мгновенно. Однако ни начало химической реакции, ни её конец на экспериментальной кривой пика давления никаких характерных изломов не определяют. При экспериментах датчики давления фиксируют детонацию в виде очень острых пиков, причем часто инерционность датчиков и их линейные размеры не позволяют проводить достоверных измерений не только профиля волны, но даже и её амплитуды. Для грубых оценок амплитуды давления в детонационной волне можно считать, что оно в 2-3 раза превышает максимальное давление взрыва данной горючей смеси в замкнутом сосуде. Если детонационная волна подходит к закрытому торцу трубы, то происходит её отражение, в результате которого давление ещё увеличивается. Этим и объясняется большая разрушительная сила детонации. Воздействие детонационной волны на препятствие очень специфично: оно носит характер жесткого удара.

По аналогии с конденсированными взрывчатыми веществами, которые принято делить на метательные (порохá) и бризантные, можно отметить, что детонация в этом смысле оказывает, условно говоря, бризантное действие на препятствие, а дефлаграция — метательное.

Возвращаясь к вопросу о возможности и условиях перехода дефлаграции в детонацию, следует отметить, что для этого необходимы не только турбулизаторы газового потока, но существуют также и концентрационные пределы возможности детонации, которые существенно ýже концентрационных пределов дефлаграционного распространения пламени. А что касается возможности детонации газового облака в открытом пространстве, то на это способны далеко не все горючие газообразные смеси: известны экспериментальные исследования, показавшие, например, что, когда в центре метановоздушного облака стехиометрического состава инициировали детонацию, то есть взрывали небольшую навеску конденсированного взрывчатого вещества, то начавшаяся детонация облака затухала и переходила в дефлаграцию. Поэтому, когда есть необходимость заставить газообразное облако сдетонировать в открытом пространстве (так называемая вакуумная бомба), то, во-первых, следует выбрать вещество, способное детонировать в смеси с воздухом в открытом пространстве, например, окись этилена, а во-вторых, не просто поджечь его, а изначально взорвать хотя бы небольшую навеску конденсированного взрывчатого (детонирующего) вещества.

Самовоспламенение или детонация

Возможен ещё один весьма интересных режим сгорания газов: переход дефлаграции в самовоспламенение части горючей смеси. При определённых условиях это возможно при горении в замкнутом объёме, когда по мере распространения фронта пламени от точки зажигания давление в замкнутом объёме растёт, и по закону адиабаты Пуассона повышается температура горючей смеси, и в какой-то момент происходит самовоспламенение оставшейся части горючей смеси, сопровождающееся скачком давления в локальном объёме. Более подробные теоретические описания этого процесса содержатся в литературе [2, 3].

При экспериментах описанное явление самовоспламенения может восприниматься как переход дефлаграции в детонацию, хотя между ним и детонацией есть принципиальные физические различия: при детонации смесь воспламеняется от ударного сжатия по адиабате Гюгонио (необратимый термодинамический процесс), а в описанном случае — от изоэнтропийного сжатия по адиабате Пуассона (обратимый термодинамический процесс); детонация распространяется в виде волны с некоторой конечной скоростью, а описанный процесс самовоспламенения происходит одновременно во всём оставшемся объёме горючей смеси, что условно можно интерпретировать как распространения пламени с бесконечно большой скоростью.

Что происходит в цилиндре двигателя внутреннего сгорания

В связи с этим уместно заметить, что в цилиндре двигателя внутреннего сгорания нет благоприятных условий для перехода дефлаграции в детонацию, зато есть условия для самовоспламенения последних порций горючей смеси. Разработчикам двигателей внутреннего сгорания это необходимо выяснить, так как только на основе правильного понимания физики этих процессов возможен поиск эффективных путей борьбы с детонацией или с тем, что ошибочно понимается как детонация.

Кстати, в двигателях внутреннего сгорания вполне вероятна и подлинная детонация, но как результат того, что в смеси она изначально инициируется искровым разрядом, который, как было отмечено в самом начале, является взрывом, и если смесь при определённом режиме работы двигателя способна детонировать от такого источника ударной волны, то она и возникает. Но в таком случае и пути борьбы с детонацией оказываются совсем другими. Например, целесообразно попытаться искровое зажигание заменить калильным, но только, конечно, не таким, которое применялось на заре двигателестроения в виде постоянно нагретого тела, а импульсным. Оно может осуществляться, например, путём пропускания через резистор очень большого тока в течение очень короткого промежутка времени. Предельно упрощенно такое зажигание можно представить так: через металлическую проволочку определённых размеров и формы следует пропускать такой ток, который способен её расплавить за время порядка менее 0,1 с, но действительное время пропускания тока сократить настолько, чтобы зажигание смеси происходило, а расплавление проволочки — нет. Современные тиристоры и другая элементная база промышленной электроники вполне позволяют это осуществить бесконтактными методами и при этом достаточно тонко устанавливать и момент зажигания, и величину импульса энергии калильного зажигания.

Читайте также: